Биографии Характеристики Анализ

Ацетилен растворим в воде. Области применения ацетилена

Алкины – нециклические углеводороды, имеющие одну тройную связь и общую формулу С n Н 2 n -2 . Тройная связь – сочетание одной σ–связи и двух π –связей.

Гомологический ряд алкинов :

СН≡СН этин

СН≡С-СН 3 пропин

СН≡С-СН 2 -СН 3 бутин-1

СН≡С-СН 2 -СН 2 -СН 3 пентин-1

Изомерия алкинов :

а) Изомерия положения тройной связи

СН≡С-СН 2 -СН 2 -СН 3 пентин-1 СН 3 -С≡С-СН 2 -СН 3 пентин-2

б) Изомерия углеродного скелета

СН≡С – СН-СН 3 3-метилбутин-1

Химические свойства ацетилена . Для алкинов характерны реакции окисления, присоединения и полимеризации.

Реакции окисления

а) Горение

2C 2 H 2 + 5O 2 → 4CO 2 + 2H 2 O

б) Обесцвечивание KMnO 4

Реакции присоединения

а) Гидрирование

СН≡СН+ H 2 → CH 2 = CH 2

этин этен

б) Присоединение галогенов

СН≡СН + Cl 2 → CHCl = CHCl

этин 1,2- дихлорэтен

в) Присоединение галогеноводородов

СН≡СН + HCl → CH 2 = CHCl

Хлорэтен

Полимеризация

3C 2 H 2 → C 6 H 6 (бензол)

Получение ацетилена

а) Из метана: 2CH 4 → C 2 H 2 + 3H 2

б) Из карбида кальция: CaC 2 + 2HOH → C 2 H 2 + Ca(OH) 2

Применение ацетилена : сварка и резка металлов, получение уксусного альдегида, пластмасс, растворителей, лекарств, красителей и многих других веществ.

Арены (ароматические углеводороды), их общая формула. Бензол, его структурная формула, свойства, применение.

Арены или ароматические углеводороды – это соединения, молекулы которых содержат ароматическую связь – единую π-электронную систему из шести электронов. Ароматическая связь прочнее π –связи и менее прочная, чем σ–связь. Для бензола и его гомологов характерны реакции замещения, реакции присоединения идут с трудом.

Общая формула аренов С n Н 2 n -6

Простейший представитель - бензол.

Бензол – бесцветная, нерастворимая в воде жидкость с приятным запахом. Легче воды. Ядовит.

Гомологи бензола: метилбензол C 6 H 5 -CH 3

этилбензол C 6 H 5 -C 2 H 5

пропилбензол C 6 H 5 -C 3 H 7

Химические свойства бензола.

Окисление.

Бензол горит, но не обесцвечивает KMnO 4 .

Реакции замещения.

а) Галогенирование: С 6 Н 6 +Cl 2 → HCl+C 6 H 5 Cl (хлорбензол)

б) Нитрование: С 6 Н 6 +HONO 2 → H 2 O + C 6 H 5 NO 2 (нитробензол)

Реакции присоединения

а) Галогенирование: С 6 Н 6 +3Cl 2 → C 6 H 5 Cl 6 (гексахлорциклогексан)

б) Гидрирование: С 6 Н 6 +3Н 2 → C 6 H 12 (циклогексан)

Получение бензола:

а) из ацетилена: 3 C 2 H 2 → C 6 H 6

б) из циклогексана: C 6 H 12 → C 6 H 6 + 3H 2

Применение бензола:

Бензол С 6 Н 6 используется как исходный продукт для получения различных ароматических соединений, применяемых в производстве лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ.

Основные положения теории химического строения органических веществ

А.М. Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах.

Основы теории химического строения сформулировал в 1861 г. профессор Казанского университета Александр Михайлович Бутлеров. А.М. Бутлеров ввёл понятие о химическом строении веществ. Химическое строение – это последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния друг на друга.

Сущность теории химического строения можно выразить в следующих положениях:

1. Все атомы, образующие молекулы органических веществ, связаны в определённой последовательности согласно их валентности.

Валентность элементов условно изображается чёрточками. Строение молекул простейших углеводородов можно изобразить так:

Структурные формулы показывают порядок соединения атомов в молекуле и валентность атомов. Углерод в органических веществах четырёхвалентен, водород – одновалентен.

2. Свойства веществ зависят не только от того, какие атомы и в каком количестве входят в состав молекулы, но и от порядка соединения атомов в молекуле (то есть от химического строения).

Данное положение теории строения органических веществ объясняет, в частности, явление изомерии. Существуют соединения, которые содержат одинаковое число атомов одних и тех же элементов, но связанных в различном порядке. Такие соединения обладают разными свойствами и называются изомерами . Так, например, одной и той же молекулярной формуле С 2 Н 6 О соответствуют два разных по свойствам вещества:

Н-С- С-О-Н Н-С-О- С-Н

этиловый спирт диметиловый эфир

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы можно предвидеть свойства.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

Например, свойства неорганических соединений, содержащих гидроксогруппы, зависят от того, с какими атомами они связаны – с атомами металлов или неметаллов. Так, например, гидроксогруппы содержат как кислоты, так и основания. Однако свойства этих веществ разные. Органические соединения также могут иметь разные свойства, которые зависят от того, с какими атомами или группами атомов связаны гидроксогруппы.

Прошло более 140 лет с тех пор, как была создана теория химического строения органических веществ А.М. Бутлерова, но и теперь химики всех стран используют её в своих работах. Теория Бутлерова объяснила факты, накопившиеся в органической химии (изомерию, многообразие органических веществ и др.); она углубила наши представления о строении молекул; она не только дала возможность предсказать новые вещества, но и указала пути их синтеза; теория дала толчок бурному развитию органической химии и химической промышленности.

Ацетилен (или по международной номенклатуре - этин) - это непредельный углеводород, принадлежащий к классу алкинов. Химическая формула ацетилена - C 2 H 2 . Атомы углерода в молекуле соединены тройной связью. Он является первым в своем гомологическом ряду. Представляет собой бесцветный газ. Очень огнеопасен.

Получение

Все методы промышленного получения ацетилена сходятся к двум типам: гидролиз карбида кальция и пиролиз различных углеводородов. Последний требует меньших энергозатрат, но чистота продукта довольно низкая. У карбидного метода - наоборот.

Суть пиролиза заключается в том, что метан, этан или другой легкий углеводород при нагреве до высоких температур (от 1000 °C) превращается в ацетилен с выделением водорода. Нагрев может осуществятся электрическим разрядом, плазмой или сжиганием части сырья. Но проблема состоит в том, что в результате реакции пиролиза может образовываться не только ацетилен, но и еще множество разных продуктов, от которых необходимо впоследствии избавляться.

2CH 4 → C 2 H 2 + 3H 2

Карбидный метод основан на реакции взаимодействия карбида кальция с водой. Карбид кальция получают из его оксида, сплавляя с коксом в электропечах. Отсюда и такой высокий расход энергии. Зато чистота ацетилена, получаемого таким способом, крайне высока (99,9 %).

CaC 2 + H 2 O → C 2 H 2 + Ca(OH) 2

В лаборатории ацетилен также можно получить дегидрогалогенированием дигалогенпроизводных алканов с помощью спиртового раствора щелочи.

CH 2 Cl-CH 2 Cl + 2KOH → C 2 H 2 + 2KCl + 2H 2 O

Физические свойства ацетилена

Ацетилен - это газ без цвета и запаха. Хотя примеси могут давать ему чесночный запах. Практически не растворим в воде, немного растворим в ацетоне. При температуре -83,8 °C сжижается.

Химические свойства ацетилена

Исходя из тройной связи ацетилена, для него будут характерны реакции присоединения и реакции полимеризации. Атомы водорода в молекуле ацетилена могут замещаться другими атомами или группами. Поэтому можно сказать, что ацетилен проявляет кислотные свойства. Разберем химические свойства ацетилена на конкретных реакциях.

  • Гидрирование. Осуществляется при высокой температуре и в присутствии катализатора (Ni, Pt, Pd). На палладиевом катализаторе возможно неполное гидрирование.
  • Галогенирование. Может быть как частичным, так и полным. Идет легко даже без катализаторов или нагревания. На свету хлорирование идет с взрывом. При этом ацетилен полностью распадается до углерода.

  • Присоединение к уксусной кислоте и этиловому спирту. Реакции идут только в присутствии катализаторов.

  • Присоединение синильной кислоты.

CH≡CH + HCN → CH 2 =CH-CN

Реакции замещения:

  • Взаимодействие ацетилена с металл-органическими соединениями.

CH≡CH + 2C 2 H 5 MgBr → 2C 2 H 6 + BrMgC≡CMgBr

  • Взаимодействие с металлическим натрием. Необходима температура 150 °C или предварительное растворение натрия в аммиаке.

2CH≡CH + 2Na → 2CH≡CNa + H 2

  • Взаимодействие с комплексными солями меди и серебра.

  • Взаимодействие с амидом натрия.

CH≡CH + 2NaNH 2 → NaC≡CNa + 2NH 3

  • Димеризация. При этой реакции две молекулы ацетилена объединяются в одну. Необходим катализатор - соль одновалентной меди.
  • Тримеризация. В этой реакции три молекулы ацетилена образуют бензол. Необходим нагрев до 70 °C, давление и катализатор.
  • Тетрамеризация. В результате реакции получается восьмичленный цикл - циклооктатетраен. Для этой реакции также требуется небольшой нагрев, давление и соответствующий катализатор. Обычно это комплексные соединения двухвалентного никеля.

Это далеко не все химические свойства ацетилена.

Применение

Структурная формула ацетилена указывает нам на довольно прочную связь между атомами углерода. При ее разрыве, например при горении, выделяется очень много энергии. По этой причине ацетиленовое пламя обладает рекордно высокой температурой - около 4000 °C. Его используют в горелках для сварки и резки металла, а также в ракетных двигателях.

Пламя горения ацетилена имеет также очень высокую яркость, поэтому его часто используют в осветительных приборах. Используется он и во взрывотехнике. Правда, там применяется не сам ацетилен, а его соли.

Как видно из разнообразных химический свойств, ацетилен может применяться как сырье для синтеза других важных веществ: растворителей, лаков, полимеров, синтетических волокон, пластмасс, органического стекла, взрывчатых веществ и уксусной кислоты.

Безопасность

Как уже говорилось, ацетилен - огнеопасное вещество. С кислородом или воздухом он способен образовывать крайне легковоспламеняющиеся смеси. Чтобы вызвать взрыв, достаточно одной искры от статического электричества, нагрева до 500 °C или небольшого давления. При температуре 335 °C чистый ацетилен самовоспламеняется.

Из-за этого ацетилен хранят в баллонах под давлением, которые наполнены пористым веществом (пемза, активированный уголь, асбест). Таким образом, ацетилен распределяется по порам, уменьшая риск взрыва. Часто эти поры пропитывают ацетоном, из-за чего образуется раствор ацетилена. Иногда ацетилен разбавляют другими, более инертными газами (азот, метан, пропан).

Этот газ обладает и токсичным действием. При его вдыхании начнется интоксикация организма. Признаками отравления являются тошнота, рвота, шум в ушах, головокружение. Большие концентрации могут приводить даже к потере сознания.

Ацетилен – это один из наиболее значимых углеводородов с тройной связью. Он является первым представителем ряда ацетилена, а также бесцветным газом, который практически не растворим в воде. Молекула ацетилена имеет на два атома водорода меньше, чем в молекуле этилена, и при этом характерно образование третьей связи между атомами углерода.

Применение ацетилена:

1) может применяться в качестве горючего при газовой сварке и резке металлов;

2) используется также для синтеза различных органических соединений;

3) в результате присоединения хлора к ацетилену получают растворитель – 1,1,2,2-тетрахлорэтан. Путем дальнейшей переработки тетрахлорэтана получаются другие хлорпроизводные;

4) при отщеплении хлороводорода от 1,1,2,2-тетрахлорэтана образуется трихлорэтен – растворитель высокого качества, который широко применяется при чистке одежды: СНСI = ССI 2 ;

5) в больших количествах ацетилен идет на производство хлорэтена, или винилхлорида, с помощью полимеризации которого получается поливинилхлорид (используется для изоляции проводов, изготовления плащей, искусственной кожи, труб и других продуктов);

6) из ацетилена получаются и другие полимеры, которые необходимы в производстве пластмасс, каучуков и синтетических волокон.

Получение ацетилена:

1) в лабораториях и промышленности ацетилен чаще всего получается карбидным способом. Если кусочки карбида кальция поместить в сосуд с водой или если воду добавлять к карбиду кальция, начинается сильное выделение ацетилена: СаС 2 + 2НОН → С 2 Н 2 + Са(ОН) 2 . Со стороны промышленности полимерных материалов карбидный способ является малоэффективным. Он связан с большими затратами электроэнергии на получение карбида кальция.

Особенности карбида кальция:

а) карбид кальция получают в электропечах;

б) получается при взаимодействии извести с углеродом (коксом, антрацитом);

в) получается при температуре 2000 °C: СаО + 3С → СаС 2 + СО;

2) применяется способ получения ацетилена из более доступного химического сырья – природного газа (метана).

Особенности получения ацетилена из метана: а) если метан нагревать до высокой температуры, то он разлагается на углерод и водород; б) одним из промежуточных продуктов этой реакции становится ацетилен: 2СН 4 → 2С + 4Н 2 ;

в) одной из характерных черт получения ацетилена из метана являются две идеи:

– выделить его на промежуточной стадии;

– не дать ацетилену возможности разложиться на углерод и водород.

Для этого образующийся ацетилен необходимо быстро удалить из зоны высокой температуры и охладить.

24. Диеновые углеводороды

Строение и номенклатура.

Диеновые углеводороды – это углеводороды с двумя двойными связями.

Общая формула диеновых углеводородов: С n Н 2n-2 .

Алкадиены, в молекулах которых две двойных связи разделены одной простой связью, называются соединениями с сопряженными двойными связями (дивинил и его гомологи).

СН 2 =СН-СН =СН 2 бутадиен-1,3 (дивинил).

Алкадиены, в молекулах которых две двойных связи примыкают к одному углеродному атому, называются углеводородами с кумулированными двойными связями (аллен и его гомологи):

СН 2 =С=СН 2 пропадиен-1,2 (аллен);

R-СН =С=СН 2 алкилаллены.

Углеводороды, в молекулах которых две двойных связи разделены двумя и более простыми связями, называются алкадиенами с изолированными двойными связями.

СН 2 =СН-СН 2 -СН=СН 2 пентадиен-1,4.

Химические свойства диеновых углеводородов.

Имея двойные связи в молекулах, диеновые углеводороды вступают в обычные реакции присоединения.

Например: а) обесцвечивают бромную воду; б) присоединяют галогеноводороды.

Характерной особенностью реакции присоединения является то, что наряду с обычным 1,2-присоединением идет 1,4-присоединение, при этом между 2-м и 3-м углеродными атомами возникает двойная связь. При реакции бутадиена-1,3 с бромистым водородом получается два продукта:

Соотношение продуктов реакции зависит от температуры и природы галогена. Выход продукта 1,4-присоединения увеличивается с повышением температуры и при переходе от хлора к йоду. При комнатной температуре получают смесь продуктов 1,2– и 1,4-присоединения. При низких температурах образуется больше того продукта, скорость образования которого выше (кинетически контролируемый продукт 1,2-присоединения). При высоких температурах образуется термодинамически более стабильный продукт 1,4-присоединения (термодинамически контролируемый продукт реакции). При наличии достаточного количества брома молекула бутадиена может присоединить по месту образующейся двойной связи еще одну молекулу галогена. При наличии двойных связей диеновые углеводороды довольно легко полимеризуются.

Продуктом полимеризации 2-метилбутадиена-1,3 (изопрена) является природный каучук.

Бесцветный газ, слаборастворимый в воде, несколько легче атмосферного воздуха, относящийся к классу алкинов и представляющий собой ненасыщенный углерод называют ацетиленом. В его структуре все атомы имеют между собой тройную связь. Это вещество закипает при температуре — 830 °С. Формула ацетилена говорит о том, что в его состав входят только углерод и водород.

Ацетилен – это опасное вещество, которое при неаккуратном обращении с ним может взорваться. Именно поэтому для хранения этого вещества используют специально оснащенные емкости. Газ при соединении с кислородом горит, и температура может достигать 3150 °С.

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС 2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

Электрический крекинг

Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Формула ацетилена

Ацетилен имеет простую формулу — С 2 Н 2 . Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.

Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.

Химические и физические свойства

Некоторые химические свойства

Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.

Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.

Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.

Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.

Физические свойства

В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.

Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.



Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм 3 /час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм 3 /час, при правом 650-750 дм 3 /час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Виды ацетилена

Промышленность выпускает два вида ацетилена — твердый и в виде газа.

Газообразный

Ацетилен обладает резким запахом и это дает определённые преимущества при его утечке. По своей массе он близок к атмосферному воздуху.

Жидкий

Жидкий ацетилен не обладает ни каким цветом. У него есть одна особенность он преломляет цвет. Ацетилен и жидкий, и газообразный, представляет собой опасное вещество. То есть при нарушении правил обращения с ним взрыв может произойти в любую секунду, даже при комнатной температуре. Для повышения безопасности при обращении с ним, применяют так называемую флегматизацией. То есть в ёмкости, предназначенной для хранения ацетилена размещают пористое вещество. Которое снижает его опасность

Реакции ацетилена

Ацетилен вступает в реакцию с различными соединениями, например, солями меди и серебра. В результате таких взаимодействий получают вещества под названием ацетилениды. Их отличительная черта — взрывоопасность.


Горение ацетилена

Реакция полимеризации

Использование ацетилена

Кроме сварки ацетилен применяют в следующих случаях:


Стандарты

Производители ацетилена руководствуются при его получении требованиями ГОСТ 5457-75. В нем определены требования к газообразному и жидкому ацетилену.

Скачать ГОСТ 5457-75

Введение

Ацетилен (C 2 H 2) – химическое газообразное соединение углерода с водородом, без цвета, со слабым эфирным запахом и сладковатым вкусом.

Ацетилен в газосварочном производстве получил наибольшее распространение благодаря важным для сварки качествам (высокая температура пламени, большая теплота сгорания). Так, при разложении 1 кг ацетилена выделяется 8473,6 кДж теплоты. Это единственный газ, горение которого возможно при отсутствии кислорода (или окислителя вообще).

Выделение тепла при сгорании ацетилена обусловлено следующими процессами:

  • распад ацетилена: C 2 H 2 = 2C + H 2
  • сгорание углерода: 2С + O 2 = 2CO, 2CO + O 2 = 2CO 2
  • сгорание водорода: H 2 + 1/2O 2 = H 2 O

Ацетилен легче воздуха, масса 1 м 3 ацетилена при температуре 20 °С (273 К) и нормальном атмосферном давлении составляет 1,09 кг. При нормальном давлении и температуре от –82,4 °С (190,6 К) до –84,0 °С (189 К) ацетилен переходит в жидкое состояние, а при температуре –85 °С (188 К) затвердевает, образуя кристаллы.

Технический ацетилен выпускается двух видов: растворенный и газообразный.

Технический растворенный ацетилен марки А предназначается для питания осветительных установок, технический растворенный ацетилен марки Б и технический газообразный ацетилен предназначаются в качестве горючего газа при газопламенной обработке металлов.

Технический ацетилен получают из карбида кальция путем разложения последнего водой. При этом из карбида кальция в ацетилен переходят вредные примеси, загрязняющие ацетилен: сероводород, аммиак, фосфорный водород, кремнистый водород. Эти примеси могут ухудшать свойства наплавленного металла и поэтому удаляются из ацетилена промывкой в воде и химической очисткой. Особенно нежелательна примесь фосфористого водорода, содержание более 0,7 % в ацетилене повышает взрывоопасность последнего.

Свойства ацетилена

Основные свойства ацетилена приведены в таблице 1.

Таблица 1 - Основные свойства ацетилена
Показатель Данные показателя
Формула С 2 H 2
Молекулярная масса 26,038
Плотность (при 0 °С и давлении 760 мм рт. ст.), кг/м 3 1,17
Плотность (при 20 °С и давлении 760 мм рт. ст.), кг/м 3 1,09
Критическая температура, °С 35,9
Критическое давление, кгс/см 2 61,6
Температура пламени, °С 3150-3200
Температура кипения (при 760 мм рт. ст.), °С -81,8
Температура плавления (затвердевания) (при 760 мм рт. ст.), °С -85
Высшая удельная теплота сгорания, кДж/м 3 58660
Низшая удельная теплота сгорания, кДж/м 3 55890
Температура самовоспламенения, °С 335
Давление самовоспламенения, МПа 0,14–0,16

По физико-химическим показателям технический ацетилен должен соответствовать нормам, указанным в таблице 2.

Таблица 2 - Физико-химические показатели технического ацетилена
Показатель Для ацетилена
растворенного газообразного
марки А марки Б
высшей категории качества высшей категории качества первой категории качества
Объемная доля ацетилена, % не менее 99,5 99,1 98,8 98,5
Объемная доля воздуха и других малорастворимых в воде газов, % не более 0,5 0,8 1,0 1,4
Объемная доля фосфористого водорода, % не более 0,005 0,02 0,05 0,08
Объемная доля сероводорода, % не более 0,002 0,005 0,05 0,05
Массовая концентрация водяных паров при температуре 20 °С и давлении 101,3 кПа (760 мм рт. ст.), г/м 3 , не более
Что соответствует температуре насыщения, °С, не выше
0,4 0,5 0,6 Не нормируется

Растворимость ацетилена

Газообразный ацетилен может растворятся во многих жидкостях. Данные о растворимости ацетилена в некоторых жидкостях при атмосферном давлении и температуре 15 °С приведены в таблице 3.

Растворимость ацетилена в жидкостях с понижением температуры увеличивается. Данные о растворимости ацетилена в ацетоне при различных температурах приведены в таблице 4.

Растворенным ацетиленом называется ацетилен, находящийся в баллоне, заполненном пористой массой, пропитанной растворителем – ацетоном. Искусственное охлаждение баллонов ускоряет процесс их наполнения. В порах пористой массы ацетилен растворен в ацетоне. При открывании вентиля баллона ацетилен выделяется из ацетона в виде газа. Растворенный ацетилен предназначен для его хранения и транспортирования.

Взрывоопасность ацетилена

При использовании ацетилена необходимо учитывать его взрывоопасные свойства. Это единственный широко применяемый в промышленности газ, горение и взрыв которого возможны даже при отсутствии кислорода или других окислителей.

Температура самовоспламенения ацетилена зависит от давления (таблица 5).

Повышение давления существенно уменьшает температуру самовоспламенения ацетилена. Частицы других веществ, присутствующие в ацетилене, увеличивают поверхность его контакта и тем самым снижают температуру самовоспламенения при атмосферном давлении до следующих значений, °С (К):

  • железная стружка – 520 (793);
  • латунная стружка – 500–520 (773–793);
  • карбид кальция – 500 (773);
  • оксид алюминия – 490 (763);
  • медная стружка – 460 (733);
  • активированный уголь – 400 (673);
  • гидрат оксида железа (ржавчина) – 280–300 (553–573);
  • оксид железа – 280 (553);
  • оксид меди – 250 (523).

Если ацетилен медленно нагревать до температуры 700–800 °С (973–1073 К) при атмосферном давлении, то происходит его полимеризация, при которой молекулы уплотняются и образуют более сложные соединения: бензол C 6 H 6 , стирол C 8 H 8 , нафталин C 10 H 8 , толуол C 7 H 8 и др. Полимеризация всегда сопровождается выделением теплоты и при быстром нагреве ацетилена может перейти в его самовоспламенение или взрывчатый распад.

Если при сжатии ацетилена в компрессоре до давления 29 кгс/м 3 (2,9 МПа) температура при завершении этого процесса не превышает 275 °С (548 К), то воспламенения не происходит, что позволяет наполнять баллоны ацетоном с целью его длительного хранения и транспортирования. С повышением давления температура, при которой начинается процесс полимеризации, понижается (рис.1).

При практическом использовании ацетилена допустим его нагрев до следующих значений температуры, °С (К):

  • 300 (573) – при давлении 1 кгс/см 2 (0,1 МПа);
  • 150–180 (423–453) – при 2,5 кгс/см 2 (0,25 МПа);
  • 100 (373) – при более высоких давлениях.

Одним из важных показателей взрывоопасности горючих газов и паров является энергия зажигания. Чем меньше эта величина, тем взрывоопаснее данной вещество. Значения энергии зажигания ацетилена (при нормальных условиях): с воздухом – 19 кДж; в кислородом – 0,3 кДж.

Водяной пар служит флегматизатором для ацетилена, т.е. его присутствие существенно снижает способность ацетилена к самовоспламенению при наличии случайных источников теплоты и взрывчатому распаду. Согласно действующим нормам для ацетиленовых генераторов, в которых ацетилен всегда насыщен парами воды, предельное избыточное давление составляет 150 кПа, а абсолютное – 250 кПа.

При атмосферном давлении смесь ацетилена с воздухом взрывоопасна, если в ней содержатся 2,2 % ацетилена и более, смесь с кислородом – 2,8 % ацетилена и более (верхних пределов концентрации ацетилена для его смесей с воздухом и кислородом не существует, так как при достаточной энергии зажигания способен взрываться и чистый ацетилен).

Получение ацетилена

В промышленности ацетилен получают при разложении жидких горючих, таких как нефть, керосин, воздействием электродугового разряда. Применяется также способ производства ацетилена из природного газа (метана). Смесь метана с кислородом сжигают в специальных реакторах при температуре 1300–1500 °С. Из полученной смеси с помощью растворителя извлекается концентрированный ацетилен. Получение ацетилена промышленным способом на 30–40 % дешевле, чем из карбида калия. Промышленный ацетилен закачивается в баллоны, где находится в порах специальный массы растворенным в ацетоне. В таком виде потребители получают баллонный промышленный ацетилен. Свойства ацетилена не зависят от способа его получения. Остаточное давление в ацетиленовом баллоне при температуре 20 °С должно быть 0,05–0,1 МПа (0,5–1,0 кгс/см 2). Рабочее давление в наполненном баллоне не должно превышать 1,9 МПа (19 кгс/см 2) при 20 °С.

Для сохранности наполнительной массы нельзя отбирать ацетилен из баллона со скоростью 1700 дм 3 /ч.

Рассмотрим подробнее способ получения ацетилена в генераторе из карбида кальция. Карбид кальция получают путем сплавления кокса и негашеной извести в электрических дуговых печах при температуре 1900–2300 °С, при которой протекает реакция:

Ca + 3C = CaC 2 + CO

Расплавленный карбид кальция сливают из печи в формы-изложницы, где он остывает. Далее его дробят и сортируют на куски размером от 2 до 80 мм. Готовый карбид кальция упаковывают в герметически закрываемые кальция не должно быть более 3 % частиц размером менее 2 мм (пыль). По ГОСТу 1460-81 устанавливаются размеры (грануляция) кусков карбида кальция: 2×8; 8×15; 15×25; 25×80 мм.

При взаимодействии с водой карбид кальция выделяет газообразный ацетилен и образует в остатке гашеную известь, являющуюся отходом.

Реакция разложения карбида кальция водой происходит по схеме:

Из 1 кг химически чистого карбида кальция теоретически можно получить 372 дм 3 (литра) ацетилена. Практически из-за наличия примесей в карбиде кальция выход ацетилена составляет до 280 дм 3 (литров). В среднем для получения 1000 дм 3 (литров) ацетилена расходуется 4,3–4,5 кг карбида кальция.

Карбидная пыль при смачивании водой разлагается почти мгновенно. Карбидную пыль нельзя применять в обычных ацетиленовых генераторах, рассчитанных для работы на кусковом карбиде кальция. Для разложения карбидной пыли применяются генераторы специальной конструкции. Для охлаждения ацетилена при разложении карбида кальция. Применяют также от 5 до 20 дм 3 (литров) воды на 1 кг карбида кальция. Применяют также «сухой» способ разложения карбида кальция. На 1 кг мелко раздробленного карбида кальция в генератор подают 0,2–1 дм 3 (литра) воды. В этом процессе гашения известь получается не в виде жидкого известкового ила, а в виде сухой «пушонки», удаление, транспортировка и утилизация которой значительно упрощается.

Транспортирование и хранение

Технический газообразный ацетилен транспортируют по трубопроводам из стальных бесшовных труб по ГОСТ 8731 и ГОСТ 8734. Давление ацетилена в трубопроводе должно быть не более 0,15 МПа (1,5 кгс/см 2). Окраска трубопроводов – по ГОСТ 14202.

Давление газа в трубопроводе должно измеряться манометром класса точности 2,5 по ГОСТ 8625, на циферблате которого должна стоять надпись «Ацетилен».

Техническим растворенным ацетиленом наполняют стальные баллоны для растворенного ацетилена с пористой массой (активным углем или литой пористой массой) и ацетиленом.

Баллоны должны быть оснащены вентилями специальных типов, предназначенными для ацетиленовых баллонов.

Давление газа в баллоне должно измеряться манометром класса точности не ниже 4 по ГОСТ 8625. Температуру газа в баллоне принимают равной температуре окружающей среды, в которой наполненный баллон должен быть выдержан не менее 8 ч.

При номинальном давлении 1,9 МПа (19,0 кгс/см 2) при 20 °С давление газа в баллоне в интервале температур от минус 5 до плюс 40 °С должно соответствовать указанному в таблице 6.

Таблица 6 - Давление ацетилена в баллоне в интервале температур
Температура газа,
°С
Давление газа в баллоне,
МПа (кгс/см 2), не более
-5 1,34 (13,4)
0 1,40 (14,0)
+5 1,50 (15,0)
+10 1,65 (16,5)
+15 1,80 (18,0)
+20 1,90 (19,0)
+25 2,15 (21,5)
+30 2,35 (23,5)
+35 2,60 (26,0)
+40 3,00 (30,0)

Остаточное давление газа в баллоне измеряют манометром класса точности 2,5 диаметром шкалы не менее 100 мм по ГОСТ 8625.

Баллоны от потребителя должны поступать с остаточным давлением, соответствующим указанному в таблице 7.

Растворенный ацетилен в баллонах перевозят всеми видами транспорта в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта, и правилами устройства и безопасной эксплуатации сосудов, работающих под давлением.

По железной дороге баллоны, наполненные растворенным ацетиленом, транспортируют повагонными и мелкими отправками в крытых вагонах. При транспортировании мелкими отправками колпаки баллонов должны быть опломбированы.

Для механизации погрузочно-разгрузочных работ и укрупнения перевозок автомобильным транспортом баллоны среднего объема помещают в металлические специальные контейнеры.

При транспортировании баллонов малого объема всеми видами транспорта они должны быть дополнительно упакованы в дощатые решетчатые ящики типа VII по ГОСТ 2991. Баллоны должны укладываться в ящики горизонтально, вентилями в одну сторону с обязательными прокладками между баллонами, предохраняющими их от ударов друг о друга.

Баллоны, наполненные ацетиленом, хранят в специальных складских помещениях или на открытых площадках под навесом, защищающим их от атмосферных осадков и прямых солнечных лучей, по группе ОЖ 2 ГОСТ 15150.

Требования безопасности

Ацетилен – взрывоопасный газ. Взрывы ацетилена обладают большой разрушительной силой.

С воздухом образует взрывоопасную смесь с нижним концентрационным пределом воспламенения при атмосферном давлении, приведенным к температуре 25 °С, – 2,5 % (по объему) по ГОСТ 12.1.004-85.

Температура самовоспламенения 335 °С.

Давление самовоспламенения 0,14–0,16 МПа.

При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения, поэтому категорически запрещается при изготовлении ацетиленового обо-рудования применение сплавов, содержащих более 70 % меди.

Давление, образующееся при взрыве ацетилена, зависит от начальных параметров и характера взрыва. Оно может увеличиться примерно в 10-12 раз по сравнению с начальным при взрыве в небольших сосудах и возрасти при детонации чистого ацетилена в 22 раза, а при детонации ацетилено-кислородной смеси в 50 раз.

Технический ацетилен (с примесями) имеет резкий неприятный запах; длительное вдыхание его вызывает тошноту, головокружение и даже отравление. Ацетилен обладает наркотическим действием. Отравление вызывает, главным образом, фосфористый водород, находящийся в карбидном ацетилене.

Газообразный ацетилен легче воздуха и накапливается в высших точках слабо проветриваемых помещений, где возможно образование ацетилено-воздушной смеси.

Производство ацетилена по пожарной опасности относится к категории А, по классам взрывоопасных зон – к классам В1; В1а; В1б; В1г.

Помещения ацетиленового производства должны иметь приточную и вытяжную вентиляцию.

В качестве средств пожаротушения следует использовать сжатый азот, углекислотные огнетушители, асбестовое полотно, песок.