Биографии Характеристики Анализ

Центральная предельная теорема для чайников. Единичный процесс статистической модели

Кроме теорем, относящихся к закону больших чисел, существует еще одна группа теорем, которые образуют так называемую центральную предельную теорему. Эта группа теорем определяет условия, при которых возникает нормальный закон распределения. Такие условия достаточно часто встречаются на практике, что, по сути, и является объяснением того, что нормальный закон наиболее часто используется в случайных явлениях на практике. Различие форм центральной предельной теоремы состоит в формулировке разных условий, накладываемых на сумму рассматриваемых случайных величин. Важнейшее место среди всех этих форм принадлежит теореме Ляпунова.

Теорема Ляпунова. Если Х 1 , Х 2 , … , Х n – независимые случайные величины, имеющие конечные математические ожидания и дисперсии, при этом ни одна из величин по своему значению резко не отличается от всех остальных, т.е. оказывает на сумму этих величин ничтожно малое влияние, то при неограниченном увеличении числа случайных величин n , закон распределения их суммы неограниченно приближается к нормальному.

Следствие. Если все случайные величины Х 1 , Х 2 , … , Х n одинаково распределены, то закон распределения их суммы неограниченно приближается к нормальному при неограниченном увеличении числа слагаемых.

Теорема Ляпунова имеет большое практическое значение. Опытным путем было установлено, что приближение к нормальному закону идет достаточно быстро. При выполнении условий теоремы Ляпунова закон распределения суммы даже десяти слагаемых уже можно считать нормальным.

Существует более сложная и более общая форма теоремы Ляпунова.

Общая теорема Ляпунова. Если Х 1 , Х 2 , … , Х n – независимые случайные величины, имеющие математические ожидания а i , дисперсии σ 2 i , центральные моменты третьего порядка т i и

то закон распределения суммы Х 1 + Х 2 + … + Х n при n неограниченно приближается к нормальному с математическим ожиданием и дисперсией .

Смысл условия (2.1) состоит в том, чтобы в сумме случайных величин не было бы ни одного слагаемого, влияние которого на рассеивание суммы величин было бы подавляюще велико по сравнению с влиянием всех остальных случайных величин. Кроме этого, не должно быть большого числа слагаемых, влияние которых на рассеивание суммы очень мало по сравнению с суммарным влиянием остальных.

Одной из самых первых форм центральной предельной теоремы была доказана теорема Лапласа.

Теорема Лапласа. Пусть производится n независимых опытов, в каждом из которых событие А появляется с вероятностью р , тогда при больших n справедливо приближенное равенство

(2.2)

где Y n – число появлений события А в n опытах; q =1-p ; Ф(х ) – функция Лапласа.

Теорема Лапласа позволяет находить приближенно вероятности значений биномиально распределенных случайных величин при больших значениях величины n . Однако при этом, вероятность р не должна быть ни достаточно маленькой, ни достаточно большой.

Для практических задач часто используется другая форма записи формулы (2.2), а именно

(2.3)

Пример 2.1. Станок выдает за смену n =1000 изделий, из которых в среднем 3% дефектных. Найти приближенно вероятность того, что за смену будет изготовлено не менее 950 хороших (без дефекта) изделий, если изделия оказываются хорошими независимо друг от друга.

Решение . Пусть Y – число хороших изделий. По условию задачи р = 1-0,03=0,97; число независимых опытов n =1000. Применим формулу (2.3):

Пример 2.2, В условиях предыдущего примера выяснить сколько хороших изделий k должен вмещать ящик, чтобы вероятность его переполнения за одну смену не превысила 0,02.

Решение . Из условия ясно, что . Найдем из этого условия число k . Имеем
, т.е. .

По таблице функции Лапласа по значению 0,48 находим аргумент, равный 2,07. Получаем
. ■

Пример 2.3. В банке в определенную кассу за получением некоторых денежных сумм стоят 16 человек. В настоящее время в этой кассе имеется 4000 ден. ед. Суммы Х i , которые необходимо выплатить каждому из 20 человек – это случайные величины с математическим ожиданием т = 160 ден.ед. и средним квадратическим отклонением σ = 70 ден.ед. Найти вероятность того, что денег, имеющихся в кассе, не хватит для выплаты всем стоящим в очереди.

Решение . Применим теорему Ляпунова для одинаково распределенных случайных величин. Величину n = 20 можно считать достаточно большой, следовательно, общую сумму выплат Y = Х 1 + Х 2 + … + Х 16 можно считать случайной величиной распределенной по нормальному закону с математическим ожиданием т у = = 20 160= 3200 и среднеквадратическим отклонением .

Предельные теоремы теории вероятностей

Неравенство Чебышева

Рассмотрим ряд утверждений и теорем из большой группы так называемых предельных теорем теории вероятностей, устанавливающих связь между теоретическими и экспериментальными характеристиками случайных величин при большом числе испытаний над ними. Они составляют основу математической статистики. Предельные теоремы условно делят на две группы. Первая группа теорем, называемая законом больших чисел , устанавливает устойчивость средних значений, т.е. при большом числе испытаний их средний результат перестает быть случайным и может быть предсказан с достаточной точностью. Вторая группа теорем, называемая центральной предельной , устанавливает условия, при которых закон распределения суммы большого числа случайных величин неограниченно приближается к нормальному.

В начале рассмотрим неравенство Чебышева, которое можно использовать для: а) грубой оценки вероятностей событий, связанных со случайными величинами, распределение которых неизвестно; б) доказательства ряда теорем закона больших чисел.

Теорема 7.1 . Если случайная величина X имеет математическое ожидание и дисперсию DX , то для любого справедливо неравенство Чебышева

. (7.1)

Отметим, что неравенство Чебышева можно записать в другой форме:

для частости или события в n независимых испытаниях, в каждом из которых оно может произойти с вероятностью , дисперсия которых , неравенство Чебышева имеет вид

Неравенство (7.5) можно переписать в виде

. (7.6)

Пример 7.1. Оценить с помощью неравенства Чебышева вероятность того, что отклонение случайной величины Х от своего математического ожидания будет меньше трех средне квадратических отклонений, т.е. меньше .

Решение :

Полагая в формуле (7.2), получаем

Эта оценка называется правилом трех сигм .

Теорема Чебышева

Основное утверждение закона больших чисел содержится в теореме Чебышева. В ней и других теоремах закона больших чисел используется понятие «сходимости случайных величин по вероятности».

Случайные величины сходятся по вероятности к величине А (случайной или неслучайной), если для любого вероятность события при стремится к единице, т.е.

(или ). Сходимость по вероятности символически записывают так:

Следует отметить, что сходимость по вероятности требует, чтобы неравенство выполнялось для подавляющего числа членов последовательности (в математическом анализе - для всех n > N , где N - некоторое число), а при практически все члены последовательности должны попасть в ε- окрестность А .

Теорема 7.3 (Закон больших чисел в форме П.Л. Чебышева) . Если случайные величины независимы и существует такое число С> 0, что , то для любого

, (7.7)

т.е. среднее арифметическое этих случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий:

.

Доказательство . Так как , то

.

Тогда, применяя к случайной величине неравенство Чебышева (7.2) имеем

т.е. среднее арифметическое случайных величин сходится по вероятности к математическому ожиданию а :

Доказательство . Так как

а дисперсии случайных величин , т.е ограничены, то применив теорему Чебышева (7.7), получим утверждение (7.9).

Следствие теоремы Чебышева обосновывает принцип «среднего арифметического» случайных величин Х i , постоянно используемый на практике. Так, пусть произведено n независимых измерений некоторой величины, истинное значение которой а (оно неизвестно). Результат каждого измерения есть случайная величина Х i . Согласно следствию, в качестве приближенного значения величины а можно взять среднее арифметическое результатов измерений:

.

Равенство тем точнее, чем больше n .

На теореме Чебышева основан также широко применяемый в статистике выборочный метод , суть которого в том, что о качестве большого количества однородного материала можно судить по небольшой его пробе.

Теорема Чебышева подтверждает связь между случайностью и необходимостью: среднее значение случайной величины практически не отличается от неслучайной величины .

Теорема Бернулли

Теорема Бернулли исторически является первой и наиболее простой формой закона больших чисел. Она теоретически обосновывает свойство устойчивости относительной частоты.

Теорема 7.4 (Закон больших чисел в форме Я. Бернулли) . Если вероятность появления события А в одном испытании равна р , число наступления этого события при n независимых испытаниях равно , то для любого числа имеет место равенство

, (7.10)

т.е относительная частота события А сходится по вероятности к вероятности р события А : .

Доказательство . Введем случайные величины следующим образом: , если в i -м испытании появилось событие А , а если не появилось, то . Тогда число А (число успехов) можно представить в виде

Математическое ожидание и дисперсия случайных величин равны: , . Закон распределения случайных величин X i имеет вид

Х i
Р р

при любом i . Таким образом, случайные величины X i независимы, их дисперсии ограничены одним и тем же числом , так как

.

Поэтому к этим случайным величинам можно применить теорему Чебышева

.

,

Следовательно, .

Теорема Бернулли теоретически обосновывает возможность приближенного вычисления вероятности события с помощью его относительной частоты. Так, например, за вероятность рождения девочки можно взять относительную частоту этого события, которая, согласно статистическим данным, приближенно равна 0,485.

Неравенство Чебышева (7.2) для случайных величин

принимает вид

где p i - вероятность события А в i- м испытании.

Пример 7.2. Вероятность наличия опечатки на одной странице рукописи равна 0,2. Оценить вероятность того, что в рукописи, содержащей 400 страниц, частость появления опечатки отличается от соответствующей вероятности по модулю меньше, чем 0,05.

Решение :

Воспользуемся формулой (7.11). В данном случае , , , . Имеем , т.е. .

Центральная предельная теорема

Центральная предельная теорема представляет собой вторую группу предельных теорем, которые устанавливают связь между законом распределения суммы случайной величины и его предельной формой - нормальным законом распределения.

Сформулируем центральную предельную теорему для случая, когда члены суммы имеют одинаковое распределение. Эта теорема чаще других используется на практике. В математической статистике выборочные случайные величины имеют одинаковые распределения, так как получены из одной и той же генеральной совокупности.

Теорема 7.5 . Пусть случайные величины независимы, одинаково распределены, имеют конечные математическое ожидание и дисперсию , . Тогда функция распределения центрированной и нормированной суммы этих случайных величин стремится при к функции распределения стандартной нормальной случайной величины.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Энциклопедичный YouTube

  • 1 / 5

    Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание и дисперсию . Обозначим последние μ {\displaystyle \mu } и σ 2 {\displaystyle \sigma ^{2}} , соответственно. Пусть также

    . S n − μ n σ n → N (0 , 1) {\displaystyle {\frac {S_{n}-\mu n}{\sigma {\sqrt {n}}}}\to N(0,1)} по распределению при ,

    где N (0 , 1) {\displaystyle N(0,1)} - нормальное распределение с нулевым математическим ожиданием и стандартным отклонением , равным единице. Обозначив символом выборочное среднее первых n {\displaystyle n} величин, то есть X ¯ n = 1 n ∑ i = 1 n X i {\displaystyle {\bar {X}}_{n}={\frac {1}{n}}\sum \limits _{i=1}^{n}X_{i}} , мы можем переписать результат центральной предельной теоремы в следующем виде:

    n X ¯ n − μ σ → N (0 , 1) {\displaystyle {\sqrt {n}}{\frac {{\bar {X}}_{n}-\mu }{\sigma }}\to N(0,1)} по распределению при n → ∞ {\displaystyle n\to \infty } .

    Скорость сходимости можно оценить с помощью неравенства Берри - Эссеена .

    Замечания

    • Неформально говоря, классическая центральная предельная теорема утверждает, что сумма n {\displaystyle n} независимых одинаково распределённых случайных величин имеет распределение, близкое к N (n μ , n σ 2) {\displaystyle N(n\mu ,n\sigma ^{2})} . Эквивалентно, X ¯ n {\displaystyle {\bar {X}}_{n}} имеет распределение близкое к N (μ , σ 2 / n) {\displaystyle N(\mu ,\sigma ^{2}/n)} .
    • Так как функция распределения стандартного нормального распределения непрерывна , сходимость к этому распределению эквивалентна поточечной сходимости функций распределения к функции распределения стандартного нормального распределения. Положив Z n = S n − μ n σ n {\displaystyle Z_{n}={\frac {S_{n}-\mu n}{\sigma {\sqrt {n}}}}} , получаем F Z n (x) → Φ (x) , ∀ x ∈ R {\displaystyle F_{Z_{n}}(x)\to \Phi (x),\;\forall x\in \mathbb {R} } , где Φ (x) {\displaystyle \Phi (x)} - функция распределения стандартного нормального распределения.
    • Центральная предельная теорема в классической формулировке доказывается методом характеристических функций (теорема Леви о непрерывности).
    • Вообще говоря, из сходимости функций распределения не вытекает сходимость плотностей . Тем не менее в данном классическом случае это имеет место.

    Локальная Ц. П. Т.

    В предположениях классической формулировки, допустим в дополнение, что распределение случайных величин { X i } i = 1 ∞ {\displaystyle \{X_{i}\}_{i=1}^{\infty }} абсолютно непрерывно, то есть оно имеет плотность. Тогда распределение также абсолютно непрерывно, и более того,

    f Z n (x) → 1 2 π e − x 2 2 {\displaystyle f_{Z_{n}}(x)\to {\frac {1}{\sqrt {2\pi }}}\,e^{-{\frac {x^{2}}{2}}}} при n → ∞ {\displaystyle n\to \infty } ,

    где f Z n (x) {\displaystyle f_{Z_{n}}(x)} - плотность случайной величины Z n {\displaystyle Z_{n}} , а в правой части стоит плотность стандартного нормального распределения.

    Обобщения

    Результат классической центральной предельной теоремы справедлив для ситуаций гораздо более общих, чем полная независимость и одинаковая распределённость.

    Ц. П. Т. Линдеберга

    Пусть независимые случайные величины X 1 , … , X n , … {\displaystyle X_{1},\ldots ,X_{n},\ldots } определены на одном и том же вероятностном пространстве и имеют конечные математические ожидания и дисперсии : E [ X i ] = μ i , D [ X i ] = σ i 2 {\displaystyle \mathbb {E} =\mu _{i},\;\mathrm {D} =\sigma _{i}^{2}} .

    Пусть S n = ∑ i = 1 n X i {\displaystyle S_{n}=\sum \limits _{i=1}^{n}X_{i}} .

    Тогда E [ S n ] = m n = ∑ i = 1 n μ i , D [ S n ] = s n 2 = ∑ i = 1 n σ i 2 {\displaystyle \mathbb {E} =m_{n}=\sum \limits _{i=1}^{n}\mu _{i},\;\mathrm {D} =s_{n}^{2}=\sum \limits _{i=1}^{n}\sigma _{i}^{2}} .

    И пусть выполняется условие Линдеберга :

    ∀ ε > 0 , lim n → ∞ ∑ i = 1 n E [ (X i − μ i) 2 s n 2 1 { | X i − μ i | > ε s n } ] = 0 , {\displaystyle \forall \varepsilon >0,\;\lim \limits _{n\to \infty }\sum \limits _{i=1}^{n}\mathbb {E} \left[{\frac {(X_{i}-\mu _{i})^{2}}{s_{n}^{2}}}\,\mathbf {1} _{\{|X_{i}-\mu _{i}|>\varepsilon s_{n}\}}\right]=0,}

    где 1 { | X i − μ i | > ε s n } {\displaystyle \mathbf {1} _{\{|X_{i}-\mu _{i}|>\varepsilon s_{n}\}}} функция - индикатор.

    по распределению при n → ∞ {\displaystyle n\to \infty } .

    Ц. П. Т. Ляпунова

    Пусть выполнены базовые предположения Ц. П. Т. Линдеберга. Пусть случайные величины { X i } {\displaystyle \{X_{i}\}} имеют конечный третий момент . Тогда определена последовательность

    r n 3 = ∑ i = 1 n E [ | X i − μ i | 3 ] {\displaystyle r_{n}^{3}=\sum _{i=1}^{n}\mathbb {E} \left[|X_{i}-\mu _{i}|^{3}\right]} .

    Если предел

    lim n → ∞ r n s n = 0 {\displaystyle \lim \limits _{n\to \infty }{\frac {r_{n}}{s_{n}}}=0} (условие Ляпунова ), S n − m n s n → N (0 , 1) {\displaystyle {\frac {S_{n}-m_{n}}{s_{n}}}\to N(0,1)} по распределению при n → ∞ {\displaystyle n\to \infty } .

    Ц. П. Т. для мартингалов

    Пусть процесс (X n) n ∈ N {\displaystyle (X_{n})_{n\in \mathbb {N} }} является мартингалом с ограниченными приращениями. В частности, допустим, что

    E [ X n + 1 − X n ∣ X 1 , … , X n ] = 0 , n ∈ N , X 0 ≡ 0 , {\displaystyle \mathbb {E} \left=0,\;n\in \mathbb {N} ,\;X_{0}\equiv 0,}

    и приращения равномерно ограничены, то есть

    ∃ C > 0 ∀ n ∈ N | X n + 1 − X n | ≤ C {\displaystyle \exists C>0\,\forall n\in \mathbb {N} \;|X_{n+1}-X_{n}|\leq C} τ n = min { k | ∑ i = 1 k σ i 2 ≥ n } {\displaystyle \tau _{n}=\min \left\{k\left\vert \;\sum _{i=1}^{k}\sigma _{i}^{2}\geq n\right.\right\}} . X τ n n → N (0 , 1) {\displaystyle {\frac {X_{\tau _{n}}}{\sqrt {n}}}\to N(0,1)} по распределению при n → ∞ {\displaystyle n\to \infty } .

    Чарльз Уилан Глава из книги
    Издательство «Манн, Иванов и Фербер»

    Наконец, настало время подвести итог сказанному. Поскольку средние значения выборок распределены по нормальному закону (благодаря центральной предельной теореме), мы можем воспользоваться богатым потенциалом кривой нормального распределения. Мы рассчитываем, что примерно 68% средних значений всех выборок будут отстоять от среднего значения совокупности на расстоянии, не превышающем одной стандартной ошибки; 95% - на расстоянии, не превышающем двух стандартных ошибок; и 99,7% - на расстоянии, не превышающем трех стандартных ошибок.

    Теперь вернемся к отклонению (разбросу) в примере с пропавшим автобусом - правда, на этот раз призовем на помощь не интуицию, а числа. (Сам по себе этот пример остается абсурдным; в следующей главе мы рассмотрим множество более близких к реальности случаев.) Допустим, что организаторы исследования Americans" Changing Lives пригласили всех его участников на выходные в Бостон, чтобы весело провести время и заодно предоставить кое-какие недостающие данные. Участников распределяют произвольным образом по автобусам и отвозят в тестовый центр, где их взвесят, определят рост и т. п. К ужасу организаторов мероприятия, один из автобусов пропадает где-то по пути в тестовый центр. Об этом событии оповещают в программе новостей местного радио и телевидения. Возвращаясь примерно в то же время в своем автомобиле с Фестиваля любителей сосисок, вы замечаете на обочине дороги сломавшийся автобус. Похоже, его водитель был вынужден резко свернуть в сторону, пытаясь уклониться от столкновения с лосем, неожиданно появившимся на дороге. От столь резкого маневра все пассажиры потеряли сознание или лишились дара речи, хотя никто из них, к счастью, не получил серьезных травм. (Такое предположение понадобилось мне исключительно для чистоты приведенного здесь примера, а надежда на отсутствие у пассажиров серьезных травм объясняется моим врожденным человеколюбием.) Врачи кареты скорой помощи, оперативно прибывшие на место происшествия, сообщили вам, что средний вес 62 пассажиров автобуса составляет 194 фунта. Кроме того, оказалось (к огромному облегчению всех любителей животных), что лось, от столкновения с которым пытался увернуться водитель автобуса, практически не пострадал (если не считать легкого ушиба задней ноги), но от сильного испуга тоже потерял сознание и лежит рядом с автобусом.

    К счастью, вам известен средний вес пассажиров автобуса, а также сред-неквадратическое отклонение для всей совокупности Americans" Changing Lives. Кроме того, мы имеем общее представление о центральной предельной теореме и знаем, как оказать первую помощь пострадавшему животному. Средний вес участников исследования Americans" Changing Lives составляет 162 фунта; среднеквадратическое отклонение равняется 36. На основе этой информации вы можете вычислить стандартную ошибку для выборки из 62 человек (количество пассажиров автобуса, потерявших сознание): .

    Разница между средним значением этой выборки (194 фунта) и средним значением совокупности (162 фунта) равна 32 фунта, то есть значительно больше трех стандартных ошибок. Из центральной предельной теоремы вам известно, что 99,7% средних значений всех выборок будут отстоять от среднего значения совокупности на расстоянии, не превышающем трех стандартных ошибок. Таким образом, крайне маловероятно, что встретившийся вам автобус перевозит группу участников исследования Americans" Changing Lives. Будучи видным общественным активистом города, вы звоните организаторам мероприятия, чтобы сообщить, что в повстречавшемся вам автобусе, скорее всего, находится какая-то другая группа людей. Правда, в этом случае вы можете опираться на статистические результаты, а не свои «интуитивные догадки». Вы сообщаете организаторам, что отрицаете вероятность того, что найденный вами автобус именно тот, который они разыскивают, с 99,7% доверительным уровнем. А поскольку в данном случае вы разговариваете с людьми, знакомыми со статистикой, то можете не сомневаться, они понимают, что вы правы. (Всегда приятно иметь дело с умными людьми!)

    Сделанные вами выводы находят дальнейшее подтверждение, когда врачи скорой помощи берут пробы крови у пассажиров автобуса и обнаруживают, что средний уровень холестерина в их крови превышает средний уровень холестерина в крови участников исследования Americans" Changing Lives на пять стандартных ошибок. Из этого следует, что впавшие в бессознательное состояние пассажиры - участники Фестиваля любителей сосисок. (Впоследствии это было неопровержимо доказано.)

    [У этой истории оказался счастливый конец. Когда к пассажирам автобуса вернулось сознание, организаторы исследования Americans" Changing Lives посоветовали им проконсультироваться у специалистов-диетологов относительно опасности употребления в пищу продуктов с высоким содержанием насыщенных жиров. После таких консультаций многие из любителей сосисок решили порвать со своим позорным прошлым и вернуться к более здоровому рациону питания. Пострадавшего лося выходили в местной ветеринарной клинике и выпустили на свободу под одобрительные возгласы членов местного Общества защиты животных. Да, история почему-то умалчивает о судьбе водителя автобуса. Возможно, потому, что статистика не занимается судьбами отдельно взятых людей. Лось - совсем другое дело, замолчать его судьбу не удастся! В случае чего за него может вступиться Общество защиты животных.]

    В этой главе я пытался говорить только об основах. Вы, наверное, обратили внимание, что центральная предельная теорема применима лишь в случаях, когда размер выборки достаточно велик (как правило, не менее 30). Кроме того, нам требуется относительно большая выборка, если мы намерены предположить, что ее среднеквадратическое отклонение будет примерно таким же, как и среднеквадратическое отклонение генеральной совокупности.

    Существует немало статистических поправок, которые можно применять в случае несоблюдения указанных условий, но все это похоже на сахарную глазурь на торте (и, возможно, даже на шоколадные крошки, которыми присыпают эту глазурь сверху). «Общая картина» здесь проста и чрезвычайно эффективна.

    1. Если вы формируете на основе какой-либо совокупности большие (по объему) случайные выборки, то их средние значения будут распределены по нормальному закону вблизи среднего значения соответствующей совокупности (какой бы вид ни имело распределение исходной совокупности).
    2. Большинство средних значений выборок будет расположено достаточно близко к среднему значению совокупности (что именно следует в том или ином случае считать «достаточно близким», определяется стандартной ошибкой).
    3. Центральная предельная теорема говорит нам о вероятности того, что среднее значение выборки будет находиться не дальше определенного расстояния от среднего значения совокупности. Относительно маловероятно, что среднее значение выборки будет отстоять от среднего значения совокупности дальше, чем на расстояние двух стандартных ошибок, и крайне маловероятно, что среднее значение выборки будет отстоять от среднего значения совокупности дальше, чем на расстояние трех и более стандартных ошибок.
    4. Чем меньше вероятность того, что какой-то исход оказался чисто случайным, тем больше мы можем быть уверены в том, что здесь не обошлось без воздействия какого-то другого фактора.

    В этом по большому счету и заключается сущность статистического вывода. Центральная предельная теорема главным образом делает все это возможным. И до тех пор, пока Леброн Джеймс не станет столько раз чемпионом НБА, сколько Майкл Джордан (шесть), центральная предельная теорема будет производить на нас гораздо большее впечатление, чем знаменитый баскетболист.

    Леброн Рэймон Джеймс (LeBron Raymone James) - американский профессиональный баскетболист, играющий на позиции легкого и тяжелого форварда за команду НБА «Кливленд Кавальерс». Прим. перев.

    Обратите внимание на весьма остроумное использование в данном случае ложной точности.

    Когда среднеквадратическое отклонение соответствующей совокупности вычисляется на основании меньшей выборки, приведенная нами формула несколько видоизменяется: Это помогает учесть то обстоятельство, что дисперсия в малой выборке может «недооценивать» дисперсию всей совокупности. Это не имеет особого отношения к более универсальным положениям, о которых идет речь в данной главе.

    Мой коллега из Чикагского университета, Джим Сэлли, сделал очень важное критическое замечание по поводу примеров с пропавшим автобусом. Он указал, что пропавший автобус - чрезвычайно большая редкость в наше время. Поэтому если нам придется искать какой-нибудь пропавший автобус, то любой встретившийся нам автобус, который окажется пропавшим или поломавшимся, наверняка будет именно тем автобусом, который нас интересует, каким бы ни был вес пассажиров в этом автобусе. Пожалуй, Джим прав. (Воспользуюсь такой аналогией: если вы потеряли в супермаркете своего ребенка и дирекция этого магазина сообщает по радио, что возле кассы номер шесть стоит чей-то потерявшийся ребенок, то вы наверняка сразу же решите, что речь идет именно о вашем ребенке.) Следовательно, нам не остается ничего другого, как дополнить наши примеры еще одним элементом абсурда, полагая, что пропажа автобуса является вполне рядовым событием.

    План:

    1. Понятие центральной предельной теоремы (теорема Ляпунова)

    2. Закон больших чисел, вероятность и частота (теоремы Чебышева и Бернулли)

    1. Понятие центральной предельной теоремы.

    Нормальное распределение вероятностей имеет в теории вероят­ностей большое значение. Нормальному закону подчиняется вероят­ность при стрельбе по цели, в измерениях и т. п. В частности, оказывается, что закон распределения суммы достаточно большого чис­ла независимых случайных величин с произвольными законами распределения близок к нормальному распределению. Этот факт, называемый центральной предельной теоремой или теоремой Ляпунова.

    Известно, что нормально распределенные случай­ные величины широко распространены на практике. Чем это объясняется? Ответ на этот вопрос был дан

    Централь­ная предельная теорема. Если случайная величина X пред­ставляет, собой сумму очень большого числа взаимно неза­висимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то X имеет распределение, близкое к нормальному распределению.

    Пример. Пусть производится измерение некоторой физической величины. Любое измерение дает лишь приближенное значение изме­ряемой величины, так как на результат измерения влияют очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную "частную ошибку". Однако, поскольку число этих факторов очень велико, их совокупное действие порождает уже заметную «суммар­ную ошибку».

    Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному распределению. Опыт подтверждает справедливость такого заключения.

    Рассмотрим условия, при которых выполняется "централь­ная предельная теорема"

    Х1, Х2, ...,Х n – последовательность независимых случайных величин,

    M (Х1), M (Х2), ..., M n ) - конечные математические ожидания этих величин, соответственно равные М(Xk )= ak

    D(Х1), D (Х2), ..., D n ) - конечные дисперсии их, соответственно равные D (X k )= bk 2

    Введем обозначения: S= Х1+Х2 + ...+Хn;

    A k= Х1+Х2 + ...+Хn=; B2= D(Х1)+ D (Х2)+ ...+ D n ) =

    Запишем функцию распределения нормированной суммы:

    Говорят, что к последовательности Х1, Х2, ...,Х n применима централь­ная предельная теорема, если при любом x функция распределения нормированной суммы при n ® ¥ стремится к нормальной функции распределения:

    Right " style="border-collapse:collapse;border:none;margin-left:6.75pt;margin-right: 6.75pt">

    Рассмотрим дискретную случайную величину X , задан­ную таблицей распределения:

    Поставим перед собой задачу оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине поло­жительного числа ε

    Если ε достаточно мало, то мы оце­ним, таким образом, вероятность того, что X примет значения, достаточно близкие к своему математическому ожиданию. доказал неравенство, позволяю­щее дать интересующую нас оценку.

    Лемма Чебышева. Дана случайная величина X, принимающая только неотрицательные значения с математическим ожиданием M(X). Для любого числа α>0 имеет место выражение:

    Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положитель­ного числа ε , не меньше, чем 1 – D(X) / ε 2:

    Р (| X-M (X) | < ε ) ³ 1 - D (Х) / ε 2.

    Замечание. Неравенство Чебышева имеет для практики огра­ниченное значение, поскольку часто дает грубую, а иногда и три­виальную (не представляющую интереса) оценку.

    Теоретическое же значение неравенства Чебышева весьма велико. Ниже мы воспользуемся этим неравенством для вывода теоремы Чебышева.

    2.2. Теорема Чебышева

    Если Х1, Х2, ...,Хn..- попарно независимые случайные величины, причем диспер­сии их равномерно ограничены (не превышают постоян­ного числа С), то, как бы мало ни было положительное число ε , вероятность неравенства

    ÷ (Х1+Х2 + ...+Хn) / n - (M(Х1)+M(Х2)+ ...+M(Хn))/n | < ε

    будет как угодно близка к единице, если число случайных величин достаточно велико.

    P (÷ (Х1+Х2 + ...+Хn) / n - (M(Х1)+M(Х2)+ ...+M(Хn))/n | < ε )=1.

    Теорема Чебышева утверждает:

    1. Рассматривается достаточно большое число незави­симых случайных величин, имеющих ограниченные ди­сперсии,

    Формулируя теорему Чебышева, мы предпола­гали, что случайные величины имеют различные матема­тические ожидания. На практике часто бывает, что слу­чайные величины имеют одно и то же математическое ожидание. Очевидно, что если вновь допустить, что диспер­сии этих величин ограничены, то к ним будет применима теорема Чебышева.

    Обозначим математическое ожидание каждой из слу­чайных величин через а;

    В рассматриваемом случае среднее арифметическое математических ожиданий, как легко видеть, также равно а.

    Можно сформулировать тео­рему Чебышева для рассматриваемого частного случая.

    "Если Х1, Х2, ...,Хn..- попарно независимые случай­ные величины, имеющие одно и то же математическое ожидание а, и если дисперсии этих величин равномерно ограничены, то, как бы мало ни было число ε > О, ве­роятность неравенства

    ÷ (Х1+Х2 + ...+Хn) / n - a | < ε

    будет как угодно близка к единице, если число случай­ных величин достаточно велико".

    Другими словами, в условиях теоремы

    P (÷ (Х1+Х2 + ...+Хn) / n - a | < ε ) = 1.

    2.3. Сущность теоремы Чебышева

    Хотя от­дельные независимые случайные величины могут прини­мать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случай­ных величин с большой вероятностью принимает значе­ния, близкие к определенному постоянному числу, а именно к числу

    (М (Xj ) + М (Х2) +... + М (Х„))/п или к числу а в частном случае.

    Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

    Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных вели­чин, но можно предвидеть, какое значение примет их среднее арифметическое.

    Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной, величины.

    Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

    Теорема Чебышева справедлива не только для дискрет­ных, но и для непрерывных случайных величин; она является примером, подтверждающим справедли­вость учения о связи между случайностью и необходимостью.

    2.4. Значение теоремы Чебышева для практики

    Приведем примеры применения теоремы Чебышева к решению практических задач.

    Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифме­тическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос дает теорема Чебы­шева (ее частный случай).

    Действительно, рассмотрим результаты каждого из­мерения как случайные величины

    Х1, Х2, ...,Хn

    К. этим величинам можно применить теорему Чебышева, если:

    1) Они попарно независимы.

    2) имеют одно и то же ма­тематическое ожидание,

    3) дисперсии их равномерно огра­ничены.

    Первое требование выполняется, если результат каж­дого измерения не зависит от результатов остальных.

    Второе требование выполняется, если измерения произ­ведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру а.

    Третье требо­вание выполняется, если прибор обеспечивает определен­ную точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их огра­ничено.

    Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева: при достаточно большом п вероятность неравенства

    | (Х1 + Хя+...+Х„)/п - а |< ε как угодно близка к единице.

    Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое как угодно мало отли­чается от истинного значения измеряемой величины.

    Теорема Чебышева указывает условия, при ко­торых описанный способ измерения может быть приме­нен. Однако ошибочно думать, что, увеличивая число измерений, можно достичь сколь угодно большой точ­ности. Дело в том, что сам прибор дает показания лишь с точностью ± α , поэтому каждый из результатов изме­рений, а следовательно, и их среднее арифметическое будут получены лишь с точностью, не превышающей точности прибора.

    На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.

    Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемое сотнями.

    В качестве другого примера можно указать на опре­деление качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зерен мало сравни­тельно со всей массой зерна, но само по себе оно доста­точно велико.

    Уже из приведенных примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.

    2.5. Теорема Бернулли

    Производится п независимых испытаний (не событий, а испытаний). В каждом из них вероятность появления события A равна р.

    Возникает вопрос, какова примерно будет относительная частота появлений события? На этот вопрос отвечает теорема, доказанная Бернулли которая полу­чила название "закона больших чисел" и положила начало теории вероятностей как науке.

    Теорема Бернулли. Если в каждом из п независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

    Другими словами, если ε >0 сколь угодно малое число, то при соблюдении условий теоремы имеет место равенство

    Р(| m / п - р| < ε)= 1

    Замечание. Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относитель­ная частота неуклонно стремится к вероятности р; другими словами, из теоремы Бернулли не вытекает равенство (т/п) = р,

    В теореме речь идет лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет, как угодно мало отличаться от постоянной вероятности появления события в каж­дом испытании.

    Задание 7-1.

    1. Оценить вероятность того, что при 3600 бросаниях кости число появления 6 очков будет не меньше 900.

    Решение. Пусть x – число появления 6 очков при 3600 бросаниях монеты. Вероятность появления 6 очков при одном бросании равна p=1/6, тогда M(x)=3600·1/6=600. Воспользуемся неравенством (леммой) Чебышева при заданном α = 900

    = P (x ³ 900) £ 600 / 900 =2 / 3

    Ответ 2 / 3.

    2. Проведено 1000 независимых испытаний, p=0,8. Найти вероятность числа наступлений события A в этих испытаниях отклонится от своего математического ожидания по модулю меньше, чем 50.

    Решение. x –число наступлений события A в n – 1000 испытаниях.

    М(Х)= 1000·0,8=800. D(x)=100·0,8·0,2=160

    Воспользуемся неравенством Чебышева при заданном ε = 50

    Р (| х-M (X) | < ε) ³ 1 - D (х) / ε 2

    Р (| х-800 | < 50) ³ / 50 2 = 1-160 / 2500 = 0,936.

    Ответ. 0,936

    3. Используя неравенство Чебышева, оценить вероятность того, что |Х - М(Х)| < 0,1, если D (X) = 0,001. Ответ Р³0,9.

    4. Дано: Р(|Х-М(Х)\ < ε) ³ 0,9; D (X )= 0,004. Используя неравенство Чебышева, найти ε. Ответ. 0,2.

    Контрольные вопросы и задания

    1. Назначение центральной предельной теоремы

    2. Условия применимости теоремы Ляпунова.

    3. Отличие леммы и теоремы Чебышева.

    4. Условия применимости теоремы Чебышева.

    5. Условия применимости теоремы Бернулли (закона больших чисел)

    Требования к знаниям умениям и навыкам

    Студент должен знать обще смысловую формулировку центральной предельной теоремы. Уметь формулировать частные теоремы для не зависимых одинаково распределенных случайных величин. Понимать неравенство Чебышева и закон больших чисел в форме Чебышева. Иметь представление о частоте события, взаимоотношениях между понятиями "вероятность" и "частота". Иметь представление о законе больших чисел в форме Бернулли.

    (1857-1918), вы­дающийся русский математик