Биографии Характеристики Анализ

Что такое плечо силы рычага. Плечо силы

Статика - это раздел механики, который занимается изучением равновесия

Плечо силы

Плечо силы - это длина перпендикуляра из некоторой вымышленной точки О к силе. Вымышленный центр, точку О, будем выбирать произвольно, моменты каждой силы определяем относительно этой точки. Нельзя для определения моментов одних сил выбрать одну точку О, а для нахождения моментов других сил выбрать ее в другом месте!

На камень действуют сила тяжести, сила трения, сила реакции опоры, две дополнительные внешние силы F 1 и F 2


Выбираем точку О в произвольном месте, больше ее местоположение не изменяем. Тогда плечо силы тяжести - это длина перпендикуляра (отрезок d) на рисунке

Плечо силы реакции опоры определяется аналогично

Если перпендикуляр нет возможности построить, то вектор силы продлевается в необходимом направлении, после чего строим перпендикуляр к этой линии. Плечо силы F 2


Плечо силы F 1


Осталась сила трения! Если точка О и сила лежат на одной линии, то плечо этой силы равно нулю. Плечо силы трения равно нулю.

При решении задач выгодно точку О выбирать в точке пересечения нескольких сил. Тогда плечи всех этих сил будут нулевыми. Например, если точку О в предыдущем примере выбрать иначе, то плечи сил будут иными.

Плечи сил F 1 , F 2 и силы тяжести равны нулю, так как точка О лежит с ними на одной прямой (или на самой силе). Плечо силы реакции опоры - это длина d 1 . Плечо силы трения - это длина d 2 .

ПЛЕЧО СИЛЫ ПЛЕЧО СИЛЫ - кратчайшее росстояние от данной точки (центра) до линии действия силы. См. Момент силы.

Большой Энциклопедический словарь . 2000 .

Смотреть что такое "ПЛЕЧО СИЛЫ" в других словарях:

    Кратчайшее расстояние от данной точки (центра) до линии действия силы. См. Момент силы. * * * ПЛЕЧО СИЛЫ ПЛЕЧО СИЛЫ, кратчайшее росстояние от данной точки (центра) до линии действия силы. См. Момент силы (см. МОМЕНТ СИЛЫ) … Энциклопедический словарь

    Кратчайшее расстояние от данной точки (центра) до линии действия силы, т. е. длина перпендикуляра, опущенного из этой точки на линию действия силы (см. МОМЕНТ СИЛЫ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный… … Физическая энциклопедия

    плечо силы - Расстояние от данной точки до линии действия силы. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика Обобщающие термины… … Справочник технического переводчика

    плечо силы - jėgos petys statusas T sritis fizika atitikmenys: angl. arm of force vok. Kraftarm, f rus. плечо силы, n pranc. bras d’une force, m … Fizikos terminų žodynas

    плечо силы - jėgos petys statusas T sritis Kūno kultūra ir sportas apibrėžtis Trumpiausias atstumas nuo sukimosi ašies iki jėgos veikimo linijos; statmuo, nuleistas iš taško, sutampančio su sukimosi ašimi, į jėgos veikimo tiesę. atitikmenys: angl. moment arm… … Sporto terminų žodynas

    Относительно точки (в механике), кратчайшее расстояние от данной точки (центра) до линии действия силы, т. е. длина перпендикуляра, опущенного из этой точки на линию действия силы (см. Момент силы) … Большая советская энциклопедия

    Кратчайшее расстояние от данной точки (центра) до линии действия силы. См. Момент силы … Естествознание. Энциклопедический словарь

    См. Момент силы … Большой энциклопедический политехнический словарь

    плечо силы - Расстояние от данной точки до линии действия силы … Политехнический терминологический толковый словарь

    Плеча, мн. плечи (плеча устар.), плеч (плечей устар.), плечам (плечам обл.), плечами (плечьми устар.), плечах (плечах обл.), ср. 1. Часть туловища от шеи до руки. Правое, левое плечо. Взвалить ношу на плечо. Посадить ребенка на плечи. Правое… … Толковый словарь Ушакова

Книги

  • Цивилизация статуса , Роберт Шекли. Роберт Шекли (1928 – 2005) – знаменитый американский писатель-фантаст, автор нескольких сотен рассказов и нескольких десятков романов и повестей. Его произведения переведены на многие языки… аудиокнига
  • Принц для провинциалки , Виноградская З.. Случайности не бывают случайными, просто дорога к осуществлению мечты усеяна неожиданностями, не всегда приятными. Но если надеешься и ждешь, то успех уже рядом. В этом уверены две девушки из…

Единицы измерения момента силы:

  • СИ - Н·м
  • СГС - дин·см

С вращателным движением объектов неразрывно связано понятие приложения момента силы .

Наверняка, многие знают жизненную аксиому - чем длиннее рычаг, тем легче сдвинуть груз. Если переложить этот процесс на язык физики, то можно сказать, что применение силы с помощью рычага характеризуется моментом силы.

Для уравновешивания весов-качелей, изображенных на рисунке, важна не только величина прикладываемой силы, но и место, где она приложена. Расстояние от точки приложения силы до точки вращения называется плечом силы .

Никогда не задумывались над вопросом, почему нельзя открыть дверь, если толкать ее в месте крепления (у петель)?

Предположим, что перед нами стоит задача открыть дверь шириной 1 метр при помощи силы в 100 Н. Силу будем прикладывать в трех местах:

  • F1 - возле петель (L=0);
  • F2 - посредине двери (L2=0,5 м);
  • F3 - у края двери (L3 = 1 м).

В первом случае, поскольку плечо силы равно нулю, произведение этого плеча на силу любой величины даст нулевой момент силы (поэтому, дверь нельзя открыть, толкая ее у петель).

Во втором случае:

M = F·L = 100·0,5 = 50 Н·м

Во третьем случае:

M = F·L = 100·1 = 100 Н·м

Из сказанного выше можно сделать вывод, что увеличение в два раза длины плеча при одной и той же прикладываемой силе дает такое же увеличение момента силы (проигрываем в расстоянии - выигрываем в силе, и наоборот: выигрываем в расстоянии - проигрываем в силе).

Рассмотрим вариант, когда сила прикладывается под углом.


Как в таком случае вычислить необходимый момент силы для открытия дверей, ведь определить плечо сил, как это было раньше, не получится.

Чтобы решить поставленную задачу, необходимо руководствоваться правилом: плечом силы называется длина перпендикуляра, опущенного из предполагаемой точки вращения на прямую, относительно которой действует сила .

Для определения плеча силы необходимо продлить линию, вдоль которой действует сила, а потом опустить на нее перпендикуляр из точки вращения. Получился прямоугольный треугольник, используя тригонометрические функции, можно найти искомое плечо силы: L·sinΘ

Предположим, что сила приложена под углом Θ = 45°

M = F·L·sinΘ = 100·1·sin45° = 70 Н·м

Исходя из вышесказанного, становится понятным, что открыть дверь не удастся, если приложить силу с углом Θ = 0°, т.е., параллельно двери (в ее торец). Дело в том, что у такой силы нет проекции, которая бы могла вызвать вращательное движение (говорят, что у такой силы нет ненулевого плеча для создания вращательного момента силы).

Момент силы является векторной величиной. Направление действия момента силы вычисляется по правилу правой руки (аналогично определению направления вектора угловой скорости).

Правило правой руки : если ладонью правой руки охватить ось вращения, таким образом, чтобы пальцы руки совпадали с направлением приложенной силы, то, вытянутый большой палец будет указывать направление вектора момента силы.

Которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

где F - сила, l — плечо силы.

Плечо силы - это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле-чом силы F t здесь оказывается расстояние l , от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н , плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М 1 вращающей его по часовой стрелке, равняется моменту силы М 2 , которая вращает его против часовой стрелки:

Правило моментов есть следствие одной из теорем механики , которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил . Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары , независимо от того, на какие отрезки l , и разделяет положение оси плечо пары:

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.

Рассмотрим рычаг с осью вращения находящийся в точке О. (рис.1). Силы ${\overline{F}}_1$ и ${\overline{F}}_2$, действующие на рычаг направлены в одну сторону.

Минимальное расстояние между точкой опоры (точка О) и прямой, вдоль которой действует на рычаг сила, называют плечом силы.

Для нахождения плеча силы следует из точки опоры опустить перпендикуляр к линии действия силы. Длинна данного перпендикуляра и станет плечом рассматриваемой силы. Так, на рис.1 расстояние $\left|OA\right|=d_1$- плечо силы $F_1$; $\left|OA\right|=d_2$- плечо силы $F_2$.

Рычаг находится в состоянии равновесия, если выполняется равенство:

\[\frac{F_1}{F_2}=\frac{d_2}{d_1}\left(1\right).\]

Предположим, что материальная точка движется по окружности (рис.2) под действием силы $\overline{F}$ (сила действует в плоскости движения точки). В таком случае угловое ускорение ($\varepsilon $) точки определяется тангенциальной составляющей ($F_{\tau }$) силы $\overline{F}$:

где $m$ - масса материальной точки; $R$ - радиус траектории движения точки; $F_{\tau }$ - проекция силы на направление скорости движения точки.

Если угол $\alpha $ - это угол между вектором силы $\overline{F}$ и радиус - вектором $\overline{R}$, определяющим положение рассматриваемой материальной точки (Этот радиус- вектор проведен из точки О в точку А на рис.2), тогда:

Расстояние $d$ между центром O и линией действия силы $\overline{F}$ называют плечом силы. Из рис.2 следует, что:

Если на точку будет действовать сила ($\overline{F}$), направленная по касательной к траектории ее движения, то плечо силы будет равно $d=R$, так как угол $\alpha $ станет равен $\frac{\pi }{2}$.

Момент силы и плечо

Понятие плечо силы иногда используют, для записи величины момента силы ($\overline{M}$), который равен:

\[\overline{M}=\left[\overline{r}\overline{F}\right]\left(5\right),\]

где $\overline{r}$ - радиус - вектор проведенный к точке продолжения силы$\ \overline{F}$. Модуль вектора момента силы равен:

Построение плеча силы

И так, плечом силы называют длину перпендикуляра, который проводят из некоторой выбранной точки, иногда ее называют полюсом (выбираемой произвольно, но при рассмотрении одной задачи один раз). При рассмотрении задач точку О выбирают обычно на пересечении нескольких сил) к силе (рис.3 (а)). Если точка О будет лежать на одной прямой с силами или на самой силе, то плечи сил будут равны нулю.

Если перпендикуляр не получается построить, то вектор силы продлевают в нужном направлении, после этого строят перпендикуляр (рис.3 (б)).

Примеры задач с решением

Пример 1

Задание. Какова масса меньшего тела ($m_1$), если его уравновешивает тело массой $m_2={\rm 2\ }$кг? Тела находятся на невесомом рычаге (рис.3) отношение плеч рычага 1:4?

Решение. Основой решения задачи является правило равновесия рычага:

\[\frac{F_1}{F_2}=\frac{d_2}{d_1}\left(1.1\right),\]

где силы, действующие на концы рычага равны по модулю силам тяжести, которые действуют на тела, следовательно, формулу (1.1) перепишем в виде:

\[\frac{m_1g}{m_2g}=\frac{d_2}{d_1}\to \frac{m_1}{m_2}=\frac{d_2}{d_1}\left(1.2\right).\]

Из выражения (1.2) получим искомую массу $m_1$:

Вычислим искомую массу:

Ответ. $m_1=0,5\ кг$

Пример 2

Задание. Однородный стержень длинной $l\ $и массой $M$ расположен горизонтально. Один конец стержня в точке А закреплён так, что может вращаться вокруг этой точки, другой конец опирается на наклонную плоскость, угол наклона которой к горизонту равен $\alpha $. На стержне на расстоянии $b\ $от точки А лежит небольшой груз. Каковы плечи сил, действующих на стержень?

Решение. Изобразим на рис.4 силы, действующие на стержень. Это: сила тяжести: $M\overline{g}$, вес груза, расположенного на нем $\overline{P}=m_1\overline{g}$, сила реакции наклонной плоскости: $\overline{N}$; сила реакции опоры в точке A: $\overline{N}"$.

Плечи сил будем искать относительно точки A. Плечо силы $\overline{N"}$ будет равно нулю, так как сила приложена к стержню в точке А:

Плечо другой силы реакции опоры ($\overline{N}$) равно длине перпендикуляра AC:

Плечо силы $M\overline{g}$ из рис.4 , так как сила тяжести приложена к центру масс стержня, который для однородного стержня находится на его середине:

Плечо силы $m_1\overline{g},$ учитывая, что груз маленький и принимая его за материальную точку, равно:

Ответ. $d_{N"}=0;;\ d_N=l{sin (90-\alpha)\ }=l{cos \alpha \ \left(м\right),\ }d_{Mg}=\frac{l}{2},\ d_{m_1g}=b$