Биографии Характеристики Анализ

Что входит в атом. Что такое атом: строение

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, его св-в. Каждому хим. элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, напр. . Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями атомов между собой. Атомы могут существовать и в своб. состоянии (в , ). Св-ва атома, в т. ч. важнейшая для способность атома образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных . Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. ). Ядро атома состоит из Z и N , удерживаемых ядерными силами (см. ). Положит. заряд и отрицат. заряд одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. элемента в периодич. системе Менделеева () равен числу в ядре.

В электрически нейтральном атоме число в облаке равно числу в ядре. Однако при определенных условиях он может терять или присоединять , превращаясь соотв. в положит. или отрицат. , напр. Li + , Li 2+ или О - , О 2- . Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и этого элемента.

Масса атома определяется массой его ядра; масса (9,109*10 -28 г) примерно в 1840 раз меньше массы или ( 1,67*10 -24 г), поэтому вклад в массу атома незначителен. Общее число и А = Z + N наз. . и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 23 11 Na. Вид атомов одного элемента с определенным значением N наз. . Атомы одного и того же элемента с одинаковыми Z и разными N наз. этого элемента. Различие масс мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия ()наблюдаются у вследствие большой относит. разницы в массах обычного атома (), D и Т. Точные значения масс атомов определяют методами .

Стационарное состояние одноэлектронного атома однозначно характеризуется четырьмя квантовыми числами: п, l, m l и m s . Энергия атома зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, m l , m s . Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений m l и m s . Общее число разл. состояний с заданным п равно , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n 2 разл. . Уровень, к-рому соответствует лишь одно (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более , он наз. вырожденным (см. ). В атоме уровни энергии вырождены по значениям l и m l ; вырождение по m s имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента с магн. полем, обусловленным орбитальным движением в электрич. поле ядра (см. ). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в в виде т. наз. тонкой структуры.

При заданных n, l и m l квадрат модуля волновой ф-ции определяет для электронного облака в атоме среднее распределение . Разл. атома существенно отличаются друг от друга распределением (рис. 2). Так, при l = 0 (s-состояния) отлична от нуля в центре атома и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре атома и зависит от направления.

Рис. 2. Форма электронных облаков для различных состояний атома .

В многоэлектронных атомах вследствие взаимного электростатич. отталкивания существенно уменьшается их связи с ядром. Напр., энергия отрыва от Не + равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внеш. с ядром еще слабее. Важную роль в многоэлектронных атомах играет специфич. , связанное с неразличимостью , и тот факт, что подчиняются , согласно к-рому в каждом , характеризуемом четырьмя квантовыми числами, не может находиться более одного . Для многоэлектронного атома имеет смысл говорить только о всего атома в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать отдельных и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, m l и m s . Совокупность 2(2l+ 1) в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты , оболочка наз. заполненной (замкнутой). Совокупность 2п 2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число в оболочках и слоях при полном заполнении приведены в таблице:

Между стационарными состояниями в атоме возможны . При переходе с более высокого уровня энергии Е i на более низкий E k атом отдает энергию (E i - E k), при обратном переходе получает ее. При излучательных переходах атом испускает или поглощает квант электромагн. излучения (фотон). Возможны и , когда атом отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в ) или длительно связан (в. Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают в замкнутой оболочке. Поэтому атомы с одним или неск. в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. для образования замкнутой внеш. оболочки, обычно принимают их. Атомы , обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, к-рых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц ( , ) на атомах (см. ). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты ( зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с атома. Тесная связь оптич. св-в атома с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

===
Исп. литература для статьи «АТОМ» : Карапетьянц М. X., Дракин С.И., Строение , 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Страница «АТОМ» подготовлена по материалам .

Современный человек постоянно слышит словосочетания, которые содержат производные от слова «атом». Это энергия, электростанция, бомба. Кто-то принимает это как должное, а некоторые задаются вопросом: «Что такое атом?».

Что означает это слово?

Оно имеет древнегреческие корни. Происходит от «атомос», которое в дословном переводе значит «неразрезаемый».

Кто-то, уже немного знакомый с физикой атома, возмутится: "Как "неразрезаемый"? Он же состоит из каких-то частиц!" Все дело в том, что название появилось, когда ученые еще не знали, что атомы - не мельчайшие частицы.

После опытного доказательства этого факта было решено не менять привычного названия. И в 1860 году "атомом" стали называть мельчайшую частицу, которая имеет все свойства химического элемента, к которому относится.

Что больше атома и меньше его?

Молекула всегда больше. Она образована из нескольких атомов и является самой маленькой частицой вещества.

А вот меньше — элементарные частицы. Например, электроны и протоны, нейтроны и кварки. Их очень много.

Уже много чего про него сказано. Но до сих пор еще не очень понятно, что такое атом.

Что он из себя представляет?

Вопрос о том, как представить модель атома, уже давно занимает ученых. Сегодня принята та из них, которую предложил Э. Резерфорд и доработал Н. Бор. По ней атом разделяется на две части: ядро и электронное облако.

Большая часть массы атома сосредоточена в его центре. Ядро состоит из нейтронов и протонов. А электроны в атоме расположены на достаточно большом удалении от центра. Получается нечто похожее на Солнечную систему. В центре, как Солнце, ядро, и вокруг него вращаются электроны по своим орбиталям, как планеты. Именно поэтому модель часто называют планетарной.

Интересно, что ядро и электроны занимают очень малое пространство по сравнению с общими размерами атома. Получается, что в центре маленькое ядро. Потом пустота. Очень большая пустота. И потом узкая полоска маленьких электронов.

К такой модели атомов ученые пришли не сразу. До этого было выдвинуто множество предположений, которые были опровергнуты опытами.

Одной из таких идей было представление атома в виде сплошного тела, которое имеет положительный заряд. А электроны в атоме предлагалось разместить по всему этому телу. Такую идею выдвигал Дж. Томсон. Его модель атома еще называлась «Пудинг с изюмом». Уж очень модель напоминала это блюдо.

Но она была несостоятельна, потому что не могла объяснить некоторых свойств атома. Поэтому ее отвергли.

Японский ученый Х. Нагаока на вопрос, что такое атом, предлагал такую модель. По его мнению, эта частица имеет отдаленное сходство с планетой Сатурн. В центре ядро, а электроны вращаются вокруг него по орбитам, связанным в кольцо. Несмотря на то, что модель не была принята, некоторые ее положения были использованы в планетарной схеме.

О числах, связанных с атомом

Сначала о физических величинах. Общий заряд атома всегда равен нулю. Это связано с тем, что число электронов и протонов в нем одинаково. А их заряд одинаков по величине и имеет противоположные знаки.

Часто возникают ситуации, когда атом теряет электроны или, наоборот, притягивает к себе лишние. В таких ситуациях говорят о том, что он стал ионом. И его заряд зависит от того, что случилось с электронами. Если их количество стало меньше, заряд иона положительный. Когда электронов больше положенного, ион становится отрицательным.

Теперь о химии. Эта наука, как никакая другая, больше всего дает понимание, что такое атом. Ведь даже основная таблица, которая в ней изучается, основана на том, что атомы расположены в ней в определенном порядке. Речь идет о таблице Менделеева.

В ней каждому элементу приписывается определенный номер, который связан с числом протонов в ядре. Обычно он обозначается буквой z.

Следующее значение — это массовое число. Оно равно сумме протонов и нейтронов, находящихся в ядре атома. Принято его обозначение буквой A.

Два указанных числа связаны друг с другом таким равенством:

A = z + N .

Здесь N — это количество нейтронов в атомном ядре.

Еще одной важной величиной является масса атома. Для ее измерения введена особая величина. Она сокращается: а.е.м . И читается как атомная единица массы. Исходя их этой единицы, три частицы, из которых состоят все атомы Вселенной, имеют массы:

Эти значения часто нужны при решении химических задач.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.

Каждый день мы пользуемся какими-нибудь предметами: берем их в руки, совершаем над ними любые манипуляции - переворачиваем, рассматриваем, в конце концов, ломаем. А вы никогда не задумывались о том, из чего состоят эти предметы? "Чего уж здесь думать? Из металла/дерева/пластика/ткани!" - недоуменно ответят многие из нас. Отчасти это правильный ответ. А из чего состоят эти материалы - металл, дерево, пластик, ткань и многие другие вещества? Сегодня мы и обсудим этот вопрос.

Молекула и атом: определение

У знающего человека ответ на него прост и банален: из атомов и молекул. Но некоторые люди озадачиваются и начинают сыпать вопросами: "Что такое атом и молекула? Как они выглядят?" и т.д., и т.п. Ответим на эти вопросы по порядку. Ну, во-первых, что такое атом и молекула? Скажем вам сразу, что эти определения - не одно и то же. И даже более того - это совершенно разные термины. Итак, атом - это самая маленькая часть химического элемента, которая является носителем его свойств, частица вещества мизерных массы и размеров. А молекула - это электрически нейтральная частица, которую образуют несколько соединенных атомов.

Что такое атом: строение

Атом состоит из электронной оболочки и (фото). В свою очередь ядро состоит из протонов и нейтронов, а оболочка - из электронов. В атоме протоны заряжены положительно, электроны - отрицательно, а нейтроны вообще не заряжены. Если число протонов соответствует то атом является электронейтральным, т.е. если мы прикоснемся к веществу, образованному из молекул с такими атомами, то не почувствуем ни малейшего электрического импульса. И даже сверхмощные ЭВМ его не уловят по причине отсутствия последнего. Но случается так, что протонов больше, чем электронов, и наоборот. Тогда такие атомы правильнее будет называть ионами. Если в нем больше протонов, то он электрически положительный, если же преобладают электроны - электрически отрицательный. В каждом определенном атоме есть строгое количество протонов, нейтронов и электронов. И его можно высчитать. Шаблон для решения задач по нахождению количества этих частиц выглядит так:

Хим. элемент - R (вставить название элемента)
Протоны (p) - ?
Электроны (е) - ?
Нейтроны (n) - ?
Решение:
р = порядковый № хим. элемента R в периодической системе им Д.И. Менделеева
е = р
n = А r (R) - № R

Что такое молекула: строение

Молекула - это наименьшая частица химического вещества, то есть она уже непосредственно входит в его состав. Молекула определенного вещества состоит из нескольких одинаковых или различных атомов. Особенности строения молекул зависят от физических свойств вещества, в котором они присутствуют. Молекулы состоят из электронов и атомов. Расположение последних можно узнать с помощью структурной формулы. позволяет определить ход химической реакции. Обычно они нейтральные (не имеют электрического заряда), и у них нет неспаренных электронов (все валентности являются насыщенными). Однако они могут быть и заряженными, тогда их правильное название - ионы. Также у молекул могут быть неспаренные электроны и ненасыщенные валентности - в этом случае их называют радикалами.

Заключение

Теперь вы знаете, что такое атом и Все без исключения вещества состоят из молекул, а последние, в свою очередь, построены из атомов. Физические свойства вещества определяют расположение и связь атомов и молекул в нем.