Биографии Характеристики Анализ

Денатурация коагуляция и свертывание белков мяса. Коагуляция белковых веществ

Коагуляция молока – это ни что иное как превращение его в гель (сгусток), то есть его свертывание.

Представляет собой связанную твердую фракцию белков молока с присутствием растворенных жиров, которую потом можно легко отделить от жидкой (сыворотки).

Коагуляция белка молока бывает скрытой и истинной. При скрытой коагуляции мицеллы связываются друг с другом не всей поверхностью, а только на некоторых ее участках, образуя пространственную мелкоячеистую структуру, которая называется гелем.

При дестабилизации всех или большинства частиц дисперсной фазы гель охватывает весь объем дисперсной среды (исходного молока).

Скрытую коагуляцию называют просто коагуляцией, гелеобразованием или свертыванием.

Истинная коагуляция заключается в полном слиянии коллоидных частиц и выпадении дисперсной фазы в осадок или всплывании.

Коагулянты — это вещества, которые выполняют несколько функций, но самое главное — формируют желеобразный сгусток — отделяют плотные фракции молока от жидких.

Для этой цели раньше использовали только , который получают из желудков телят.

Именно этот фермент в желудках телят (химозин) помогает им сквашивать молоко матери для питания.

В современном мире для формирования сгустка (также его называют калья) используют:

  • Телячий сычужный фермент (сычуг), изготовленный из желудков телят (молокосвертывающий фермент — химозин).
    Он бывает порошкообразным, пастообразным и жидким. Именно химозин (из телячьего сычужного фермента или искусственно выращенный химозин) лучше всего подходит для производства твердых и полумягких сыров.
  • Пепсины – экстракты желудков других домашних животных. Главным образом используют коровий или , также в продаже есть свиной и куриный пепсины, однако они очень чувствительны к кислотности и нестабильны. Их использование не рекомендовано.
    Коровий пепсин (особенно в смеси с химозином) можно использовать для производства рассольных сыров (брынза, сулугуни). Для производства мягких, полумягких и твердых сыров пепсины использовать не рекомендуется.
  • Микробиальный реннин (микробиальный пепсин) – некоторые дрожжи, плесени и грибы естественным образом продуцируют пригодные для коагуляции ферменты. Наиболее широко используются ферменты, полученные из микроскопического гриба Rhizomucor meihei (прежнее название Mucor meihei). Это вегетарианский коагулянт. Примером такого коагулянта может служить .
  • Химозин, полученный путем ферментации (рекомбинированный химозин) – ген телячьего химозина был внедрен в геном нескольких микроорганизмов-хозяев (Kluyveromyces lactis, Aspergilleus niger, Escherichia), в результате чего они стали способны при ферментации продуцировать протеин, полностью идентичный телячьему химозину.
    Этот фермент прекрасно зарекомендовал себя при изготовлении всех видов сыров, где обычно использовался телячий сычужный фермент. Это вегетарианский коагулянт.

Для приготовления свежих сыров, творога, рассольных сыров можно использовать любой коагулянт.

Однако для полумягких и твердых сыров подходит только химозин (животный сычужный фермент или рекомбинированный химозин), поскольку он вместе с молочнокислыми бактериями (заквасками) участвует в формировании консистенции сыра, его вкуса и способности к сохранению длительное время.

При коагуляции белков молочный жир и вода с растворенными веществами (сыворотка) достаточно прочно захватываются образующимся гелем, при осаждении белков только небольшое количество молочного жира и водной фазы может быть механически удержано осадком.

Выработку и созревание сычужных сыров ведут при невысоких температурах и активной кислотности, называемых физиологическими, чтобы обеспечить возможность осуществления биологической трансформации компонентов молока с минимальными потерями пищевой ценности.

При использовании термокислотного метода отделяют жировую фазу молока сепарированием, осаждают белки обезжиренного молока и смешивают их со сливками.

Осаждение заключается в быстром подкислении молока до более низкого, чем изоэлектрическая точка, уровня добавлением кислой сыворотки, кислого молока, лимонного сока, уксусной кислоты и нагревании его до высоких температур (90-95° С).

Таким образом, при энзиматической коагуляции казеин и жир молока концентрируются одновременно, при термокислотном — в результате двух процессов: центробежного и осаждения.

Кислотный метод заключается в свертывании молока в изоэлектрической точке казеина (pH 4,6) путем медленного образования микроорганизмами кислот или внесения в молоко кислот (обычно соляной), или ацидогенов (например, глюколактона); он применяется в производстве свежих сыров или сыров с короткими сроками созревания.

Энзимы, участвующие в созревании сычужных сыров, не проявляют активности в кислотных сырах из-за низкого pH. Степень трансформации белков и липидов молока в кисломолочных сырах ниже, вкусовой букет уже, чем в сычужных сырах.

Кислотно-энзиматический метод является вариантом кислотной коагуляции, с внесением в молоко небольшого количества молокосвертывающих энзимов, недостаточного для энзиматической коагуляции при pH свежего молока.

В этом случае коагуляция молока происходит при pH 5,1-5,4 (в изоточке параказеина). Добавление молокосвертывающих энзимов благоприятно сказывается на скорости свертывания, прочности сгустка и выделении сыворотки, однако при pH кислотносычужной коагуляции молока происходят радикальные изменения мицелл казеина, что резко изменяет структуру сгустка и сыра по сравнению с таковыми при сычужном свертывании.

Сгусток, образующийся при производстве сыров кислотно-энзиматическим методом, по своим свойствам ближе к кислотному сгустку, качество продуктов — ближе к кисломолочным сырам.

Определенное распространение в производстве рассольных и некоторых других сыров получило концентрирование молока ультрафильтрацией.


В тканях животных и растений белки, вследствие их легкой превращаемости, находятся в состоянии непоочной устойчивости. Неизмененные белки, находящиеся в таком первичном состоянии непрочной устойчивости, называются «нативными», или «генуинными». Как известно, между белком и водой, входящей в форме «воды набухания», имеется известная связь. При изменении в коллоидном растворе концентрации и природы солей белок может то еще более диспергироваться, то, наоборот, осаждаться. Эти процессы обратимы. Но при определенных условиях концентрации электролитов белки (альбумины, глобулины) могут быть коагулированы. Коагулированный белок хотя и может быть при определенных условиях переведен в раствор, но его свойства не будут тождественными оо свойствами «наттаного», неизмененного белка.

Коагуляция, ведущая к изменению физико-химических свойств белка, называется денатурацией. Такое изменение свойств белка, связанное с коагуляцией, может происходить в силу разных причин: влияние тепла, света, крепких кислот, щелочей, солей тяжелых металлов, алкоголя, замораживания и в результате воздействия механическими средствами.

Денатурация теплом характерна для двух групп белков - альбуминов и глобулинов, но наблюдается и у других белков. Так, казеиноген при нагревании до 90-100° изменяется с частичной потерей фосфора. Денатурация зависит от температуры, времени, концентрации водородных ионов, от концентрации и природы электролитов. При денатурации происходят не только коллоидные изменения в состоянии вещества, но и структурные изменения в молекулах растворенных белков. Повышение температуры и

присутствие кислот и щелочей способствуют этим изменениям в структурах молекул. Как выше было сказано, казеиноген при высокой температуре денатурируется с частичной потерей фосфора. После денатурации сырого яичного белка нагреванием происходят изменения состояния серы в белковой молекуле.

При современных способах обезвоживания молока, яиц, плодов и овощей стремятся ограничить тепловую денатурацию и тем самым сохранить обратимость свойств белка при использовании этих продуктов для пищевых целей.

Денатурация ультрафиолетовыми лучами и солнечным светом сходна с денатурацией теплом.

Денатурация кислотами, щелочами и солями тяжелых металлов вызывает превращение растворимых белков (альбуминов, глобулинов и казеина) в нерастворимые формы. Чем выше температура, тем при меньшей концентрации рН наступает денатурация. Молоко с повышенной кислотностью при невысокой температуре не свертывается, при нагревании же такого молока наступает свертывание белков молока. При воздействии на белок алкоголя или ацетона белки превращаются полностью в нерастворимую форму.

При действии на белки формальдегида образуются соединения, обладающие отличными от белков свойствами. Казеин под влиянием формальдегида превращается в рогоподобное вещество.

При замораживании белки мышечной ткани частично денатурируются, причем рН, как и при тепловой денатурации, оказывает сильное влияние на скорость денатурации. При рН = 5-6 скорость денатурации быстро возрастает, при рН = 6-7 денатурация идет медленно.

При сильном механическом воздействии на раствор белка в форме встряхивания наступает денатурация с появлением белковых пленок с пузырьками пены на них. Денатурация некоторых белков может наступать при очень высоком давлении.

Использование: сельское хозяйство, а именно, производство кормов для животных. Сущность изобретения: электрокоагуляция белка осуществляется постоянным током в камере, анодная и каводная области которой разделены мембраной. В процессе протекания тока регистрируют величину pH среды и при достижении ее значения 5 процесс прекращают. По мере удаления коагулята, из катодной области в анодную подают оставшуюся часть белковосодержащего материала. Температура материала при этом не превышает 39 - 40 o С. 2 з. п. ф-лы, 1 табл.

Изобретение относится к сельскому хозяйству, а именно к производству кормов для животных. Известен способ термической коагуляции белка из картофельного сока, заключающийся в его нагревании паром до 70-100 о С. Недостатками способа является низкий выход белка (70-80%), высокая энергоемкость (0,5 МДж/кг). Существует способ химической коагуляции, состоящий в осаждении белка без нагревания при подкислении его кислотами или солями тяжелых металлов до изоэлектрической точки (рН 4,8-5,2). Недостаток способа низкий выход белка (40-50%), необходимость нейтрализации среды. Наиболее близким к предлагаемому является способ электротермической обработки, при котором белковосодержащую среду нагревают электрическим током промышленной частоты до 70-100 о С. Напряженность электрического поля между электродами, расположенными в коагулируемой среде составляет (5-25) 10 2 В/м. Выход белка достигает 80-84% энергоемкость 0,12 МДж/кг. Цель изобретения увеличение выхода белка, снижение энергоемкости процесса. Для достижения поставленной цели, белок коагулируют в камере, разделенной мембранной перегородкой, проницаемой для неорганических соединений (в основном ионов Н+ и ОН-) и практически непроницаемой для ионов белка из-за их "крупных" размеров. При протекании, например, через картофельный сок постоянного тока от положительного электрода к отрицательному ионы Н + движутся к катоду, а ионы гидроксильных групп ОН - к аноду. Это приводит к уменьшению рН у анода и увеличению у катода. Кислая среда у анода коагулирует белок. Кроме того, электрический ток,проходя через картофельный сок, активизирует массоперенос и скорость химических реакций, не вызывая его значительный нагрев. Благодаря этому температура сока повышается только до 30-40 о С. Таким образом, вследствие термохимического действия электрического тока, белок коагулирует при температурах, значительно меньших, чем при известных термических способах, что снижает энергоемкость процесса до 0,05 МДж/кг. Совместное химическое и термическое действие электрического тока увеличивает выход белка до 97% Отработанную фракцию из катодной области вносят в анодную в пропорции, не нарушающей процесс коагуляции. П р и м е р. Сок картофеля (рН 6,6-6,8) помещают в рабочую камеру коагулятора, анодное (А) и катодное (К) пространства которой разделены мембранной перегородкой в отношении А:K 4:1, практически непроницаемой для компонентов сока в отсутствии электрического тока. К электродам камеры от выпрямителя подводят постоянный ток напряженностью электрического поля в межэлектродном пространстве (3-5)10 2 В/м, под действием которого рН понижается до 2,5-5. При протекании коагуляции регистрируют температуру. При достижении 30-40 о С процесс прекращают. В процессе коагуляции обработанный продукт из катодной области подают в анодную, смешивая его со "свежим" соком. Время обработки зависит от напряженности электрического поля и исходной температуры сока. Скоагулированный белок выделяют из сока общепринятыми методами. В таблице приведена сравнительная оценка различных способов коагуляции, полученная в лаборатории транспорта и регуляции обмена веществ растений Академии наук РБ. Исследования показали, что предлагаемый способ увеличивает выход белка на 10-15% снижает энергоемкость в 2-3 раза; При этом плотность постоянного тока при коагуляции не превышает 8000 А/м 2 , что позволяет уменьшить температуру обработки.

Формула изобретения

1. СПОСОБ КОАГУЛЯЦИИ БЕЛКА, включающий размещение белоксодержащего материала в камере, анодная и катодная области которой разделены мембранной перегородкой, и пропускание постоянного электрического тока между электродами, расположенными в указанных областях, отличающийся тем, что в процессе протекания тока регистрируют величину рН обрабатываемого материала в анодной области камеры и при величине рН не более 5 прекращают пропускание тока. 2. Способ по п. 1, отличающийся тем, что после удаления коагулянта из анодной области камеры оставшийся в катодной области камеры белоксодержащий материал перемещают в анодную область и обе области дополняют до рабочего уровня новым белоксодержащим материалом. 3. Способ по п. 1, отличающийся тем, что плотность постоянного тока в процессе коагуляции выбирают не более 8000 А/м 2 .

Для выделения сывороточных белков необходимо изменить нативную структуру белка. При этом изменении (денатурации) нарушается его структура. Белковая глобула в процессе денатурации развертывается. Процесс сопровождается изменением конфигурации, гидратации и агрегатного состояния частиц. Белковая глобула в процессе денатурации становится менее устойчивой.

Устойчивость глобул белков молочной сыворотки обусловлена конформацией частиц, зарядом и наличием гидратной оболочки (сольватного слоя). Для выделения белков необходимо нарушить равновесие трёх или хотя бы двух указанных факторов устойчивости .

В свежей молочной сыворотке белковые частицы находятся в нативном состоянии. При изменении нативного состояния белка (денатурации) прежде всего нарушается его структура. Белковая глобула в процессе денатурации развёртывается, для чего необходимо нарушить от 10 до 20% связей, участвующих в ее образовании. Процесс денатурации сопровождается изменением конфигурации, гидратации и агрегатного состояния частиц. Белковая глобула в результате денатурации становится менее устойчивой.

Для преодоления потенциальных барьеров устойчивости белковых частиц можно применять различные способы денатурации: нагревание, облучение, механическое воздействие, введение десольватирующих веществ, окислителей и детергентов, изменение реакции среды. Введение в растворы некоторых веществ способствует тепловой денатурации .

Классификация методов коагулирования сывороточных, рассматриваемых в данной работе, представлена на схеме (рис. 3).

Рис. 3.

В конечном счете, к выделению белков приводят вторичные явления после денатурации, такие как ассоциация развернувшихся глобул и химическое изменение их. Здесь на первый план выступает образование межмолекулярных связей и агрегация в противоположность внутримолекулярным процессам, происходящим при денатурации.

В целом процесс выделения белков молочной сыворотки можно охарактеризовать как коагуляцию.

С учетом целесообразности извлечения и использования белков коагуляцию сывороточных белков необходимо закрепить во избежание процесса ренатурации (восстановления нативной структуры белков), а также максимально возможного ограничения распада образующихся агрегатов.

Однако следует учитывать, что в результате тепловой денатурации кроме разрыва водородных связей белковой частицы происходит их дегидратация, что облегчает последующую агрегацию белковые частиц. Ионы-коагулянты (кальций, цинк, и др.), активно сорбируясь на поверхности белковой частицы, обеспечивают коагуляцию, а при значительных дозах могут привести к высаливанию белков.


В основе процесса образования хлопьев белков при кипячении сусла лежит тепловая коагуляция, которая протекает в две стадии. Первой стадией является дегидратация белковой молекулы и переход ее в состояние суспензоида - происходит денатурация белка, т. е. превращение гидрофильного золя в гидрофобный, В таком превращении решающее значение имеет тонкий слой на границе между дисперсной фазой (в данном случае белком) и дисперсионной средой (в данном случае суслом), который у этих двух золей различен; у лиофобных коллоидов поверхностный слой характеризуется очень высокой чувствительностью к действию электролитов, наличие которых в сусле всегда возможно.
Денатурированные белки удерживаются в суспендированном состоянии благодаря собственным электрическим зарядам, которые не позволяют сближаться отдельным молекулам белка.
Вторая стадия коагуляции состоит в том, что дегидрированные молекулы денатурированного белка под действием электролитов соединяются в более грубые, большие по объему хлопья (образование бруха).
Несмотря на полное завершение первой стадии, вторая стадия может происходить нс полностью. Белки могут денатурировать при любом значении pH, а коагуляция легче всего протекает вблизи изоэлектрической точки.
Так как в сусле находятся разные фракции белков, осаждающиеся при разных значениях pH, то, естественно, не вес они в одинаковой степени будут подвергаться коагулированию. Например, изоэлектрическая точка ячменного альбумина (лейкозина) лежит при pH 5,75; разными изоэлектрически ми точками обладают отдельные фракции ячменного глобулина (эдестина); ?-глобулин - при pH 5,0; ?-глобулин - при pH 4,9; ?-глобулин - при pH 5,7.
Как известно, ?-глобулин является главной белковой составной частью мути пива, Изоэлектрическая точка этого белка обычно достаточно далеко отстоит от pH сусла.
Понижение pH затора благоприятно действует на выделение коагулируемого белка.
При кипячении сусла белковые вещества, несущие положительный заряд, стремятся соединиться с веществами, заряженными отрицательно, поэтому вполне естественно образование комплексов белков с дубильными веществами, так как танины имеют отрицательный заряд.
К ионам, способствующим коагуляции белков, относятся сульфатный ион. Гипсованная вода, например, вызывает очень хороший брух.
Как видно из сказанного, коагуляция белков при кипячении сусла, да еще в присутствии веществ хмеля, является сложным процессом. При этом образуются комплексные соединения белков с другими соединениями (ионами неорганических солей, танинами, кремневой кислотой и находящимися в сусле коллоидными соединениями). Они образуют сложные белково-коллоидные мицеллы, обладающие адсорбционными свойствами, для которых требуются другие условия осаждения, чем для чистых белков.
Влияние pH на выпадение белков при кипячении как неохмеленного, так и охмеленного сусла, очевидно, по данным, полученным Д.П. Щербачевой, показано в табл. 71.

В практике пивоварения максимальная коагуляция белков наблюдается при pH 5,2-5,0; в этом преимущество подкисления заторов.
Концентрация водородных ионов при кипячении сусла повышается; pH снижается на 0,2-0,3. Хмелевые кислоты плохо диссоциируют и поэтому не могут быть причиной такого сильного увеличения концентрации водородных ионов (снижение pH на 0,3 соответствует увеличению [Н+] в два раза). Основная причина этого явления связана с образованием трехосновных фосфорнокислых солей кальция и магния, которые нерастворимы в воде и выпадают из сусла.
На коагуляцию белков значительное влияние оказывает продолжительность кипячения. В табл. 72 приведены данные, полученные тем же исследователем при кипячении неохмеленного сусла.

В первом опыте при трехчасовом кипячении была достигнута максимальная коагуляция белков, во втором - коагуляция продолжалась еще и после трехчасового кипячения. В литературе имеются указания, что при семичасовом и даже девятичасовом кипячении сусла не удаляются полностью все способные к коагуляции белки.
Значительное влияние па коагуляцию белков при кипячении оказывает концентрация сусла. Белки быстрее коагулируют в сусле низкой экстрактивности; в более плотном сусле коагуляция протекает медленнее.
Автор проследил динамику уменьшения белка в сусле разной плотности в течение 6 ч кипячения без добавления хмеля и с хмелем (рис. 27, а и б).

Роль дубильных веществ в коагуляции белков до сих пор полностью нс выявлена. По-видимому, это обусловлено тем, что дубильные вещества имеют сложный состав и как о оболочке ячменя (солода), так и в хмеле находятся совместно с горькими веществами. В неохмеленном сусле Гартонг установил наличие 111 мг дубильных веществ в 1 л, а за счет хмеля количество их увеличилось только на 80 мг/л, Из солода дубильных веществ переходит в сусло больше, чем из хмеля. Общепринятым считается, что дубильные вещества хмеля способствуют выделению белковых веществ, Работы Шустера и Рааба показали, что в сусле как до кипячения, так и после кипячения без хмеля содержалось, примерно одинаковое количество дубильных веществ (365,1 и 363,9 мг/л), в то время как количество азотистых веществ снизилось от 803 до 760 мг/л. Это может указывать на то, что коагуляция белков при кипячении сусла происходит без участия дубильных веществ.
Однако непродолжительное кипячение сусла перед добавлением в него хмеля, применяемое на некоторых заводах, позволяет получить пиво с более чистым вкусом.
Дубильные вещества хмеля и оболочки ячменя имеют разный характер. По-видимому, дубильные вещества хмеля оказывают большое влияние на образование вкуса нива. Характерные свойства своего пива чешские исследователи связывают с наличием в сортах чешского хмеля больших количеств дубильных веществ по сравнению с хмелем других стран и с определенным соотношением отдельных фракций этих веществ.
Танины являются химически нестойкими веществами и при окислении конденсируются во флобафены, которые по существующему в пивоварении мнению образуют с белками сусла комплексы, нерастворимые как в горячем состоянии, так и при охлаждении. Соединения же дубильных веществ с белками не склонны к коагуляции в горячем состоянии и поэтому не выпадают в горячем сусле, но при охлаждении частично выпадают и обусловливают помутнение охлажденного сусла. Так как происходит только частичное выпадение, то некоторое количество их попадает и пиво.
При окислении дубильных веществ образуются соединения, подобные флобафенам, что является одной из причин появления коллоидной мути пива. Так как вещества этой мути способны образовывать в дальнейшем хлопьевидный осадок, окрашенный и коричневый цвет, то можно предполагать, что одной из составных частей этого осадка является флобафен.
Как известно, полифенолы, и в частности танины, подобно пиррогаллолу обладают свойством легко соединяться с атмосферным кислородом к образовывать тем неокрашенные вещества. Примесь этих веществ к белковым соединениям, вероятно, вызывает потемнение последних, особенно при экспозиции на воздухе.
Важным фактором для выделения белка из сусла является интенсивность кипячения.
Антоцианидины, содержащиеся в хмеле, переходят в сусло и переносят кипячение, однако обычно общее количество их в сусле не увеличивается, так как антоцианогены адсорбируются частично белками, выделяющимися при кипячении. Количество антоцианогенов, поступающих в сусло, примерно составляет 1/12-1/6 того количества, которое выделяется из солода и несоложеного ячменя.
Вещества сусла, находящиеся на поверхности, играют особо важную роль з образовании осадка. Самопроизвольное стремление к уменьшению поверхностного натяжения на границе раздела сусло - воздух вызывает быструю миграцию на поверхность частиц белков, являющихся поверхностно-активными веществами. Концентрация их в поверхностном слое увеличивается, и возможность столкновения одной частицы с другой становится гораздо больше, чем в глубоких слоях. На пленке, окружающей пузырек пара, молекулы белка конденсируются, агглютинируют и при лопания пузырьков белки выделяются в виде крупных нерастворимых агрегатов, которые в дальнейшем выпадают в осадок. Поэтому интенсивное кипячение сусла в сусловарочном котле всегда благоприятствует образованию хорошего бруха и уменьшает возможность помутнения пива в дальнейшем.
Хмелевые шишки содержат ряд макро- и микроэлементов, среди которых алюминий занимает первое место; медь, железо и цинк находятся в меньшем количестве. Содержание микроэлементов очень небольшое. Все они в какой-то мере оказывают свое влияние на коагуляцию белков при кипячении сусла. А.В. Андрющенко и Г.И. Фертман, исследуя состав белкового коагулянта после кипячения сусла, установили, что особо важное значение в указанном процессе имеют железо и цинк, значительно меньшее - хром и олово.