Биографии Характеристики Анализ

Дифференцированные уравнения с общими и частными решениями. Дифференциальные уравнения для "чайников"


Эта статья является отправной точкой в изучении теории дифференциальных уравнений. Здесь собраны основные определения и понятия, которые будут постоянно фигурировать в тексте. Для лучшего усвоения и понимания определения снабжены примерами.

Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала.

Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных .

Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения .


Вот примеры ОДУ первого, второго и пятого порядков соответственно

В качестве примеров уравнений в частных производных второго порядка приведем

Далее мы будем рассматривать только обыкновенные дифференциальные уравнения n-ого порядка вида или , где Ф(x, y) = 0 неизвестная функция, заданная неявно (когда возможно, будем ее записывать в явном представлении y = f(x) ).

Процесс нахождения решений дифференциального уравнения называется интегрированием дифференциального уравнения .

Решение дифференциального уравнения - это неявно заданная функция Ф(x, y) = 0 (в некоторых случаях функцию y можно выразить через аргумент x явно), которая обращает дифференциальное уравнение в тождество.

ОБРАТИТЕ ВНИМАНИЕ.

Решение дифференциального уравнения всегда ищется на заранее заданном интервале X .

Почему мы об этом говорим отдельно? Да потому что в условиях многих задач об интервале X не упоминают. То есть, обычно условие задач формулируется так: «найдите решение обыкновенного дифференциального уравнения ». В этом случае подразумевается, что решение следует искать для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Решение дифференциального уравнения часто называют интегралом дифференциального уравнения .

Функции или можно назвать решением дифференциального уравнения .

Одним из решений дифференциального уравнения является функция . Действительно, подставив эту функцию в исходное уравнение, получим тождество . Несложно заметить, что другим решением этого ОДУ является, например, . Таким образом, дифференциальные уравнения могут иметь множество решений.


Общее решение дифференциального уравнения – это множество решений, содержащее все без исключения решения этого дифференциального уравнения.

Общее решение дифференциального уравнения еще называют общим интегралом дифференциального уравнения .

Вернемся к примеру. Общее решение дифференциального уравнения имеет вид или , где C – произвольная постоянная. Выше мы указали два решения этого ОДУ, которые получаются из общего интеграла дифференциального уравнения при подстановке С = 0 и C = 1 соответственно.

Если решение дифференциального уравнения удовлетворяет изначально заданным дополнительным условиям, то его называют частным решением дифференциального уравнения .

Частным решением дифференциального уравнения , удовлетворяющим условию y(1)=1 , является . Действительно, и .

Основными задачами теории дифференциальных уравнений являются задачи Коши, краевые задачи и задачи нахождения общего решения дифференциального уравнения на каком-либо заданном интервале X .

Задача Коши – это задача нахождения частного решения дифференциального уравнения, удовлетворяющего заданным начальным условиям , где - числа.

Краевая задача – это задача нахождения частного решения дифференциального уравнения второго порядка, удовлетворяющего дополнительным условиям в граничных точках x 0 и x 1 :
f (x 0) = f 0 , f (x 1) = f 1 , где f 0 и f 1 - заданные числа.

Краевую задачу часто называют граничной задачей .

Обыкновенное дифференциальное уравнение n-ого порядка называется линейным , если оно имеет вид , а коэффициенты есть непрерывные функции аргумента x на интервале интегрирования.

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными . Это уравнения, связывающие независимые переменные , неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово "обыкновенные".

Примеры дифференциальных уравнений:

(1) ;

(3) ;

(4) ;

Уравнение (1) - четвёртого порядка, уравнение (2) - третьего порядка, уравнения (3) и (4) - второго порядка, уравнение (5) - первого порядка.

Дифференциальное уравнение n -го порядка не обязательно должно содержать явно функцию, все её производные от первого до n -го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Например, в уравнении (1) явно нет производных третьего и второго порядков, а также функции; в уравнении (2) - производной второго порядка и функции; в уравнении (4) - независимой переменной; в уравнении (5) - функции. Только в уравнении (3) содержатся явно все производные, функция и независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x) , при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием .

Пример 1. Найти решение дифференциального уравнения .

Решение. Запишем данное уравнение в виде . Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления , есть первообразная для , т. е.

Это и есть решение данного дифференциального уравнения . Меняя в нём C , будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n -го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения и частное решение при .

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

,

.

В результате мы получили общее решение -

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

.

Если кроме дифференциального уравнения задано начальное условие в виде , то такая задача называется задачей Коши . В общее решение уравнения подставляют значения и и находят значение произвольной постоянной C , а затем частное решение уравнения при найденном значении C . Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии .

Решение. Подставим в общее решение значения из начального условия y = 3, x = 1. Получаем

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных , в том числе сложных функций . Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения .

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

.

Применяем метод интегрирования заменой переменной (подстановкой) . Пусть , тогда .

Требуется взять dx и теперь - внимание - делаем это по правилам дифференцирования сложной функции , так как x и есть сложная функция ("яблоко" - извлечение квадратного корня или, что то же самое - возведение в степень "одна вторая", а "фарш" - самое выражение под корнем):

Находим интеграл:

Возвращаясь к переменной x , получаем:

.

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x . Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.

Решение дифференциальных уравнений. Благодаря нашему онлайн сервису вам доступно решение дифференциальных уравнений любого вида и сложности: неоднородные, однородные, нелинейные, линейные, первого, второго порядка, с разделяющимися переменными или не разделяющимися и т.д. Вы получаете решение дифференциальных уравнений в аналитическом виде с подробным описанием. Многие интересуются: зачем необходимо решать дифференциальные уравнения онлайн? Данный вид уравнений очень распространён в математике и физике, где решить многие задачи без вычисления дифференциального уравнения будет невозможно. Также дифференциальные уравнения распространены в экономике, медицине, биологии, химии и других науках. Решение же такого уравнения в онлайн режиме значительно облегчает вам поставленные задачи, дает возможность лучше усвоить материал и проверить себя. Преимущества решения дифференциальных уравнений онлайн. Современный математический сервис сайт позволяет решать дифференциальные уравнения онлайн любой сложности. Как вы знаете, существует большое количество видов дифференциальных уравнений и для каждого из них предусмотрены свои способы решения. На нашем сервисе вы можете найти решение дифференциальных уравнений любого порядка и вида в онлайн режиме. Для получения решения мы предлагаем вам заполнить исходные данные и нажать кнопку «Решение». Ошибки в работе сервиса исключены, поэтому вы можете на 100% быть уверены, что получили верный ответ. Решайте дифференциальные уравнения вместе с нашим сервисом. Решить дифференциальные уравнения онлайн. По умолчанию в таком уравнении функция y – это функция от x переменной. Но вы можете задавать и свое обозначение переменной. Например, если вы укажете в дифференциальном уравнении y(t), то наш сервис автоматически определит, что у является функцией от t переменной. Порядок всего дифференциального уравнения будет зависеть от максимального порядка производной функции, присутствующей в уравнении. Решить такое уравнение – означает найти искомую функцию. Решить дифференциальные уравнения онлайн вам поможет наш сервис. Для решения уравнения от вас не потребуется много усилий. Необходимо лишь ввести в нужные поля левую и правую части вашего уравнения и нажать кнопку «Решение». При вводе производную от функции необходимо обозначать через апостроф. Через считанные секунды вы получите готовое подробное решение дифференциального уравнения. Наш сервис абсолютно бесплатный. Дифференциальные уравнения с разделяющимися переменными. Если в дифференциальном уравнении в левой части находится выражение, зависящее от y, а правой части – выражение, которое зависит от x, то такое дифференциальное уравнение называется с разделяющимися переменными. В левой части может быть производная от y, решение дифференциальных уравнений такого вида будет в виде функции y, выраженной через интеграл от правой части уравнения. Если же в левой части будет дифференциал функции от y, то в таком случае интегрируются обе части уравнения. Когда переменные в дифференциальном уравнении не разделены, то их потребуется разделить, чтобы получить дифференциальное уравнение с разделенными переменными. Линейное дифференциальное уравнение. Линейным называется дифференциальное уравнение, у которого функция и все ее производные находятся в первой степени. Общий вид уравнения: y’+a1(x)y=f(x). f(x) и a1(x) – это непрерывные функции от x. Решение дифференциальных уравнений такого типа сводится к интегрированию двух дифференциальных уравнений с разделенными переменными. Порядок дифференциального уравнения. Дифференциальное уравнение может быть первого, второго, n-го порядка. Порядок дифференциального уравнения определяет порядок старшей производной, которая содержится в нем. В нашем сервисе вы можете решить дифференциальные уравнения онлайн первого, второго, третьего и т.д. порядка. Решением уравнения будет любая функция y=f(x), подставив которую в уравнение, вы получите тождество. Процесс поиска решения дифференциального уравнения называют интегрированием. Задача Коши. Если помимо самого дифференциального уравнения задается первоначальное условие y(x0)=y0, то это называется задачей Коши. В решение уравнения добавляются показатели y0 и x0 и определяют значение произвольной константы C, а потом частное решение уравнения при этом значении C. Это и является решением задачи Коши. Еще задачу Коши называют задачей с граничными условиями, что очень распространено в физике и механике. Также у вас есть возможность задать задачу Коши, то есть из всех возможных решений уравнения выбрать частное, которое отвечает заданным первоначальным условиям.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":