Биографии Характеристики Анализ

Этапы выделения чистой культуры аэробов микробиология. Физиология микроорганизмов: культуральные свойства бактерий, выделение чистых культур микроорганизмов

Культивирование микроорганизмов, помимо состава питательной сре-ды, зависит от физических и химических факторов (температура, кислотность, аэрация, свет и т. д.). При этом количественные показатели каждого из них неодинаковы и определяются особенностями метаболиз-ма каждой группы бактерий. Существуют методы культивирования мик-роорганизмов на твердых и в жидких питательных средах в аэробных, анаэробных и других условиях.

Методы выделения чистых культур аэробных микроорганизмов. Для того, чтобы получить изолированные колонии, при нанесении материал распределяют так, чтобы клетки бактерий были удалены друг от друга. Для получения чистой культуры используют две основные группы методов:

а) мето-ды, основанные на принципе механического разделения микроорганизмов;

б) методы, основанные на биологиче-ских свойствах микроорганизмов.

Методы, основанные на принципе механического разде-ления микроорганизмов

Рассев шпателем по Дригальскому . Берут 3 чашки Петри с питательной средой. На 1-ю чашку петлей или пипеткой наносят кап-лю исследуемого материала и растирают шпателем по всей поверхности питательного агара. Затем шпатель пе-реносят во 2-ю чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды. Далее шпа-тель переносят в 3-ю чашку и аналогичным образом про-изводят посев. На 1-й чашке вырастает максимальное количество колоний, на 3-й - минимальное. В зависимо-сти от содержания микробных клеток в исследуемом ма-териале на одной из чашек вырастают отдельные коло-нии, пригодные для выделения чистой культуры микро-организма.

Метод Пастера (метод разведений). Из исследуемого материала готовят ряд последовательных, чаще десятикратных серийных разведений в жидкой стерильной среде или физиологическом растворе в пробирках. Далее высевают материал газоном по 0,5 мл из каждой пробирки. Предполагают, что в какой-то из пробирок останется количество микроорганизмов, поддающихся подсчету при высеве на пластинчатые среды. Этот метод дает возможность подсчитать микробное число в исследуемом материале. (Микробное число — количество колоний на последней чашке с ростом микроорганизмов, умноженное на степень разведения материала).

Рассев петлей (посев штрихами). Берут одну чашку Петри с питательным агаром и делят ее на 4 сектора, проводя разграничительные линии на внешней стороне дна чашки. Исследуемый ма-териал петлей вносят в первый сектор и проводят ею па-раллельные линии по всему сектору на расстоянии одна от другой около 5 мм. Этой же петлей, не изменяя ее положения по отношению к агару, проводят такие же линии на других секторах чашки. В том месте, где на агар попало большое количество микробных клеток, рост микроорганизмов будет в виде сплошного штриха. На секторах с небольшим количеством клеток вырастают отдельные колонии. Кроме того, можно наливать разведен-ные растворы смешанной культуры на поверхность твер-дых сред в чашках.

Метод фильтрации. Основан на пропускании исследуемого материала через специальные фильтры с определенным диаметром пор и разделении содержа-щихся микроорганизмов по величине. Этот метод при-меняется главным образом для очистки вирусов от бак-терий, а также при получении фагов и токсинов (в фильтрате — чистый фаг, очищенный токсин).

Методы, основанные на биологических свойствах мик-роорганизмов

Создание оптимальных условий для размножения

  • Создание оптимального температурного режима для избирательного подавления размножения сопутствующей микрофлоры при низкой температуре и получения культур психрофильных или термофильных бактерий. Большинство микробов неплохо развиваются при 35-37°С, иерсинии хорошо растут при 22°С, лептоспиры культивируют при 30°С. Термофильные бактерии растут при температурах, лежащих за пределами температурных режимов прочих сопутствующих видов бактерий (так, кампилобактер культивируют при 42°С).
  • Создание условий для аэробиоза или анаэробиоза. Большинство микроорганизмов хорошо растут в присутствии атмосферного кислорода. Облигатные анаэробы растут в условиях, исключающих присутствие атмосферного кислорода (возбудители столбняка, ботулизма, бифидумбактерии, бактероиды и др.). Микроаэрофильные микроорганизмы растут только при низком содержании кислорода и повышенном содержании СО2 (кампилобактер, геликобактер).
  • Метод обогащения. Исследуемый материал за-севают на элективные питательные среды, способствую-щие росту определенного вида микроорганизмов.

Методы выделения чистых культур микроорганизмов

Метод Пастера (метод предельных разведений). Заключается в том, что из исследуемого материала делают ряд последовательных разведений в жидкой питательной среде. Для этого каплю посевного материала вносят в пробирку со стерильной жидкой средой, из нее каплю переносят в следующую пробирку и так засевают до 8…10 пробирок. С каждым разведением количество микробных клеток, попадающих в среду, будет уменьшаться и можно получить такое разведение, в котором во всей пробирке со средой будет находиться только одна микробная клетка, из которой разовьется чистая культура микроорганизма.

Так как в жидких средах микробы растут диффузно, т.е. легко распределяются во всей среде, то изолировать одну микробную клетку от другой трудно. Таким образом, метод Пастера не всегда обеспечивает получение чистой культуры. Поэтому в настоящее время этот метод используется, главным образом, для предварительного уменьшения концентрации микроорганизмов в материале перед посевом его в плотную среду для получения изолированных колоний.

Методы механического разделения микроорганизмов с использованием плотных питательных сред. К таким методам относятся метод Коха и метод Дригальского.

Метод Коха (метод глубинного посева).

Исследуемый материал вносят бактериологической петлей или пастеровской пипеткой в пробирку с расплавленной плотной питательной средой. Равномерно размешивают содержимое пробирки, вращая ее между ладонями. Каплю разведенного материала переносят во вторую пробирку, из второй – в третью и т.д. Содержимое каждой пробирки, начиная с первой, выливают в стерильные чашки Петри. После застывания среды в чашках, их помещают в термостат для культивирования.

Для выделения анаэробных микроорганизмов по методу Коха необходимо ограничить доступ кислорода к культуре.

С этой целью поверхность глубинного посева в чашке Петри заливают стерильной смесью парафина и вазелина (1:1). Можно также оставлять посевной материал, тщательно перемешанный с агаризованной средой, непосредственно в пробирке.

Ватную пробку при этом заменяют резиновой или заливают поверхность агара смесью парафина и вазелинового масла. Чтобы извлечь выросшие колонии анаэробных микроорганизмов, пробирки слегка нагревают, быстро вращая над пламенем горелки. Агар, прилегающий к стенкам, расплавляется, и столбик легко выскальзывает в подготовленную чашку Петри. Далее столбик с агаром разрезают стерильным скальпелем, колонии извлекают стерильной петлей или стерильной капиллярной рубкой и переносят в жидкую среду.

Метод Дригальского основан на механическом разделении микробных клеток на поверхности плотной питательной среды в чашках Петри.

Каждая микробная клетка, фиксируясь в определенном месте, начинает размножаться, образуя колонию.

Для посева по методу Дригальского используют несколько чашек Петри, залитых плотной питательной средой.

На поверхность среды вносят каплю исследуемого материала.

Затем с помощью стерильного шпателя эту каплю распределяют по всей питательной среде (посев газоном).

Посев также можно проводить штрихом, используя бактериологическую петлю. Этим же шпателем или петлей осуществляют посев во вторую, третью и т.д. чашки. Как правило, в первой чашке после культивирования посева появляется рост микробов в виде сплошного налета, в последующих чашках содержание микроорганизмов снижается и образуются изолированные колонии, из которых отсевом можно легко выделить чистую культуру.

Таким образом, в первых секторах получается сплошной рост, а вдоль последующих штрихов вырастут обособленные колонии, представляющие собой потомство одной клетки.

В целях экономии сред и посуды можно пользоваться одной чашкой, разделив ее на сектора, и последовательно засевать их штрихом (метод истощающего штриха).

Для этого материал берут петлей и проводят ею ряд параллельных штрихов сначала по поверхности первого сектора, а затем последовательно оставшимися на петле клетками засевают все другие сектора.

При каждом последующем штрихе происходит уменьшение количества засеваемых клеток.

Метод выделения чистых культур с помощью химических веществ используется при изолировании культур микроорганизмов, устойчивых к определенным химическим веществам.

Например, с помощью этого метода можно выделить чистую культуру туберкулезных микобактерий, устойчивых к действию кислот, щелочей и спирта. В этом случае исследуемый материал перед посевом заливают 15 % раствором кислоты или антиформином и выдерживают в термостате в течение 3…4 часов.

После воздействия кислоты или щелочи клетки туберкулезной палочки остаются живыми, а все другие микроорганизмы, содержащиеся в исследуемом материале, погибают. После нейтрализации кислоты или щелочи обработанный материал высевают на плотную среду и получают изолированные колонии возбудителя туберкулеза.

Биологические методы выделения чистых культур патогенных микроорганизмов основаны на заражении исследуемым материалом лабораторных животных, восприимчивых к данному виду возбудителя.

Если патогенный микроорганизм содержится в исследуемом объекте, то лабораторное животное заболевает и погибает. После вскрытия павшего животного из внутренних органов делают посевы на специальные среды, на которых вырастают чистые культуры выделяемых микробов.

Предыдущая567891011121314151617181920Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Выделение чистой культуры бактерий

Чистой называют культуру, содержащую микроорганизмы одного вида и полученную как потомство одной клетки. Чистые культуры можно получить из исходной микробной клетки, изолиро-ванной при помощи микроманипулятора, или из изолированных колоний путем их пересева в отдельные пробирки с питательной средой.

Для выделения чистой культуры используют следующие методы.

1. Метод Дригалъского. При этом методе расплавленную питательную среду разливают в 3 чашки Петри. В первую чашку вносят одну каплю исследуемого материала и сте-рильным шпателем распределяют его по поверхности питательной среды. Затем шпатель переносят во вторую и далее в третью чашки, втирая в поверхность питательных сред оставшийся на нем материал.

При посеве этим методом на второй и на третьей чашках вырастают изолированные колонии. Полученные отдельные колонии пересевают в пробирки с питательной средой для получения чистой культуры микроорганизма.

2. Метод параллельных штрихов. При этом способе материал с помощью бактериологической петли распределяют по поверхности агара параллельными штрихами в одном направлении.

Затем, повернув чашку на 90°, проводят штрихи в направлении, перпендикулярном первым штрихам. При таком способе посева материал, находящийся в петле, расходу-ется постепенно, и по линиям штрихов, нанесенных в конце посева, вырастают изолированные колонии микробов.

3. Метод Коха (метод рассева в глубине среды). При этом методе в пробирку с агаром, расплавленным и остуженным до 43-45°С, вносят одну бактериологическую петлю исследуемого материала и тщательно перемешивают.

После этого из этой пробирки одну петлю материала переносят во вторую пробирку, а затем из нее – в третью пробирку. Приготовленные разведения бактерий выливают из пробирок в стериль-ные чашки Петри. После застывания среды чашки помещают в термостат. Количество колоний в чашках с питательной средой уменьшается по мере разведения материала.

Контрольные вопросы по теме занятия:

1. Характер роста бактерий в жидких, на полужидких и плотных питательных средах.

Характеристика колоний микроорганизмов.

3. Пигменты бактерий и их роль для микроорганизмов.

4. методы выделения чистых культур бактерий.

Литература для подготовки к занятию:

Основная литература:

1. Медицинская микробиология, вирусология и иммунология. Под ред. А.А.

Воробьева. М., 2004.

Дополнительная литература:

1. Л.Б. Борисов. Медицинская микробиология, вирусология, иммунология. М., 2002.

2. О.К. Поздеев. Медицинская микробиология.

М., ГЭОТАР-МЕДИА, 2005.

3. Медицинская микробиология. Справочник. Под ред. В.И. Покровского и О.К. Поздеева. М., ГЭОТАР-МЕД, 1998.

ЗАНЯТИЕ 5

ТЕМА ЗАНЯТИЯ : Ферменты бактерий. Изучение ферментативной активности микроорганизмов. Дыхание бактерий. Методы культивирования и выделения чистой культуры анаэробов.

УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ : Ознакомиться с ферментами бактерий.

Изучить методы определения ферментативной активности микроорганизмов. Ознакомиться с процессами дыхания бактерий. Изучить методы культивирования и выделения чистой культуры анаэробов.

ЗАДАЧИ ЗАНЯТИЯ :

1. Ознакомиться с ферментами бактерий.

Изучить методы определения ферментативной активности микроорганизмов.

3. Ознакомиться с процессами дыхания бактерий.

4. Изучить методы культивирования и выделения чистой культуры анаэробов.

Ферменты бактерий

Все биохимические процессы в клетке микро-организмов, связанные с метаболизмом, ростом и размножением, совершаются при участии ферментов (энзимов).

Ферменты синтезируются самой микробной клеткой, и имеют сложное строение. Они представляют собой либо только белок с высокой молекулярной массой (трипсин, пепсин и др.), либо состоят из белка (апофермента), связанного с кофактором (коферментом). Кофермент может быть низкомолекулярным неорганическим (металл) или органическим ве-ществом.

Классификация ферментов основана на типах реакций, которые они катализируют.

Все ферменты делятся на шесть классов:

1). Оксидоредуктазы — ферменты переноса электронов. Эти ферменты катализируют окис-лительно-восстановительные реакции. К ним отно-сятся дегидрогеназы (НАД, НАДФ, ФАД), каталаза, цитохромы.

Трансферазы — ферменты переноса групп между молекулами от одних соединений к другим. К ним относятся ацетилтрансфераза, фосфотрансфераза, аминотрансфераза.

3). Гидролазы — ферменты переноса функциональных групп с участием воды. К этому классу ферментов относятся пептидгидролазы, глюкозидаза, амилазы, эстеразы, липаза, фосфатаза.

4). Лиазы — ферменты, отщепляющие или присоединяющие без участия воды различные соединения с двойной связью.

К этим ферментам относятся пируватдекарбоксилаза, альдолаза.

5). Изомеразы — ферменты, переносящие группы внутри молекул с образованием изомерных форм. К этим ферментам относятся триизофосфатизомераза, глюкозофосфатизомераза.

Лигазы (синтетазы) — ферменты, объединяющие две молекулы с одновременным разрывом фосфатных связей с использованием энергии АТФ. К лигазам относятся ферменты, катализирующие синтез сложных органических веществ из простых соединений (аспарагинсинтетаза, кокарбоксилазы).

Активность ферментов измеряют в международных еди-ницах (ME). 1 ME соответствует количеству ферментов, пре-вращающему один микромоль субстрата в 1 минуту в стандарт-ных условиях.

У бактерий различают эндоферменты и экзоферменты.

Эндоферменты находятся внутри бактериальной клетки, катализиру-ют внутриклеточные процессы обмена веществ. Экзоферменты выделяются во вне-шнюю среду и выполняют функцию расщепления сложных питательных веществ.

Ферменты агрессии. У патогенных бактерий имеется особая группа экзоферментов, которые называются ферментами агрессии . Они выполняют функции облегчения проникновения и распространения бактерий в тканях организма хозяина и ослабления его защитных свойств.

К ферментам агрессии относятся: гиалуронидаза, нейраминидаза, коллагеназа, протеазы, фибринолизин, гемолизин, лейкоцидин.

Конститутивные и индуцибельные ферменты. Ферменты, которые синтезируются клеткой с постоянной скоростью, независимо от наличия субстрата в среде называются конститутивными . Индуцибельные (адаптивные) ферменты образуются только в присутствии соответствующего субстрата в сре-де.

Например, фермент бета-галактозидаза начинает синтезироваться только при добавлении в питательную среду углевода лактозы, которую этот фермент расщепляет с образованием глюкозы и галактозы.

Методы определения ферментативной активности микробов

Обязательным условием идентификации выделенной чистой культуры бактерий является определение ферментативной активности в отношении углеводов и белков (биохимический «паспорт» вида).

Для выявления ферментов, расщепляющих углеводы (сахаролитические ферменты) используют дифференциально-диагностические среды Гисса.

В состав сред Гисса входит пептонная вода, индикатор рН, поплавок для улавливания газа и один из углеводов (глюкоза, лактоза, мальтоза, маннит, сахароза, крахмал и т.д.). Если бактерии расщепляют углевод, то образуется кислота и при этом меняется цвет среды за счет находящегося в ней индикатора рН. Большинство патогенных бактерий расщепляют углеводы с образованием только кислоты; некоторые виды ферментируют углеводы с образование кислоты и газа (СО2).

При этом меняется цвет среды и в поплавке появляется пузырек газа.

Протеолитическая активность бактерий. Показателями глубокого расщепления белка является образование индола, аммиака, сероводорода. Для выявления этих газообразных веществ делают посевы чистой культуры бактерий на мясо-пептонный бульон или пептонную воду в пробирки со специальными бумажными индикаторами.

При наличии продуктов расщепления меняется цвет соответствующего индикатора.

Протеолитическую активность бактерий определяют также путем посева чистой культуры уколом в столбик желатина по наличию и характеру разжижения среды, например, в виде перевернутой елочки, гвоздя, воронки и т.д.

Энергетический метаболизм

Это совокупность биохимических реакций, результатом которых является образование (накопление энергии) и расщепление (расход энергии) макроэргических связей в молекулах АТФ.

У бактерий АТФ может синтезироваться в результате процессов брожения и дыхания.

Брожение. Более древний, низкоэффективный способ получения энергии, при котором в результате расщепления молекулы глюкозы образуется 2 молекулы АТФ. Конечными продуктами брожения являются СО2, вода, спирты и органические кислоты.

Процесс происходит без участия кислорода.

Дыханием называют процесс окислительного фосфорилирования углеводов с образованием молекул АТФ, СО2 и воды. При распаде одной молекулы глюкозы высвобождаются 12 электронов, которые проходят через цепь дыхательных ферментов, отдавая энергию для синтеза 36 молекул АТФ. Освобождение дыхательной цепи от электронов осуществляют вещества, называемые акцепторами электронов .

К таким веществам относится кислород, сульфаты, нитраты, карбонаты. Если конечным акцептором электронов служит мо-лекулярный кислород, дыхание называют аэробным . В случае конечной акцепции электронов другими соединениями дыхание называют анаэробным .

По типу дыхания бактерии классифицируют на че-тыре основные группы:

1. Облигатные (строгие) аэробы растут при свободном доступе кислорода (возбудитель ту-беркулеза).

Микроаэрофилы растут при низкой (до 1%) концентрации кислорода и повышенной концентрации углекислого газа (гемофильная палочка).

Факультативные анаэробы могут расти как в присутствии кислорода, так и в анаэробных условиях (кишечная палочка).

4. Облигатные (строгие) анаэробы могут расти только при пол-ном отсутствии кислорода в окружающей среде (возбудители столбняка, ботулизма, газовой гангрены).

Читайте также:

Выделение чистых культур микроорганизмов

Чистой культурой называют такую культуру, которая содержит микроорганизмы одного вида. Выделение чистых культур бактерий – обязательный этап бактериологического исследования в лабораторной диагностике инфекционных болезней, в изучении микробной загрязненности различных объектов окружающей среды, и, в целом, при любой работе с микроорганизмами.

Исследуемый материал (гной, мокрота, фекалии, кровь и другой материал от больных; вода, почва, воздух, пищевые продукты, трупы животных и человека, переносчики) обычно содержит ассоциации микробов.

Выделение чистой культуры позволяет изучить морфологические, культуральные, биохимические, антигенные и другие признаки, по совокупности которых определяется видовая и типовая принадлежность возбудителя, то есть производится его идентификация.

Для выделения чистых культур микроорганизмов используют методы, которые можно разделить на несколько групп.

Метод Пастера – последовательное разведение исследуемого материала в жидкой питательной среде до концентрации одной клетки в объеме (имеет историческое значение).

2. Метод Коха («пластинчатые разводки») – последовательное разведение исследуемого материала в расплавленном агаре (температура 48-500С), с последующим разливом в чашки Петри, где агар застывает.

Высевы делают, как правило, из трех-четырех последних разведений, где бактерий становится мало и, в дальнейшем, при росте на чашках Петри появляются изолированные колонии, образующиеся из одной исходной материнской клетки. Из изолированных колоний в глубине агара получают чистую культуру бактерий пересевом на свежие среды.

Метод Шукевича – применяется для получения чистой культуры протея и других микроорганизмов обладающих «ползущим» ростом. Посев исследуемого материала производят в конденсационную воду у основания скошенного агара. Подвижные микробы (протей) способны подниматься вверх по скошенному агару, неподвижные формы остаются расти внизу на месте посева.

Пересевая верхние края культуры можно получить чистую культуру.

4. Метод Дригальского – широко применяется в бактериологической практике, при этом исследуемый материал разводят в пробирке стерильным физиологическим раствором или бульоном.

Одну каплю материала вносят в первую чашку и стерильным стеклянным шпателем распределяют по поверхности среды. Затем этим же шпателем (не прожигая его в пламени горелки) делают такой же посев во второй и третьей чашках. С каждым посевом бактерий на шпателе остается все меньше и меньше и, при посеве на третью чашку, бактерии будут распределяться по поверхности питательной среды отдельно друг от друга.

Через 1-7 сут выдерживания чашек в термостате (в зависимости от скорости роста микроорганизмов) на третьей чашке каждая бактерия дает клон клеток, образуя изолированную колонию, которую пересевают на скошенный агар с целью накопления чистой культуры.

5. Метод Вейнберга. Особые трудности возникают при выделении чистых культур облигатных анаэробов.

Если контакт с молекулярным кислородом не вызывает сразу же гибели клеток, то посев производят по методу Дригальского, но после этого чашки сразу помещают в анаэростат. Однако чаще пользуются методом разведения. Сущность его заключается в том, что разведения исследуемого материала проводят в расплавленной и охлажденной до 45-500С агаризированной питательной среде. Делают 6-10 последовательных разведений, затем среду в пробирках быстро охлаждают и заливают поверхность слоем смеси парафина и вазелинового масла, чтобы помешать проникновению воздуха в толщу питательной среды.

Иногда питательную среду после посева и перемешивания переносят в стерильные трубки Бурри или капиллярные пипетки Пастера, концы которых запаивают. При удачном разведении в пробирках, трубках Бурри, пипетках Пастера вырастают изолированные колонии анаэробов.

Чтобы изолированные колонии хорошо были видны, используют осветленные питательные среды. Для извлечения изолированных колоний анаэробов, пробирку слегка нагревают, вращая ее над пламенем, при этом агар, прилегающий к стенкам, плавится и содержимое пробирки в виде агарового столбика выскальзывает в стерильную чашку Петри.

Столбик агара разрезают стерильным пинцетом и извлекают колонии петлей. Извлеченные колонии помещают в жидкую среду, благоприятную для развития выделяемых микроорганизмов (например, среду Китта-Тароцци). Агаризированную среду из трубки Бурри выдувают, пропуская газ через ватную пробку.

6. Метод Хангейта – когда хотят получить изолированные колонии бактерий с особенно высокой чувствительностью к кислороду (строгие аэробы) используют метод вращающихся пробирок Хангейта.

Для этого расплавленную агаризированную среду засевают бактериями при постоянном токе через пробирку инертного газа, освобожденного от примеси кислорода. Затем пробирку закрывают резиновой пробкой и помещают горизонтально в зажим, вращающий пробирку, среда при этом равномерно распределяется по стенкам пробирки и застывает тонким слоем. Применение тонкого слоя в пробирке, заполненной газовой смесью, позволяет получить изолированные колонии, хорошо видимые невооруженным глазом.

Выделение отдельных клеток с помощью микроманипулятора . Микроманипулятор – прибор, позволяющий с помощью специальной микропипетки или микропетли извлекать одну клетку из суспензии. Эту операцию контролируют под микроскопом. На предметном столике микроскопа устанавливают влажную камеру, в которую помещают препарат «висячая капля».

В держателях операционных штативов закрепляют микропипетки (микропетли), перемещение которых в поле зрения микроскопа осуществляется с микронной точностью благодаря системе винтов и рычагов.

Исследователь, глядя в микроскоп, извлекает отдельные клетки микропипетками и переносит их в пробирки со стерильной жидкой средой для получения клона клеток.

Предыдущая17181920212223242526272829303132Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Методы выделения чистых культур аэробных бактерий

а) Метод Пастера – имеет историческое значение, предусматривает последовательное разведение исследуемого материала в жидкой питательной среде методом переката

б) Метод Коха – метод пластинчатых разводок – основан на последовательном разведении исследуемого материала мясо-пептонным агаром с последующей разливкой пробирок с разведенным материалом в чашки Петри

в) Метод Дригальского – при посеве материала, обильно обсемененного микрофлорой, используют 2–3 чашки для последовательного посева шпателем.

г) Посев петлей параллельными штрихами .

Биологические методы основаны на биологических свойствах возбудителей.

а) Биологический – заражение высокочувствительных животных, где микробы быстро размножаются и накапливаются.

В одних случаях, этот метод является единственным, позволяющим вы-делить культуру возбудителя от больного человека (например, при туляремии),в других случаях – он более чувствителен (например, выделение пневмококка на белых мышах или воз-будителя туберкулеза на морских свинках).

б) Химический – основан на кислотоустойчивости микобактерий. Для освобождения материала от сопутствующей флоры, его
обрабатывают раствором кислоты.

Вырастут только туберкулезные палочки, так как кислотоподатливые микробы погибли под действием кислоты.

в) Физический метод основан на устойчивости спор к нагреванию. Для выделения культуры спорообразующих бактерий из
смеси материал прогревают при 80°С и засевают на питательную среду. Вырастут только споровые бактерии, так как споры их остались живыми и дали рост.

г) Метод Щукевича – основан на высокой подвижности вуль-гарного протея, способного давать ползучий рост.

Методика пересева из колоний на скошенный агар и МПБ:

а) Пересев из колоний на скошенный агар

Приоткрывают крышку чашки, прокаленной остуженной петлей снимают часть отдельной колонии, открывают пробирку со стерильным скошенным агаром, держа ее в левой руке в наклонном положении, так, чтобы можно было наблюдать поверхность среды.

Переносят петлю с культурой в пробирку, не прикасаясь к стенкам, растирают по питательной среде, скользя по поверхности от одного края пробирки к другому, поднимая штрихи до верхушки среды – посев штрихом. Пробирку закрывают и, не выпуская из рук, подписывают название посеянного микроба и дату посева.

б) Пересев из колонии на мясо-пептонный бульон

Техника пересева на МПБ в основном такая же, как и при посеве на плотную среду.

При посеве на МПБ петлю с находящимся на ней материалом погружают в среду. Если материал вязкий и с петли не снимается, его растирают на стенке сосуда, а затем смывают жидкой средой. Жидкий материал, набираемый стерильной пастеровской или градуированной пипеткой, вливают в питательную среду.

В результате самостоятельной работы студент должен знать:

Методы выделения чистой культуры микроорганизмов

2. Методы культивирования микроорганизмов

Уметь:

1. Навыки соблюдения правил противоэпидемического режима и техники безопасности

Обеззараживать материал, проводить обработку рук

3. Приготовить препараты из колоний бактерий

4. Микроскопировать колоний

5. Окрашивать по Граму микроорганизмы

ЗАНЯТИЕ 8

ТЕМА.

Методы выделения чистых культур (продолжение). Ферментативная активность бактерий и методы ее изучения.

Метод Пастера (метод предельных разведений). Заключается в том, что из исследуемого материала делают ряд последовательных разведений в жидкой питательной среде. Для этого каплю посевного материала вносят в пробирку со стерильной жидкой средой, из нее каплю переносят в следующую пробирку и так засевают до 8…10 пробирок. С каждым разведением количество микробных клеток, попадающих в среду, будет уменьшаться и можно получить такое разведение, в котором во всей пробирке со средой будет находиться только одна микробная клетка, из которой разовьется чистая культура микроорганизма. Так как в жидких средах микробы растут диффузно, т.е. легко распределяются во всей среде, то изолировать одну микробную клетку от другой трудно. Таким образом, метод Пастера не всегда обеспечивает получение чистой культуры. Поэтому в настоящее время этот метод используется, главным образом, для предварительного уменьшения концентрации микроорганизмов в материале перед посевом его в плотную среду для получения изолированных колоний.

Методы механического разделения микроорганизмов с использованием плотных питательных сред. К таким методам относятся метод Коха и метод Дригальского.

Метод Коха (метод глубинного посева). Исследуемый материал вносят бактериологической петлей или пастеровской пипеткой в пробирку с расплавленной плотной питательной средой. Равномерно размешивают содержимое пробирки, вращая ее между ладонями. Каплю разведенного материала переносят во вторую пробирку, из второй – в третью и т.д. Содержимое каждой пробирки, начиная с первой, выливают в стерильные чашки Петри. После застывания среды в чашках, их помещают в термостат для культивирования.

Для выделения анаэробных микроорганизмов по методу Коха необходимо ограничить доступ кислорода к культуре. С этой целью поверхность глубинного посева в чашке Петри заливают стерильной смесью парафина и вазелина (1:1). Можно также оставлять посевной материал, тщательно перемешанный с агаризованной средой, непосредственно в пробирке. Ватную пробку при этом заменяют резиновой или заливают поверхность агара смесью парафина и вазелинового масла. Чтобы извлечь выросшие колонии анаэробных микроорганизмов, пробирки слегка нагревают, быстро вращая над пламенем горелки. Агар, прилегающий к стенкам, расплавляется, и столбик легко выскальзывает в подготовленную чашку Петри. Далее столбик с агаром разрезают стерильным скальпелем, колонии извлекают стерильной петлей или стерильной капиллярной рубкой и переносят в жидкую среду.

Метод Дригальского основан на механическом разделении микробных клеток на поверхности плотной питательной среды в чашках Петри. Каждая микробная клетка, фиксируясь в определенном месте, начинает размножаться, образуя колонию.

Для посева по методу Дригальского используют несколько чашек Петри, залитых плотной питательной средой. На поверхность среды вносят каплю исследуемого материала. Затем с помощью стерильного шпателя эту каплю распределяют по всей питательной среде (посев газоном).

Посев также можно проводить штрихом, используя бактериологическую петлю. Этим же шпателем или петлей осуществляют посев во вторую, третью и т.д. чашки. Как правило, в первой чашке после культивирования посева появляется рост микробов в виде сплошного налета, в последующих чашках содержание микроорганизмов снижается и образуются изолированные колонии, из которых отсевом можно легко выделить чистую культуру.

Таким образом, в первых секторах получается сплошной рост, а вдоль последующих штрихов вырастут обособленные колонии, представляющие собой потомство одной клетки.

В целях экономии сред и посуды можно пользоваться одной чашкой, разделив ее на сектора, и последовательно засевать их штрихом (метод истощающего штриха). Для этого материал берут петлей и проводят ею ряд параллельных штрихов сначала по поверхности первого сектора, а затем последовательно оставшимися на петле клетками засевают все другие сектора. При каждом последующем штрихе происходит уменьшение количества засеваемых клеток.

Метод выделения чистых культур с помощью химических веществ используется при изолировании культур микроорганизмов, устойчивых к определенным химическим веществам. Например, с помощью этого метода можно выделить чистую культуру туберкулезных микобактерий, устойчивых к действию кислот, щелочей и спирта. В этом случае исследуемый материал перед посевом заливают 15 % раствором кислоты или антиформином и выдерживают в термостате в течение 3…4 часов. После воздействия кислоты или щелочи клетки туберкулезной палочки остаются живыми, а все другие микроорганизмы, содержащиеся в исследуемом материале, погибают. После нейтрализации кислоты или щелочи обработанный материал высевают на плотную среду и получают изолированные колонии возбудителя туберкулеза.

широко используется для определения количе­ства жизнеспособных микроорганизмов в почве и других естественных суб­стратах. Применение его позволяет не только учесть численность микроорга­низмов, но и оценить их разнообразие по морфологии колоний.

Почвенные образцы берут с помощью стерильной ложки, исследование проводится в день взятия образцов. Сущность метода заключается в высеве исследуемой пробы почвы на плотную среду в чашки Петри и последующем подсчете выросших колоний. При этом считают, что каждая колония являет­ся результатом размножения одной клетки. Работа проводится в три приема: приготовление разведений, посев в чашки, подсчет выросших колоний.

Посев делают из разведений суспензии в зависимости от предполага- мого количества микроорганизмов в исследуемом субстрате. Разведения де­лают в стерильной водопроводной воде или изотоническом растворе хлори­стого натрия. В ходе опыта используют постоянный коэффициент разведе­ния. Чаще всего делают десятичные разведения.

Образец анализируемой почвы (1-10 г) помещают в колбу со 100 мл стерильной воды и встряхивают. Затем переносят стерильной пипеткой 1 мл исследуемого материала в пробирку с 9 мл стерильной воды. Если исследуе­мый материал уже был разведен в 100 раз, получают разведение 1:1000. Сус­пензию этого разведения тщательно перемешивают, вбирая в пипетку и вы­пуская из нее полученную взвесь. Затем этой же пипеткой берут 1 мл полу­ченного разведения и переносят его во вторую пробирку - получают разве­дение 1:10000. Таким же образом готовят и последующие разведения. Сте­пень разведения устанавливается предполагаемым количеством микроорга­низмов в образце: число разведений тем больше, чем больше микроорганиз­мов в исходном субстрате.

Посев производят на агаризованные среды в чашки Петри. Для опреде­ления суммарной численности микроорганизмов используют мясопептонный или рыбопептонный агар (МПА, РПА), для определения содержания грибов в почве - сусло-агар (СА), для определения численности различных физиоло­гических групп и санитарно-показательных микроорганизмов используют соответствующие питательные среды. В стерильные чашки Петри наливают расплавленную на водяной бане агаризованную среду, по 20-30 мл в каждую. Чашки оставляют на горизонтальной поверхности, пока не застынет агар. Стерильной пипеткой наносят определенный объем (обычно 0,1-0,5 мл) со­ответствующего разведения, предварительно тщательно перемешанного, на поверхность агаровой пластинки в чашку Петри. Данный объем распределя­ют по поверхности среды стерильным шпателем. Затем этим шпателем про­водят по всей поверхности среды во второй и третьей чашке, куда посевной материал не вносили (метод истощающего посева).

Из каждого разведения делают 4-6 параллельных высевов. При парал­лельных посевах одного разведения можно пользоваться одной стерильной пипеткой и одним шпателем. Чашки с засеянными средами помещают в тер­мостат, отрегулированный на температуру, благоприятную для развития вы­являемых организмов. Подсчет бактерий производят при культивировании с температурой 30 °С через трое суток, при комнатной температуре - через семь суток. Подсчет дрожжей и грибов - при комнатной температуре через 3­10 суток (при температуре 25 °С срок наблюдения за грибами может быть со­кращен до 2-3 дней).

Подсчитывают количество колоний, выросших в чашке Петри, и де­лают пересчет на 1 г. Результаты параллельных высевов суммируют и вы­числяют среднее число колоний, выросших при высеве из этого разведения. Колонии считают, не открывая чашки Петри.

Точность метода зависит от числа подсчитанных колоний, а не от чис­ла повторностей. Лучшим разведением считают то, при высеве из которого на плотной питательной среде от 50 до 100 колоний. Если число выросших колоний меньше 10, то эти результаты отбрасывают и для расчета количества клеток в исходном субстрате не используют. Желательно, чтобы общее коли­чество подсчитанных колоний при высеве из данного разведения было не менее 300.

Количество микроорганизмов в 1 г (1 мл) исходного субстрата вычис­ляют по формуле:

T = a x b x c / d,

где T - количество микроорганизмов в 1 г, a - количество подсчитанных ко­лоний, b - разведение, из которого произведен высев, c - 10 (если на чашки высевали 0,1 мл суспензии), d - масса субстрата (почвы), взятого для анализа

Статистическая обработка результатов возможна только при мини­мальной технической ошибке, поэтому чашечный метод требует большой чистоты и аккуратности при выполнении всех операций. Необходимо тща­тельно оберегать пипетки и среды от заражения посторонними микроорга­низмами, так как случайно попавшая клетка может завысить число микроор­ганизмов в исследуемой суспензии. Приготовление разведений и высевы следует производить в боксе.

Описанный метод применим для учета аэробов и факультативных ана­эробов. Для учета строгих анаэробов чашки Петри после посева помещают в анаэробные условия.

Экологические методы исследования почвенных микроорганизмов

Метод Коха используется для определения общего количества бактерий. В пустую стерильную чашку Петри наливают 1 мл исследуемого материала из соответствующего разведения и заливают 10 - 15 мл расплавленного и остуженного до 45 0 С МПА, смешивают с жидкостью, вращая чашку на поверхности стола.

После культивирования посевов производится подсчет колоний, выросших на поверхности и в глубине агара. Для этого чашку кладут вверх дном на черный фон, каждую сосчитанную колонию отмечают маркером по стеклу. Оценивают только те чашки, на которых выросло от 30 до 300 колоний. Если на чашке выросло более 300 колоний, а анализ нельзя повторить, то допускается подсчет колоний при сильном боковом освещении при помощи лупы и специальной пластинки с сеткой.

Подсчитывается количество колоний не менее чем в 20 квадратах площадью 1 см 2 в разных местах чашки. Рассчитывается среднее количество колоний в 1 см 2 , которое умножается на площадь чашки.

При подсчете колоний может быть использован специальный прибор счета бактерий – ПСБ.

Результат подсчета колоний в каждой чашке - количество бактерий на 1 мл (см 3) или 1 г исследуемого материала с учетом разведения. За окончательное количество бактерий принимают среднеарифметическое результатов подсчета колоний на чашках с посевом двух соседних разведений.

Пример: разведение 10 -1 - 250 колоний, разведение 10 -2 - 23 колонии.

Общее количество бактерий = 250 х 10 + 23 х 100 / 2 =2400 кое/мл = 2,4 х 10 2 кое/мл (колониеобразующих единиц на 1 мл).

Результат исследований может быть округлен до 2 - 3 значащих цифр.

Титрационный метод.

Используется для определения количества СПМ.

1-ый этап: гомогенизация материала. При необходимости приготовление суспензии с целью перевода микроорганизмов в жидкую фазу.

2-ой этап: приготовление серии разведений.

3-ий этап: посев избранных объемов исследуемого материала (100, 10, 1 мл) и его разведений по 1 мл в жидкую питательную среду. Для повышения точности метода каждый объем может параллельно засеваться в несколько порций питательной среды (двух-, трех-, пятирядный посев). Оптимальным является трехкратное повторение (достаточная достоверность при сравнительно небольшой стоимости).

4-ый этап: учет наличия роста на жидкой питательной среде и высев из положительных объемов на плотную питательную среду.

5-ый этап: идентификация микроорганизмов, выросших на плотной питательной среде. При этом учитываются культуральные свойства и при необходимости проводятся дополнительные исследования (изучение тинкториальных, морфологических, биохимических и серологических свойств).

Если использован однорядный метод, как правило, результат выражается в виде титра искомого микроорганизма, за который принимается наименьший объем (наибольшее разведение), в котором еще он был обнаружен.

Если был использован многорядный метод, учет результатов проводится с помощью специальных таблиц, позволяющих по комбинации положительных объемов, давших рост, определить титр, индекс (НВЧ).

Введение в практику анилиновых красителей

Использование в микроскопии иммерсионной системы и конденсора

Разработка метода культивирования на биологических жидкостях и плотных питательных средах

Разработка метода дробных пересевов

Открытие возбудителя сибирской язвы, холеры, туберкулеза и туберкулина

Примерно в те же годы сформировалась и успешно работала немецкая школа микробиологов во главе с РОБЕРТОМ КОХОМ (1843 - 1910). Кох начал свои исследования в то время, когда роль микроорганизмов в этиологии инфекционных заболеваний подвергалась серьезным сомнениям. Для ее доказательства требовались четкие критерии, которые были сформулированы Кохом и вошли в историю под названием «триады Генле - Коха». Суть триады заключалась в следующем:

1) предполагаемый микроб-возбудитель всегда должен обнаруживаться только при данном заболевании, не выделяться при других болезнях и от здоровых лиц;

2) микроб-возбудитель должен быть выделен в чистой культуре;

3) чистая культура данного микроба должна вызвать у экспериментальных зараженных животных заболевание с клинической и патологической картиной, аналогичной заболеванию человека.

Практика показала, что все три пункта имеют относительное значение, поскольку далеко не всегда удается выделить возбудителя болезни в чистой культуре и вызвать у подопытных животных заболевание, свойственное человеку. Кроме того, болезнетворные микроорганизмы были найдены у здоровых людей, особенно после перенесенного заболевания. Тем не менее на ранних этапах развития и формирования медицинской микробиологии, когда из организма больных выделяли многих микроорганизмов, не имеющих отношения к данной болезни, триада сыграла важную роль для установления истинного возбудителя заболевания. Исходя из своей концепции, Кох оканчательно доказал, что ранее обнаруженный у животных, больных сибирской язвой, микроорганизм отвечает требованиям триады и является истинным возбудителем данного заболевания. Попутно Кох установил способность сибиреязвенных бактерий образовывать споры.

Велика роль Коха в разработке основных методов изучения микроорганизмов. Так, он ввел в микробиологическую практику метод выделения чистых культур бактерий на твердых питательных средах, впервые использовал анилиновые красители для окраски микробных клеток и применил для их микроскопического изучения иммерсионные объективы и микрофотографирование.

В 1882 г. Кох доказал, что выделенный им микроорганизм является возбудителем туберкулеза, который был впоследствии назван палочкой Коха. В 1883 г. Кох с сотрудниками выделил возбудителя холеры - холерный вибрион (вибрион Коха).

С 1886 г. Кох полностью посвящает свои исследования поискам средств, эффективных для лечения или профилактики туберкулеза. В ходе этих исследований им был получен первый противотуберкулезный препарат - туберкулин, представляющий собой вытяжку из культуры туберкулезных бактерий. Хотя туберкулин не обладает лечебным действием, его с успехом применяют для диагностики туберкулеза.

Научная деятельность Коха получила мировое признание, и в 1905 г. ему была присуждена Нобелевская премия по медицине.

Используя методы, разработанные Кохом, французские и немецкие бактериологи открыли многие бактерии, спирохеты, и простейшие - возбудители инфекционных болезней человека и животных. Среди них возбудители гнойных и раневых инфекций: стафилококки, стрептококки, клостридии анаэробной инфекции, кишечная палочка и возбудители кишечных инфекций (брюшнотифозная и паратифозные бактерии, дизентерийные бактерии Шига), возбудитель кровяной инфекции - спирохета возвратного тифа, возбудители респираторных и многих других инфекций, в том числе вызванных простейшими (плазмодии малярии, дизентирийная амеба, лейшмании). Этот период называют «золотым веком» микробиологии.

Роль отечественных ученых в развитии микробиологической науки (И.И.Мечников, Д.И.Ивановский, Г.Н.Габричевский, С.Н.Виноградский, В.Д.Тимаков, Н.Ф.Гамалея, Л.А.Зильбер, П.Ф.Здродовский, З.В.Ермольева).

Одним из основоположников иммунологии явился И.И.МЕЧНИКОВ (1845-1916) - создатель фагоцитарной, или клеточной, теории иммунитета. В 1888 г. Мечников принял приглашение Пастера и возглавил лабораторию в его институте. Однако Мечниов не порвал тесных связей со своей родиной. Он неоднократно приезжал в Россию, а в его Парижской лаборатории работали многие русские врачи. Среди них Я.Ю.Бардах, В.А.Барыкин, А.М.Безредка, М.В.Вейнберг, Г.Н.Габричевский, В.И.Исаев, Н.Н.Клодницкий, И.Г.Савченко, Л.А.Тарасевич, В.А.Хавкин, Ц.В.Циклинская, Ф.Я.Чистович и другие, которые внесли существенный вклад в развитие отечественной и мировой микробиологии, иммунологии и патологии.

Несмотря на значительные успехи в области создания антиинфекционного иммунитета практически ничего не было известно о механизмах его развития. Поворотным моментом явилось открытие И.И. Мечникова (1845-1916), сделанное им в Мессине в 1882 г. при изучении реакции личинки морской звезды на введение в нее шипа розы. Это был тот счастливый случай, когда случайное наблюдение попало на подготовленный ум и привело И.И. Мечникова к созданию учения о фагоцитозе, воспалении и клеточном иммунитете.

В 1892 г. Мечников опубликовал свой труд «Лекции по сравнительной патологии воспаления», в котором как выдающийся мыслитель рассмотрел патологические процессы с позиций эволюционной теории. В 1901 г. появляется его новая книга «Невосприимчивость к инфекционным болезням», в которой подведены итоги многолетних исследований в области иммунитета.

Большое созидающее значение приобрела дискуссия, развернувшаяся между Мечниковым и его сторонниками с последователями гуморальной теории, видевшими в основе иммунитета действие антител. Начало учению об антителах положили работы П.Эрлиха, а затем Ж.Борде, выполненные в последнее десятилетие XIX в.

Вклад ПАУЛЯ ЭРЛИХА (1854-1915) в развитие иммунологии, так же как в становление и развитие химиотерапии, неоценим. Этот ученый впервые сформулировал понятия об активном и пассивном иммунитете и явился автором всеобъемлющей теории гуморального иммунитета, в котором объяснялось как происхождение антител, так и их взаимодействие с антигенами. Предсказанное Эрлихом существование рецепторов клеток, спецефически взаимодействующих с определенными группами антигенов, в течение многих лет подверглось уничтожающей критике. Однако она была возрождена во второй половине XX столетия в теории Бернета и на молеклярном уровне получила всеобщее признание.

И.И.Мечников одним из первых понял, сто гуморальная и фагоцитарная теории иммунитета не являются взаимоисключающими, а только дополняют друг друга. В 1908 г. Мечникову и Эрлиху совместно была присуждена Нобелевская премия за работы в области иммунологии.

Открытия Эрлиха:

1. использование в практике лечения малярии метиленового синего

2. использование трипанового красного для лечения трипаносома

3. открытие сальварсана (1907 г.)

4. разработка метода определения активности антитоксических сывороток и изучение взаимодействия антиген-антитела

5. теория гуморального иммунитета.

Конец XIX в. ознаменовался эпохальным открытием царства Vira. Первым представителем этого царства явился вирус табачной мозаики, поражающий листья табака, открытый 12 февраля 1892 г. сотрудником кафедры ботаники Петербургского университета Д.И.ИВАНОВСКИМ, вторым - вирус ящура, вызывающий одноименное заболевание у домашних животных, открытый в 1898 г. Ф.Леффлером и П.Фрошем. Однако эти открытия не могли быть в то время по достоинству оценены и остались едва замеченными на фоне блестящих успехов бактериологии.

Главой московской бактериологической школы и одним из лидеров российских бактериологов Г.Н.ГАБРИЧЕВСКИЙ (1860-1907), который в 1895 г. возглавил открытый на частные средства Бактериологический институт при Московском университете. Он работал в области специфического лечения и профилактики скарлатины, возвратного тифа. Его стрептококковая теория происхождения скарлатины в конечном итоге завоевала всеобщее признание. Габричевский является автором «Руководства к клинической бактериологии для врачей и студентов» (1893) и учебника «Медицинская бактериология», который выдержал четыре издания. Г.Н. Габричевский (1860-1907) ввел в России серотерапию, изучал механизмы невосприимчивости к возвратному тифу, дифтерии, скарлатине.

Главным центром Перербургской бактериологической школы стал Институт экспериментальной медицины. Заведующим бактериологическим отделом был утвержден С.Н.ВИНОГРАДСКИЙ, получивший мировую известность своими работами в области общей микробиологии. С помощью разработанного им метода элективных культур. Виноградский открыл серо- и железобактерии, нитрифицирующие бактерии - возбудители процесса нитрификации в почве. Он основал роль микроорганизмов в сельском хозяйстве.

В.Д. ТИМАКОВ (1905-1977) является одним из основателей учения о микоплазмах и L-формах бактерий, занимался генетикой микроорганизмов, бактериофагией, профилактикой инфекционных болезней.

В 1934 году В.Д. Тимакова пригласили в Турменский институт микробиологии и эпидемиологии, где он возглавил отдел по производству вакцин и сывороток. В республике тогда еще высокой была заболеваемость кишечными инфекциями. В.Д. Тимаков защищает кандидатскую диссертацию, посвященную профилактическим препаратам против кишечных инфекций. Свои первые исследования по изучению бактериофагов и фильтрующихся вирусов молодой ученый проводит также в Туркмении.

Под руководством В.Д. Тимакова было начато создание нового раздела медицинской микробиологии – учения об L-формах бактерий и микоплазмах. Это направление явилось логическим продолжением изучения фильтрующихся форм, с которого В.Д. Тимаков начал свою научную деятельность. За цикл исследований по выяснению роли L-форм бактерий и семейства микоплазм в инфекционных заболеваниях В.Д. Тимакову совместно с профессором Г.Я. Каган в 1974 г. была присуждена Ленинская премия.
Одно из основных направлений научной деятельности В.Д. Тимакова посвящено генетике микроорганизмов. В.Д. Тимаков считал необходимым использовать генетические пути анализа для решения медицински значимых микробиологических и эпидемиологических проблем. И в настоящее время направление работ по генетике бактерий является основным в Институте эпидемиологии и микробиологии им. Гамалея. Деятельность В.Д. Тимакова по воссозданию генетики далеко не ограничивалась проведением собственных исследований. Он сделал чрезвычайно много для воссоздания генетики в масштабах всей нашей страны.
Кроме увлеченности делом, Владимиру Дмитриевичу были присущи ясный ум, понимание жизни и смелость. Последнее качество в полной мере проявилось в его борьбе с антинаучными «великими» открытиями, наподобие тех, в которых утверждалось, что вирусы могут превращаться в бактерии.

Выдающийся русский микробиолог Н.Ф.ГАМАЛЕЯ (1859-1949), который еще в 1886 г. работал у Пастера по бешенству, совместно с Мечниковым и Бардахом основал первую в России бактериологическую станцию, где изготавливалась антирабическая вакцина и проводилась вакцинация людей против бешенства. Н.Ф.Гамалея - автор многих научных работ, посвященных бешенству, холере и другим проблемам микробиологии и иммунологии.

Л.А.ЗИЛЬБЕР (1894-1966) является основателем вирусной теории происхождения опухолей, выделил возбудителя дальневосточного клещевого энцефалита.

Успехи в изучении опухолевых антигенов воодушевляют Л.А.Зильбера на попытки противоопухолевой вакцинации, которые он начал около 1950г. вместе с 3.Л.Байдаковой и Р.М.Радзиховской на двух моделях: на опухоли Брауна-Пирс у кроликов и спонтанном раке молочной железы у мышей.

П.Ф. ЗДРОДОВСКИЙ (1890-1976) занимался проблемой риккетси- озов, малярии, бруцеллеза и регуляции иммунитета.

Зинаида Виссарионовна ЕРМОЛЬЕВА - создатель первого отечественного антибиотика. Из всех достижений научно-технического прогресса наибольшее значение для сохранения здоровья людей и увеличения продолжительности их жизни имеет, несомненно, открытие антибиотиков и в первую очередь пенициллина. Среди видных ученых нашей страны, внесших большой вклад в развитие этой области медицины, одно из ведущих мест по праву принадлежит создателю первого отечественного антибиотика, выдающемуся микробиологу, талантливому организатору здравоохранения, известному общественному деятелю, замечательному педагогу, академику АМН СССР, заслуженному деятелю науки РСФСР, лауреату Государственной премии СССР Зинаиде Виссарионовне Ермольевой. Наряду с другими учеными она стояла у истоков медицинской бактериохимии и изучения антибиотиков в нашей стране, была человеком большого организаторского таланта и неиссякаемой энергии, неутомимая деятельность которой и исключительные личные качества снискали ей всеобщее уважение и признание.

Одним из важных направлений научной деятельности Зинаиды Виссарионовны является изучение холеры. На основании глубоких, всесторонних исследований морфологии и биологии холерных и холероподобных вибрионов З. В. Ермольева предложила новый метод дифференциальной диагностики этих микроорганизмов.

В 1942 г. вышла в свет монография З. В. Ермольевой "Холера", в которой подведены итоги почти 20-летнего изучения холерного вибриона. В этой монографии были даны новые методы лабораторной диагностики, лечения и профилактики холеры.
Значительную часть своей научной работы Зинаида Виссарионовна посвятила выделению и изучению веществ, оказывающих антибактериальное действие. Первое такое вещество под названием "лизоцим" было выделено З. В. Ермольевой совместно с И. С. Буяновской еще в 1929 г. Как показали результаты дальнейших исследований, лизоцим встречается во многих тканях, как животного, так и растительного происхождения.

В 1960 г. группа ученых, возглавляемая З. В. Ермольевой, впервые в нашей стране получила противовирусный препарат интерферон. Этот препарат был применен впервые для лечения тяжелой формы гриппа в 1962 г. и как профилактическое средство. Препарат применяется и в настоящее время для профилактики гриппа и других острых респираторных вирусных инфекций, а также для лечения ряда вирусных заболеваний в глазной и кожной практике.

Более 30 лет жизни (1942-1974) Зинаида Виссарионовна посвятила изучению антибиотиков.

Имя З. В. Ермольевой неразрывно связано с созданием первого отечественного пенициллина, становлением науки об антибиотиках, с их широким применением в нашей стране. Большое число раненых в первом периоде Великой Отечественной войны требовало интенсивной разработки и немедленного введения в медицинскую практику высокоэффективных препаратов для борьбы с раневой инфекцией. Именно в это время (1942) З. В. Ермольевой и ее сотрудниками во Всесоюзном институте эпидемиологии и микробиологии был найден активный продуцент пенициллина и выделен первый отечественный пенициллин - крустозин. Уже в 1943 г. лаборатория начала готовить пенициллин для клинических испытаний.

Позже под руководством З. В. Ермольевой были созданы и внедрены в производство многие новые антибиотики и их лекарственные формы, в том числе экмолин, экмоновоциллин, бициллин, стрептомицин, тетрациклин; комбинированные препараты антибиотиков (дипасфен, эрициклин и др.). Следует подчеркнуть, что Зинаида Виссарионовна всегда активно участвовала в организации промышленного производства антибиотиков в нашей стране.