Биографии Характеристики Анализ

Fe oh 3 какое основание. Получение и свойства оснований

Основания – сложные вещества, состоящие из атома металла и одной или нескольких гидроксильных групп. Общая формула оснований Ме(ОН) n . Основания (с точки зрения теории электролитической диссоциации) – это электролиты, диссоциирующие при растворении в воде с образованием катионов металла и гидроксид-ионов ОН – .

Классификация. По растворимости в воде основания делят на щелочи (растворимые в воде основания) и нерастворимые в воде основания . Щелочи образуют щелочные и щелочно-земельные металлы, а также некоторые другие элементы-металлы. По кислотности (числу ионов О Н – , образующихся при полной диссоциации, или количеству ступеней диссоциации) основания подразделяют на однокислотные (при полной диссоциации получается один ион О Н – ; одна ступень диссоциации) и многокислотные (при полной диссоциации получается больше одного иона О Н – ; более одной ступени диссоциации). Среди многокислотных оснований различают двухкислотные (например, Sn(OH) 2 ), трехкислотные (Fe(OH) 3) и четырехкислотные (Th(OH) 4). Однокислотным является, например, основание КОН.

Выделяют группу гидроксидов, которые проявляют химическую двойственность. Они взаимодействую как с основаниями, так и с кислотами. Это амфотерные гидроксиды (см. таблицу 1) .

Таблица 1 - Амфотерные гидроксиды

Амфотерный гидроксид (основная и кислотная форма)

Кислотный остаток и его валентность

Комплексный ион

Zn(OH) 2 / H 2 ZnO 2

ZnO 2 (II)

2–

Al(OH) 3 / HAlO 2

AlO 2 (I)

– , 3–

Be(OH) 2 / H 2 BeO 2

BeO 2 (II)

2–

Sn(OH) 2 / H 2 SnO 2

SnO 2 (II)

2–

Pb(OH) 2 / H 2 PbO 2

PbO 2 (II)

2–

Fe(OH) 3 / HFeO 2

FeO 2 (I)

– , 3–

Cr(OH) 3 / HCrO 2

CrO 2 (I)

– , 3–

Физические свойства. Основания - твердые вещества различных цветов и различной растворимости в воде.

Химические свойства оснований

1) Диссоциация : КОН + n Н 2 О К + × m Н 2 О + ОН – × d Н 2 О или сокращенно: КОН К + + ОН – .

Многокислотные основания диссоциируют по нескольким ступеням (в основном диссоциация протекает по первой ступени). Например, двухкислотное основание Fe(OH) 2 диссоциирует по двум ступеням:

Fe(OH) 2 FeOH + + OH – (1 ступень);

FeOH + Fe 2+ + OH – (2 ступень).

2) Взаимодействие с индикаторами (щелочи окрашивают фиолетовый лакмус в синий цвет, метилоранж – в желтый, а фенолфталеин – в малиновый):

индикатор + ОН – (щелочь )окрашенное соединение.

3 ) Разложение с образованием оксида и воды (см. таблицу 2 ). Гидроксиды щелочных металлов устойчивы к нагреванию (плавятся без разложения). Гидроксиды щелочно-земельных и тяжелых металлов обычно легко разлагаются. Исключение составляет Ba(OH) 2 , у которого t разл достаточно высока (примерно 1000 ° C ).

Zn(OH) 2 ZnO + H 2 O .

Таблица 2 - Температуры разложения некоторых гидроксидов металлов

Гидроксид t разл , ° C Гидроксид t разл , ° C Гидроксид t разл , ° C
LiOH 925 Cd(OH) 2 130 Au(OH) 3 150
Be(OH) 2 130 Pb(OH) 2 145 Al (OH) 3 >300
Ca(OH) 2 580 Fe(OH) 2 150 Fe(OH) 3 500
Sr(OH) 2 535 Zn (OH) 2 125 Bi (OH) 3 100
Ba(OH) 2 1000 Ni (OH) 2 230 In (OH) 3 150

4 ) Взаимодействие щелочей с некоторыми металлами (например, Al и Zn ):

В растворе: 2Al + 2NaOH + 6H 2 O ® 2Na + 3H 2 ­

2Al + 2OH – + 6H 2 О ® 2 – + 3H 2 ­ .

При сплавлении: 2Al + 2NaOH + 2H 2 O 2NaAl О 2 + 3H 2 ­ .

5 ) Взаимодействие щелочей с неметаллами :

6 NaOH + 3Cl 2 5Na Cl + NaClO 3 + 3H 2 O .

6) Взаимодействие щелочей с кислотными и амфотерными оксидами :

2NaOH + СО 2 ® Na 2 CO 3 + H 2 O 2OH – + CO 2 ® CO 3 2– + H 2 O .

В растворе: 2NaOH + ZnO + H 2 O ® Na 2 2OH – + ZnO + H 2 О ® 2– .

При сплавлении с амфотерным оксидом: 2NaOH + ZnO Na 2 ZnO 2 + H 2 O .

7) Взаимодействие оснований с кислотами :

H 2 SO 4 + Ca(OH) 2 ® CaSO 4 ¯ + 2H 2 O 2H + + SO 4 2– + Ca 2+ +2OH – ® CaSO 4 ¯ + 2H 2 O

H 2 SO 4 + Zn(OH) 2 ® ZnSO 4 + 2H 2 O 2H + + Zn(OH) 2 ® Zn 2+ + 2H 2 O.

8) Взаимодействие щелочей с амфотерными гидроксидами (см. таблицу 1 ):

В растворе: 2NaOH + Zn(OH) 2 ® Na 2 2OH – + Zn(OH) 2 ® 2–

При сплавлении: 2NaOH + Zn(OH) 2 Na 2 ZnO 2 + 2H 2 O .

9 ) Взаимодействие щелочей с солями. В реакцию вступают соли, которым соответствует нерастворимое в воде основание :

CuS О 4 + 2NaOH ® Na 2 SO 4 + Cu(OH) 2 ¯ Cu 2+ + 2OH – ® Cu(OH) 2 ¯ .

Получение. Нерастворимые в воде основания получают путем взаимодействия соответствующей соли со щелочью:

2NaOH + ZnS О 4 ® Na 2 SO 4 + Zn(OH) 2 ¯ Zn 2+ + 2OH – ® Zn(OH) 2 ¯ .

Щелочи получают :

1) Взаимодействием оксида металла с водой :

Na 2 O + H 2 O ® 2NaOH CaO + H 2 O ® Ca(OH) 2 .

2) Взаимодействием щелочных и щелочно-земельных металлов с водой :

2Na + H 2 O ® 2NaOH + H 2 ­ Ca + 2H 2 O ® Ca(OH) 2 + H 2 ­ .

3) Электролизом растворов солей :

2NaCl + 2H 2 O H 2 ­ + 2NaOH + Cl 2 ­.

4 ) Обменным взаимодействием гидроксидов щелочно-земельных металлов с некоторыми солями . В ходе реакции должна обязательно получаться нерастворимая соль .

Ba(OH) 2 + Na 2 CO 3 ® 2NaOH + BaCO 3 ¯ Ba 2 + + CO 3 2 – ® BaCO 3 ¯ .

Л.А. Яковишин

Неорганические соединения, содержащие гидроксильные группы или гидроксид-анионы, связанные с атомом металла или неметалла, называются гидроксидами . В зависимости от свойств гидроксиды делят на кислотные (кислородсодержащие кислоты), основные (основания) и амфотерные, проявляющие свойства кислоты или основания в зависимости от партнера по реакции:

Таким образом, основания - это основные гидроксиды, образующие соли при взаимодействии с кислотами , например:

NaOH + HCl = NaCl + H 2 O

Амфотерные гидроксиды образуют соли при взаимодействии как с кислотами, так и с основаниями :

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O;

Al(OH) 3 + 3KOH = K 3

Амфотерные гидроксиды образуют элементы, образующие амфотерные оксиды: цинк, алюминий, хром(III) и др.

В зависимости от числа гидроксильных групп, способных нейтрализовать кислоты, основания делят на однокислотные - NaOH, двухкислотные - Ba(OH) 2 и трехкислотные, например, Cr(OH) 3 . Кроме этого выделяют в отдельные группы основания, нерастворимые в воде и щелочи - сильные основания, растворимые в воде. К щелочам относят гидроксиды щелочных и щелочноземельных металлов.

Гидроксиды называют следующим образом: гидроксид элемента(степень окисления). Для элементов, проявляющих постоянную валентность, степень окисления обычно не указывают. Примеры: NaOH - гидроксид натрия, Ba(OH) 2 - гидроксид бария, Cr(OH) 3 - гидроксид хрома(III).

Общие методы получения оснований

1. Взаимодействие щелочного или щелочноземельного металла с водой, например:

2Na + 2H 2 O = 2NaOH + H 2 

2. Взаимодействие оксидов щелочных и щелочноземельных металлов с водой:

CaO + H 2 O = Ca(OH) 2

3. Электролиз водных растворов солей щелочных или щелочноземельных металлов:

эл.ток

2NaCl + 2H 2 O = 2NaOH + H 2  + Cl 2 

катод анод

4. Нерастворимые в воде основания получают взаимодействием растворимых солей металлов с растворами щелочей:

CuCl 2 + 2NaOH = Cu(OH) 2  + 2NaCl

5. Необратимый гидролиз солей также может быть использован как метод получения малорастворимых оснований, например:

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3  + 6NaCl + 3CO 2 

Общие химические свойства оснований . Малорастворимые в воде слабые основания термически неустойчивы и при нагревании легко отщепляют воду, образуя оксид металла:

Cu(OH) 2 CuO + H 2 O

Основания, содержащие металл в промежуточной степени окисления, могут окисляться кис­лородом или другими окислителями, например:

4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Некоторые неметаллы (хлор, сера, фосфор) в водных растворах щелочей подвергаются диспропорционированию:

Cl 2 + 2KOH = KClO + KCl + H 2 O;

3S + 6KOH 2K 2 S + K 2 SO 3 + 3H 2 O

Металлы, образующие амфотерные оксиды и гидроксиды, а также кремний, растворяются в водных растворах щелочей с выделением водорода:

2Al + 6KOH + 6H 2 O = 2K 3 + 3H 2 ;

Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 

Основания, как основные гидроксиды, реагируют с кислотами и с кислотными оксидами с образованием солей:

Сa(OH) 2 + 2HCl = CaCl 2 + 2H 2 O;

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

Основания, растворимые в воде (щелочи), реагируют с солями с образованием малорастворимых гидроксидов, например:

FeCl 2 + 2NaOH = Fe(OH) 2  + 2NaCl

    Основание однородное - – естественное основание, сложенное горной породой одного вида. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Рубрика термина: Горные породы Рубрики энциклопедии: Абразивное оборудование, Абразивы,… …

    Основание - – поверхность, на которую наклеивают стеновое покрытие, например стена или потолок. [ГОСТ Р 52805 2007] Рубрика термина: Обои Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    Наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… … Энциклопедия Кольера

    Харько, Харьков (Харитон) мифический персонаж казак Харько, Харьков Имя при рождении: вероятно, Харитон … Википедия

    Неорганическая химия раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических… … Википедия

    Изучение химии в России формально ведет свое начало с учреждения в 1725 г. в СПб. Академии наук. В 1727 г. в качестве натуралиста и химика был приглашен сын тюбингенского аптекаря Иоганн Георг Гмелин, проведший почти все время своего пребывания в … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    В Викисловаре есть статья «органическая химия» Органическая химия раздел химии, изучающий со … Википедия

2. ОСНОВАНИЯ

Основания это сложные вещества, состоящие из атомов металлов и одной или нескольких гидроксогрупп (ОН -).

С точки зрения теории электролитической диссоциации это электролиты (вещества, растворы или расплавы которых проводят электрический ток), диссоциирующие в водных растворах на катионы металлов и анионы только гидроксид - ионов ОН - .

Растворимые в воде основания называются щелочами. К ним относятся основания, которые образованы металлами 1-й группы главной подгруппы (LiOH , NaOH и другие) и щелочноземельными металлами (Са (ОН) 2 , Sr (ОН) 2 , Ва (ОН) 2). Основания, образованные металлами других групп периодической системы в воде практически не растворяются. Щелочи в воде диссоциируют полностью:

NaOH ® Na + + OH - .

Многокислотные основания в воде диссоциируют ступенчато:

Ba ( OH) 2 ® BaOH + + OH - ,

Ba ( OH) + Ba 2+ + OH - .

C тупенчатой диссоциацией оснований объясняется образование основных солей.

Номенклатура оснований.

Основания называются следующим образом: сначала произносят слово «гидроксид », а затем металл, который его образует. Если металл имеет переменную валентность, то она указывается в названии.

КОН – гидроксид калия;

Ca ( OH ) 2 – гидроксид кальция;

Fe ( OH ) 2 – гидроксид железа (II );

Fe ( OH ) 3 – гидроксид железа (III );

При составлении формул оснований исходят из того, что молекула электронейтральна . Гидроксид – ион всегда имеет заряд (–1). В молекуле основания их число определяется положительным зарядом катиона металла. Гидрокогруппа заключается в круглые скобки, а выравнивающий заряды индекс ставится справа внизу за скобками:

Ca +2 (OH ) – 2 , Fe 3+( OH ) 3 - .

по следующим признакам:

1. По кислотности (по числу групп ОН - в молекуле основания): однокислотные – NaOH , KOH , многокислотные – Ca (OH ) 2 , Al (OH ) 3 .

2. По растворимости: растворимые (щелочи) – LiOH , KOH , нерастворимые – Cu (OH ) 2 , Al (OH ) 3 .

3. По силе (по степени диссоциации):

а) сильные (α = 100 %) – все растворимые основания NaOH , LiOH , Ba (OH ) 2 , малорастворимый Ca (OH ) 2 .

б) слабые (α < 100 %) – все нерастворимые основания Cu (OH ) 2 , Fe (OH ) 3 и растворимое NH 4 OH .

4. По химическим свойствам: основные – Са (ОН) 2 , Na ОН; амфотерные – Zn (ОН) 2 , Al (ОН) 3 .

Основания

Это гидроксиды щелочных и щелочноземельных металлов (и магния), а также металлов в минимальной степени окисления (если она имеет переменное значение).

Например: NaOH , LiOH , Mg ( OH ) 2 , Ca (OH ) 2 , Cr (OH ) 2 , Mn (OH ) 2 .

Получение

1. Взаимодействие активного металла с водой:

2Na + 2H 2 O → 2NaOH + H 2

Ca + 2H 2 O → Ca(OH) 2 + H 2

Mg + 2 H 2 O Mg( OH ) 2 + H 2

2. Взаимодействие основных оксидов с водой (только для щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → 2NaOH,

CaO + H 2 O → Ca(OH) 2 .

3. Промышленным способом получения щелочей является электролиз растворов солей:

2NaCI + 4H 2 O 2NaOH + 2H 2 + CI 2

4. Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:

Na 2 SO 4 + Ba (OH) 2 → 2NaOH + BaSO 4

MgSO 4 + 2NaOH → Mg(OH) 2 + Na 2 SO 4.

Физические свойства

Все основания являются твердыми веществами. В воде нерастворимы , кроме щелочей. Щелочи – это белые кристаллические вещества, мылкие на ощупь, вызывающие сильные ожоги при попадании на кожу. Поэтому они называются «едкими». При работе со щелочами необходимо соблюдать определенные правила и использовать индивидуальные средства защиты (очки, резиновые перчатки, пинцеты и др.).

Если щелочь попала на кожу необходимо промыть это место большим количеством воды до исчезновения мылкости, а затем нейтрализовать раствором борной кислоты.

Химические свойства

Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид –

ионов ОН - .

1. Изменение цвета индикаторов:

фенолфталеин – малиновый

лакмус – синий

метиловый оранжевый – желтый

2. Взаимодействие с кислотами с образованием соли и воды (реакция нейтрализации):

2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O,

Растворимое

Cu( OH) 2 + 2HCI → CuCI 2 + 2H 2 O.

Нерастворимое

3. Взаимодействие с кислотными оксидами:

2 NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействие с амфотерными оксидами и гидроксидами :

а) при плавлении:

2 NaOH + AI 2 O 3 2 NaAIO 2 + H 2 O ,

NaOH + AI(OH) 3 NaAIO 2 + 2H 2 O.

б ) в растворе :

2NaOH + AI 2 O 3 +3H 2 O → 2Na[ AI(OH) 4 ],

NaOH + AI(OH) 3 → Na.

5. Взаимодействие с некоторыми простыми веществами (амфотерными металлами, кремнием и другими):

2NaOH + Zn + 2H 2 O → Na 2 [ Zn(OH) 4 ] + H 2

2NaOH + Si + H 2 O → Na 2 SiO 3 + 2H 2

6. Взаимодействие с растворимыми солями с образованием осадков:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4 ,

Ba ( OH) 2 + K 2 SO 4 → BaSO 4 + 2KOH.

7. Малорастворимые и нерастворимые основания разлагаются при нагревании:

Ca( OH) 2 CaO + H 2 O,

Cu( OH) 2 CuO + H 2 O.

голубой цвет черный цвет

Амфотерные гидроксиды

Это гидроксиды металлов (Be (OH ) 2 , AI (OH ) 3 , Zn (OH ) 2) и металлов в промежуточной степени окисления (С r (OH ) 3, Mn (OH ) 4).

Получение

Амфотерные гидроксиды получают взаимодействием растворимых солей со щелочами взятых в недостатке или эквивалентном количестве, т.к. в избытке они растворяются:

AICI 3 + 3NaOH → AI(OH) 3 +3NaCI.

Физические свойства

Это твердые вещества, практически нерастворимые в воде. Zn ( OH ) 2 – белый, Fe (ОН) 3 – бурый цвет.

Химические свойства

Амфотерные гидроксиды проявляют свойства оснований и кислот, поэтому взаимодействуют как с кислотами, так и с основаниями.

1. Взаимодействие с кислотами с образованием соли и воды:

Zn( OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды:

AI( OH) 3 + NaOH Na,

Fe 2 (SO 4) 3 + 3H 2 O,

2Fe( OH) 3 + Na 2 O 2NaFeO 2 + 3H 2 O.

Лабораторная работа № 2

Получение и химические свойства оснований

Цель работы : ознакомиться с химическими свойствами оснований и способами их получения.

Посуда и реактивы : пробирки, спиртовка. Набор индикаторов, магниевая лента, растворы солей алюминия, железа, меди, магния; щелочь(NaOH , К OH ), дистиллированная вода.

Опыт № 1. Взаимодействие металлов с водой.

В пробирку налить 3–5 см 3 воды и опустить в нее несколько кусочков мелко нарезанной магниевой ленты. Нагреть на спиртовке 3–5 мин, охладить и добавить туда 1–2 капли раствора фенолфталеина. Как изменился цвет индикатора? Сравнить с пунктом 1 на с. 27. Написать уравнение реакции. Какие металлы взаимодействуют с водой?

Опыт № 2. Получение и свойства нерастворимых

оснований

В пробирки с разбавленными растворами солей MgCI 2, FeCI 3 , CuSO 4 (5–6 капель) внести по 6–8 капель разбавленного раствора щелочи NaOH до образования осадков. Отметить их окраску. Записать уравнения реакций.

Разделить полученный синий осадок Cu (OH ) 2 на две пробирки. В одну из них добавить 2–3 капли разбавленного раствора кислоты, в другую _ столько же щелочи. В какой пробирке наблюдалось растворение осадка? Написать уравнение реакции.

Повторить этот опыт с двумя другими гидроксидами , полученными по обменным реакциям. Отметить наблюдаемые явления, записать уравнения реакций. Сделать общий вывод о способности оснований взаимодействовать с кислотами и щелочами.

Опыт№ 3. Получение и свойства амфотерных гидроксидов

Повторить предыдущий опыт с раствором соли алюминия (AICI 3 или AI 2 (SO 4 ) 3). Наблюдать образование белого творожистого осадка гидроксида алюминия и растворение его при прибавлении как кислоты, так и щелочи. Записать уравнения реакций. Почему гидроксид алюминия обладает свойствами как кислоты, так и основания? Какие еще амфотерные гидроксиды вы знаете?

Один из классов сложных неорганических веществ - основания. Это соединения, включающие атомы металла и гидроксильную группу, которая может отщепляться при взаимодействии с другими веществами.

Строение

Основания могут содержать одну или несколько гидроксо-групп. Общая формула оснований - Ме(ОН) х. Атом металла всегда один, а количество гидроксильных групп зависит от валентности металла. При этом валентность группы ОН всегда I. Например, в соединении NaOH валентность натрия равна I, следовательно, присутствует одна гидроксильная группа. В основании Mg(OH) 2 валентность магния - II, Al(OH) 3 валентность алюминия - III.

Количество гидроксильных групп может меняться в соединениях с металлами с переменной валентностью. Например, Fe(OH) 2 и Fe(OH) 3 . В таких случаях валентность указывается в скобках после названия - гидроксид железа (II), гидроксид железа (III).

Физические свойства

Характеристика и активность основания зависит от металла. Большинство оснований - твёрдые вещества белого цвета без запаха. Однако некоторые металлы придают веществу характерную окраску. Например, CuOH имеет жёлтый цвет, Ni(OH) 2 - светло-зелёный, Fe(OH) 3 - красно-коричневый.

Рис. 1. Щёлочи в твёрдом состоянии.

Виды

Основания классифицируются по двум признакам:

  • по количеству групп ОН - однокислотные и многокислотные;
  • по растворимости в воде - щёлочи (растворимые) и нерастворимые.

Щёлочи образуются щелочными металлами - литием (Li), натрием (Na), калием (K), рубидием (Rb) и цезием (Cs). Кроме того, к активным металлам, образующим щёлочи, относят щелочноземельные металлы - кальций (Ca), стронций (Sr) и барий (Ba).

Эти элементы образуют следующие основания:

  • LiOH;
  • NaOH;
  • RbOH;
  • CsOH;
  • Ca(OH) 2 ;
  • Sr(OH) 2 ;
  • Ba(OH) 2 .

Все остальные основания, например, Mg(OH) 2 , Cu(OH) 2 , Al(OH) 3 , относятся к нерастворимым.

По-другому щёлочи называются сильными основаниями, а нерастворимые - слабыми основаниями. При электролитической диссоциации щёлочи быстро отдают гидроксильную группу и быстрее вступают в реакцию с другими веществами. Нерастворимые или слабые основания менее активные, т.к. не отдают гидроксильную группу.

Рис. 2. Классификация оснований.

Особое место в систематизации неорганических веществ занимают амфотерные гидроксиды. Они взаимодействуют и с кислотами, и с основаниями, т.е. в зависимости от условий ведут себя как щёлочь или как кислота. К ним относятся Zn(OH) 2 , Al(OH) 3 , Pb(OH) 2 , Cr(OH) 3 , Be(OH) 2 и другие основания.

Получение

Основания получают различными способами. Самый простой - взаимодействие металла с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 .

Щёлочи получают в результате взаимодействия оксида с водой:

Na 2 O + H 2 O → 2NaOH.

Нерастворимые основания получаются в результате взаимодействия щелочей с солями:

CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 .

Химические свойства

Основные химические свойства оснований описаны в таблице.

Реакции

Что образуется

Примеры

С кислотами

Соль и вода. Нерастворимые основания взаимодействуют только с растворимыми кислотами

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 +2H 2 O

Разложение при высокой температуре

Оксид металла и вода

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

С кислотными оксидами (реагируют щёлочи)

NaOH + CO 2 → NaHCO 3

С неметаллами (вступают щёлочи)

Соль и водород

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2

Обмена с солями

Гидроксид и соль

Ba(OH) 2 + Na 2 SO 4 → 2NaOH + BaSO 4 ↓

Щелочей с некоторыми металлами

Сложная соль и водород

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

С помощью индикатора проводится тест на определение класса основания. При взаимодействии с основанием лакмус становится синим, фенолфталеин - малиновым, метилоранж - жёлтым.

Рис. 3. Реакция индикаторов на основания.

Что мы узнали?

Из урока 8 класса химии узнали об особенностях, классификации и взаимодействии оснований с другими веществами. Основания - сложные вещества, состоящие из металла и гидроксильной группы ОН. Они делятся на растворимые или щёлочи и нерастворимые. Щёлочи - более агрессивные основания, быстро реагирующие с другими веществами. Основания получают при взаимодействии металла или оксида металла с водой, а также в результате реакции соли и щёлочи. Основания реагируют с кислотами, оксидами, солями, металлами и неметаллами, а также разлагаются при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 258.