Биографии Характеристики Анализ

Газовые законы. Дыхание закон Бойля –Мариотта Закон бойля мариотта имеет место при постоянных

Закон формулируется следующим образом: произведе­ние объема данной массы гaзa на его давление при неиз­менной температуре есть величина постоянная. Матема­тически этот закон можно написать так:

P 1 V 1 = P 2 V 2 или PV = const (1)

Из закона Бойля-Мариотта вытекают следствия: плот­ность и концентрация газа при постоянной температуре прямо пропорциональны давлению, под которым газ нахо­дится:

(2);
(3) ,

где d 1 – плотность, C 1 – концентрация газа под давле­нием P 1 ; d 2 и С 2 – соответствующие величины под давлением Р 2 .

Пример 1. В газовом баллоне емкостью 0,02м 3 на­ходится газ под давлением 20 атм. Какой объем займет газ, если, не изменяя его температуру, открыть вентиль баллона? Окончательное давление 1 атм.

Пример 2. Сжатый воздух подается в газгольдер (резервуар для сбора газа) объемом 10 м 3 . За какое время его накачают до давления 15 атм, если компрессор заса­сывает 5,5 м 3 атмосферного воздуха в минуту при давле­нии 1 атм. Температуру считать постоянной.

Пример 3. 112 г азота под давлением 4 атм за­нимают объем 20 литров. Какое нужно приложить давление, чтобы концентрация азота стала 0,5 моль/л при условии, что температура остается неизменной?

1.1.2 Законы Гей-Люссака и Шарля

Гей-Люссак установил, что при постоянном давлении с повышением температуры па 1°С объем данной массы газа увеличивается на 1/273 его объема при 0°С.

Математически этот закон пишется:

(4) ,

где V- объем газа при температуре t°С, a V 0 объем газа при 0°С.

Шарль показал, что давление данной массы газа при нагревании на 1С при постоянном объеме увеличивается на 1/273 того давления, которым обладает газ при 0°С. Математически этот закон записывается следующим образом:

(5) ,

где Р 0 и Р - давления газа соответственно при температурах 0С и tС.

При замене шкалы Цельсия шкалой Кельвина, связь между которыми устанавливается соотношением Т = 273 + t , формулы законов Гей-Люссака и Шарля значительно уп­рощаются.

Закон Гей-Люссака: при постоянном давлении объем дан­ной массы газа прямо пропорционален его абсолютной температуре:

(6) .

Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его aбcoлютной тем­пературе:

(7) .

Из законов Гей-Люссака и Шарля следует, что при пос­тоянном давлении плотность и концентрация газа обратно пропорциональны его абсолютной температуре:

(8) ,
(9) .

где d 1 и С 1 - плотность и концентрация газа при абсолютной температуре Т 1 , d 2 и C 2 -соответствующие величины при абсолютной температуре Т 2 .

Пример 4. Пpи 20ºC объем газа равен 20,4 мл. Какой объем займет газ при его охлаждении до 0°С, если давление остается постоянным?

Прим ep 5. При 9°С давление внутри баллона с кислородом было 94 атм. Вычислить, насколько увеличилось давление в баллоне, если температура поднялась до 27ºС?

Пример 6. Плотность газообразного хлора при 0ºС и давлении 760 мм рт. ст. равна 3,220 г/л. Найти плотность хлора, принимая его за идеальный газ, при 27ºС при тoм же давлении.

Пример 7. При нормальных условиях концентрация окиси углерода равна 0,03 кмоль/м 3 . Вычислить, при какой температуре масса 10 м 3 окиси углерода будет равна 7 кг?

Объединенный закон Бойля- Мариотта - Шарля – Гей-Люссака.

Формулировка этого закона: для данной массы газа произведение давления на объем, деленное на абсолютную температуру, постоянно при всех изменениях, происходящих с газом. Математическая запись:

(10)

где V 1 - объем и Р 1 - давление данной массы газа при абсолютной температуре Т 1 , V 2 - объем и P 2 - давление той же массы газа при аб­солютной температуре Т 2 .

Одним из важнейших применений объединенного зако­на газового состояния является „приведение объема газа к нормальным условиям".

Пример 8. Газ при 15°С и давлении 760 мм рт. ст. занимает объем 2 л. Привести объем газа к нормальным условиям.

Для облегчения подобных расчетов можно воспользоваться коэффициентами пересчета, приведенными и табли­цах.

Пример 9. В газометре над водой находится 7,4 л кислорода при температуре 23°С и давлении 781 мм рт. ст. Давление водяного пара при этой температуре равно 21 мм рт. ст. Какой объем займет находящийся в газо­метре кислород при нормальных условиях?

Изменение одного из макроскопических параметров вещества определенной массы - давления р, объема V или температуры t - вызывает изменение остальных параметров.

Если одновременно меняются все величины, характеризующие состояние газа, то на опыте трудно установить какие-либо определенные закономерности. Проще сначала изучить процессы, в которых масса и один из трех параметров - р, V или t - остаются неизменными. Количественные зависимости между двумя параметрами газа одной и той же массы при неизменном значении третьего параметра называют газовыми законами.

Закон Бойля-Мариотта

Первый газовый закон был открыт английским ученым Р. Бойлем (1627-1691) в 1660 г. Работа Бойля называлась «Новые эксперименты, касающиеся воздушной пружины». И действительно, газ ведет себя подобно сжатой пружине, в этом можно убедиться, сжимая воздух в обычном велосипедном насосе.

Бойль изучал изменение давления газа в зависимости от объема при постоянной температуре. Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим (от греческих слов isos - равный, therme - тепло). Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой, в которой поддерживается постоянная температура, - термостатом. Термостатом может служить атмосферный воздух, если температура его заметно не меняется на протяжении опыта.

Бойль наблюдал за изменением объема воздуха, запертого в длинной изогнутой трубке столбом ртути (рис. 3.6, а). Вначале уровни ртути в обоих коленах трубки были одинаковыми и давление воздуха равно атмосферному (760 мм рт. ст.). Доливая ртуть в длинное колено трубки, Бойль заметил, что объем воздуха уменьшился вдвое, когда разность уровней в обоих коленах оказалась равной h = 760 мм, и, следовательно, давление воздуха увеличилось вдвое (рис. 3.6, б). Это навело Бойля на мысль о том, что объем данной массы газа и его давление находятся в обратно пропорциональной зависимости.

а) б)

Дальнейшие наблюдения за изменением объема при доливании различных порций ртути подтвердили это заключение.

Независимо от Бойля несколько позднее французский ученый Э. Мариотт (1620-1684) пришел к тем же выводам. Поэтому найденный закон получил название закона Бойля-Мариотта. Согласно этому закону давление данной массы (или количества) газа при постоянной температуре обратно пропорционально объему газа:
.

Если p 1 - давление газа при объеме V 1 , и p 2 - его давление при объеме V 2 , то

(3.5.1)

Отсюда следует, что p 1 V l = p 2 V 2 , или

(3.5.2)

при t = const.

Произведение давления газа данной массы на его объем постоянно, если температура не меняется.

Этот закон справедлив для любых газов, а также для смесей газов (например, для воздуха).

Убедиться в справедливости закона Бойля-Мариотта можно с помощью прибора, изображенного на рисунке 3.7. Герметичный гофрированный сосуд соединен с манометром, регистрирующим давление внутри сосуда. Вращением винта можно менять объем сосуда. Об объеме можно судить с помощью линейки. Меняя объем и измеряя давление, можно заметить, что уравнение (3.5.2) выполняется.

Как и другие физические законы, закон Бойля-Мариотта является приближенным. При давлениях, в несколько сотен раз больших атмосферного, отклонения от этого закона становятся существенными.

На графике зависимости давления от объема каждому состоянию газа соответствует одна точка.

Изотермы

Процесс изменения давления газа в зависимости от объема изображается графически с помощью кривой, которая носит название изотермы (рис. 3.8). Изотерма газа выражает обратно пропорциональную зависимость между давлением и объемом. Кривую такого рода называют гиперболой. Разным постоянным температурам соответствуют различные изотермы, так как более высокой температуре при одном и том же объеме соответствует большее давление*. Поэтому изотерма, соответствующая более высокой температуре t 2, лежит выше изотермы, соответствующей более низкой температуре t 1.

* Подробнее об этом будет рассказано в дальнейшем.

Закон Бойля-Мариотта - один из фундаментальных законов физики и химии , который связывает изменения давления и объема газообразных веществ. При помощи нашего калькулятора легко решить простые задачи по физике или химии.

Закон Бойля-Мариотта

Изотермический газовый закон был открыт ирландским ученым Робертом Бойлем , который проводил опыты над газами под давлением. При помощи U-образной трубки и обычной ртути Бойль установил простую закономерность, что в каждый момент времени произведение давления на объем газа неизменно. Если говорить сухим математическим языком, то закон Бойля-Мариотта гласит, что при неизменной температуре произведение давления и объема постоянно :

Для сохранения постоянного соотношения величины должны изменяться в разные стороны: во сколько раз уменьшится одна величина, во столько же раз увеличится другая. Следовательно, давление и объем газа обратно пропорциональны и закон можно переписать в следующем виде:

P1×V1 = P2×V2,

где P1 и V1 - начальные значения давления и объема соответственно, а P2 и V2 - конечные значения.

Применение закона Бойля-Мариотта

Наилучшей иллюстрацией проявления открытого Бойлем закона является погружение пластиковой бутылки под воду. Известно, что если газ помещен в баллон, то давление на вещество будет определяться только стенками баллона. Другое дело, когда это пластичная бутылка, которая легко изменяет свою форму. На поверхности воды (давление 1 атмосфера) закрытая бутылка будет сохранять свою форму, однако при погружении на глубину 10 м на стенки сосуда будет действовать давление в 2 атмосферы, бутылка начнет сжиматься, а объем воздуха уменьшится в 2 раза. Чем глубже будет погружаться пластиковая тара, тем меньший объем будет занимать воздух внутри нее.

Это простая демонстрация действия газового закона иллюстрирует важный вывод для многих дайверов. Если на поверхности воды баллон с воздухом имеет емкость 20 л, то при погружении на глубину 30 м, воздух внутри сожмется в три раза, следовательно, воздуха для дыхания на такой глубине будет в три раза меньше, чем на поверхности.

Помимо дайверской темы, закон Бойля-Мариотта в действии можно наблюдать в процессе сжатия воздуха в компрессоре или в расширении газов при использовании насоса.

Наша программа представляет собой онлайн-инструмент, при помощи которого легко рассчитать пропорцию для любого газового изотермического процесса. Для использования инструмента вам требуется знать три любые величины, а калькулятор автоматически рассчитает искомую.

Примеры работы калькулятора

Школьная задача

Рассмотрим простую школьную задачку, в которой требуется найти первоначальный объем газа, если давление изменилось с 1 до 3 атмосфер, а объем уменьшился до 10 л. Итак, у нас есть все данные для расчета, которые требуется ввести в соответствующие ячейки калькулятора. В итоге получаем, что первоначальный объем газа составлял 30 литров.

Еще о дайвинге

Вспомним пластиковую бутыль. Представим, что мы погрузили бутыль, наполненную 19 л воздуха на глубину 40 м. Как изменится объем воздуха на поверхности? Это более сложная задачка, но только потому, что нам требуется перевести глубину в давление. Мы знаем, что на поверхности воды атмосферное давление составляет 1 бар, а при погружении в воду давление увеличивается на 1 бар каждые 10 м. Это означает, что на глубине 40 м бутыль будет под давлением приблизительно 5 атмосфер. У нас есть все данные для расчета, и в результате мы увидим, что объем воздуха на поверхности увеличится до 95 литров.

Заключение

Закон Бойля-Мариотта встречается в нашей жизни довольно часто, поэтому вам несомненно пригодится калькулятор, который автоматизирует расчеты по этой простой пропорции.

Основные законы идеальных газов используются в технической термодинамике для решения целого ряда инженерно-технических задач в процессе разработки конструкторско-технологическойдокументации авиационной техники, авиадвигателей; их изготовления и эксплуатации.

Эти законы первоначально были получены экспериментальным путем. В последующем они были выведены из молекулярно-кинетической теории строения тел.

Закон Бойля – Мариотта устанавливает зависимость объема идеального газа от давления при постоянной температуре. Эту зависимость вывел английский химик и физик Р. Бойль в 1662 году задолго до появления ки­нетической теории газа. Независимо от Бойля в 1676 го­ду этот же закон открыл Э. Мариотт. Закон Роберта Бойля (1627 – 1691), английского химика и физика, установившего этот закон в 1662 году, и Эдма Мариотта (1620 – 1684),французского физика, установившего этот закон в 1676 году: произведение объёма данной массы идеального газа на его давление постоянно при постоянной температуре или.

Закон получил на­звание Бойля – Мариотта и утверждает, что при посто­янной температуре давление газа обратно пропорцио­нально его объему .

Пусть при постоянной температуре некоторой массы газа имеем:

V 1 – объем газа при давлении р 1 ;

V 2 – объем газа при давлении р 2 .

Тогда согласно закону мож­но записать

Подставив в это уравнение значение удельного объема и принимая массу данного газа т = 1кг, полу­чим

p 1 v 1 =p 2 v 2 илиpv = const .(5)

Плотность газа – величина, обратная его удельному объему:

тогда уравнение (4) примет вид

т. е. плотности газов прямо пропорциональны их абсо­лютным давлениям. Уравнение (5) можно рассматривать как новое выражение закона Бойля – Мариотта которое можно сформулировать так: произведение давления на удельный объем определенной массы одного и того же идеального газа для различных его состояний, но при одинаковой температуре, есть величина постоянная .

Этот закон может быть легко получен из основного уравнения кинетической теории газов. Заме­нив в уравнении (2) число молекул в единице объема отношением N /V (V – объем данной массы газа, N – число молекул в объеме) получим

Поскольку для данной массы газа величины N и β постоянны, то при постоянной температуре T =const для произвольного количества газа уравнение Бойля – Мариотта будет иметь вид

pV = const , (7)

а для 1 кг газа

pv = const .

Изобразим графически в системе координат р v из­менение состояния газа.

Например, давление данной массы газа объемом 1 м 3 равно 98 кПа, тогда, используя уравнение (7), определим давление газа объемом 2 м 3



Продолжая расчеты, получим следующие данные: V (м 3) равно 1; 2; 3; 4; 5; 6; соответственно р (кПа) равно 98; 49; 32,7; 24,5; 19,6; 16,3. По этим данным строим график (рис. 1).

Рис. 1. Зависимость давленияидеального газа от объема при

постоянной температуре

Полученная кривая – гипер­бола, полученная при пос­тоянной температуре, назы­вается изотермой, а процесс, протекающий при постоян­ной температуре, – изотер­мическим. Закон Бойля – Мариотта – приближенный и при очень больших дав­лениях и низких темпера­турах для теплотехнических расчетов неприемлем.

Закон Г е й – Л ю с с а к а определяет зависимость объ­ема идеального газа от температуры при постоян­ном давлении. (Закон Жозефа Луи Гей-Люссака (1778 – 1850), французского химика и физика, установившего впервые этот закон в 1802 году: объём данной массы идеального газа при постоянном давлении линейно возрастает с ростом температуры , то есть, где - удельный объём при; β – коэффициент объёмного расширения равный 1/273,16 на 1 о С.) Закон уста­новлен экспериментально в 1802 г. французским физи­ком и химиком Жозефом Луи Гей-Люссаком, именем которого назван. Исследуя на опыте тепловое расширение газов, Гей-Люссак от­крыл, что при неизменном давлении объемы всех газов увеличиваются при нагревании почти одинаково, т. е. при повышении температуры на 1°С объем некоторой массы газа увеличивается на 1/273 объема, который дан­ная масса газа занимала при 0°С.

Увеличение объема при нагревании на 1 °С на одну и ту же величину не случайно, а как бы является след­ствием закона Бойля – Мариотта. Вначале газ нагрева­ется при постоянном объеме на 1 °С, давление его увели­чивается на 1/273 начального. Затем газ расширяется при постоянной температуре, причем его давление уменьшается до начального, а объем во столько же раз увеличи­вается. Обозначив объем некоторой массы газа при 0°С через V 0 , а при температуре t °C через V t запишем закон следующим выражением:

Закон Гей-Люссака также можно изобразить графи­чески.

Рис. 2. Зависимость объема идеального газа от температу­ры при постоянном

давлении

Используя уравнение (8) и принимая температуру равной 0°С, 273 °С, 546 °С, вычислим объем газа, равный соответственно V 0 , 2V 0 , 3V 0 . Отложим по оси абсцисс в некотором условном масштабе (рис. 2) температуры га­за, а по оси ординат – соответствующие этим темпера­турам объемы газа. Соединяя на графике полученные точки, получим прямую, представляющую собой график зависимости объема идеального газа от температуры при постоянном давлении. Такая прямая называется изобарой , а процесс, протекающий при постоянном дав­лении – изобарным .

Обратимся еще раз к графику изменения объема га­за от температуры. Продолжим прямую до пересечения, с осью абсцисс. Точка пересечения будет соответствовать абсолютному нулю.

Предположим, что в уравнении (8) значение V t = 0, тогда имеем:

но так как V 0 ≠ 0, следовательно, откуда t = – 273°C. Но – 273°C=0К, что и требовалось дока­зать.

Представим уравнение Гей-Люссака в виде:

Помня, что 273+t =Т , а 273 К=0°С, получим:

Подставляя в уравнение (9) значение удельного объема и принимая т =1 кг, получим:

Отношение (10) выражает закон Гей-Люссака, кото­рый можно сформулировать так: при постоянном давле­нии удельные объемы одинаковых масс одного и того же идельного газа прямо пропорциональны его абсолютным температурам . Как видно из уравнения (10), закон Гей-Люссака утверждает, что частное от деления удельногообъема данной массы газа на его абсолютную темпера­туру есть величина постоянная при данном постоянном давлении .

Уравнение, выражающее закон Гей-Люссака, в об­щем виде имеет вид

и может быть получено из основного уравнения кине­тической теории газов. Уравнение (6) представим в виде

при p =const получаем уравнение (11). Закон Гей-Люссака широко применяется в технике. Так, на основе закона объемного расширения газов по­строен идеальный газовый термометр для измерения температур в пределах от 1 до 1400 К.

Закон Шарля устанавливает зависимость давле­ния данной массы газа от температуры при постоянном объеме.ЗаконЖана Шарля (1746 – 1823),французского ученого, установившего этот закон впервые в 1787 году, и уточненный Ж.Гей-Люссакомв 1802 году: давление идеального газа неизменной массы и объёма возрастает при нагревании линейно, то есть, где р о – давление приt = 0°C.

Шарль определил, что при нагревании в по­стоянном объеме давление всех газов увеличивается почти одинаково, т.е. при повышении температуры на 1 °С давление любого газа увеличивается точно на1/273 того давления, которая данная масса газа имела при 0°С. Обозначим давление некоторой массы газа в сосуде при 0°С через р 0 , а при температуре t ° через p t . При по­вышении температуры на 1°С давление увеличивается на, а при увеличении на t °Cдавление увеличива­ется на. Давление при температуре t °Cравно начальному плюс прирост давления или

Формула (12) позволяет вычислить давление при лю­бой температуре, если известно давление при 0°С. В инженерных расчетах очень часто используют уравнение (закон Шарля), которое легко получается из соотношения (12).

Поскольку, а 273 + t = Т или 273 К = 0°С = Т 0

При постоянном удельном объеме абсолютные давле­ния идеального газа прямо пропорциональны абсолют­ным температурам. Поменяв местами средние члены пропорции, получим

Уравнение (14) есть выражение закона Шарля в об­щем виде. Это уравнение легко вывести из формулы (6)

При V =const получаем общее уравнение закона Шарля (14).

Для построения графика зависимости данной массы газа от температуры при постоянном объеме воспользу­емся уравнением (13). Пусть, например, при температу­ре 273 К=0°С давление некоторой массы газа 98 кПа. По уравнению давление при температуре 373, 473, 573 °С соответственно будет 137 кПа (1,4 кгс/см 2), 172 кПа (1,76 кгс/см 2), 207 кПа (2,12 кгс/см 2). По этим данным строим график (рис. 3). Полученная прямая называется изохорой, а процесс, протекающий при постоянном объеме, – изохорным.

Рис. 3. Зависимость давления газа от темпера­туры при постоянном объеме

Закон Бойля-Мариотта (Изотерма) , один из основных газовых законов, который описывает изотермические процессы в идеальных газах. Его установили учёные Р. Бойль в 1662 г. и Э. Мариотт в 1676 г. независимо друг от друга при экспериментальном изучении зависимости давления газа от его объема при постоянной температуре.

Согласно закону Бойля-Мариотта при постоянной температуре (Т=const), Объем (V) данной массы (m) идеального газа, обратно пропорционален его давлению (р):

pV = const = С при T=const и m=const

Постоянная С пропорциональна массе газа (числу молей) и его абсолютной температуре. Другими словами: произведение объема данной массы идеального газа на его давление постоянно при постоянной температуре. Закон Бойля -- Мариотта выполняется строго для идеального газа. Для реальных газов закон Бойля -- Мариотта выполняется приближенно. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

Закон Бойля -- Мариотта следует из кинетической теории газов, когда принимается допущение, что размеры молекул пренебрежимо малы по сравнению с расстоянием между ними и отсутствует межмолекулярное взаимодействие. При больших давлениях необходимо вводить поправки на силы притяжения между молекулами и на объем самих молекул. Как и уравнение Клайперона, закон Бойля -- Мариотта описывает предельный случай поведения реального газа, более точно описываемый уравнением Ван-дер-Ваальса. Применение закона приближенно можно наблюдать в процессе сжатия воздуха компрессором или в результате расширения газа под поршнем насоса при откачке его из сосуда.

Термодинамический процесс, который происходит при постоянной температуре называется изотермическим. Изображение его на графике (рис.1) называется изотермой.

Рис.1

Закон Гей-Люссака. Изобара

Французский ученый Ж. Гей-Люссак в 1802 году нашел экспериментально зависимость объема газа от температуры при постоянном давлении. Данные лежат в основе газового закона Гей-Люссака.

Формулировка закона Гей-Люссака следующая: для данной массы газа отношение объема газа к его температуре постоянно, если давление газа не меняется. Эту зависимость математически записывают так:

V/Т=const, если P=const и m=const

Данный закон приближенно можно наблюдать, когда происходит расширение газа при его нагревании в цилиндре с подвижным поршнем. Постоянство давления в цилиндре обеспечивается атмосферным давлением на внешнюю поверхность поршня. Другим проявлением закона Гей-Люссака в действии является аэростат. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно велика.

Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным (рис.2 график изобарного процесса).


Рис.2

Закон Шарля. Изохора

Французский ученый Ж. Шарль в 1787 году нашел экспериментально зависимость давления газа от температуры при постоянном объеме. Данные лежат в основе газового закона Шарля.

Формулировка закона Шарля следующая: для данной массы газа отношение давления газа к его температуре постоянно, если объем газа не меняется. Эту зависимость математически записывают так:

P/Т=const, если V=const и m=const

Данный закон приближенно можно наблюдать, когда происходит увеличение давления газа в любой емкости или в электрической лампочке при нагревании. Изохорный процесс используется в газовых термометрах постоянного объема. Закон Шарля не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно высокой. Процесс должен проходить очень медленно

Графически эта зависимость в координатах P-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Рис.3 (график изохорного процесса).