Биографии Характеристики Анализ

Ii. цитоплазма

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества, или гиалоплазмы, и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящийся в постоянном движении. Способность к движению, или течению цитоплазмы, называют циклозом. Матрикс является активной средой, в которой протекают многие химические и физиологические процессы и которая объединяет все компоненты клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами.

Органоиды – это постоянные и обязательные компоненты большинства клеток, имеющие специфическую структуру и выполняющие жизненно важные функции. Органоиды бывают общего назначения и специального назначения.

Органоиды общего значения присутствуют во всех клетках и в зависимости от особенностей строения делятся на немембранные, одномембранные и двумембранные.

Органоиды специального значения присутствуют только в клетках определенных тканей; например, миофибриллы в мышечных тканях, нейрофибриллы в нервной ткани.

Немембранные органоиды.

К этой группе относятся рибосомы, микротрубочки и микрофиламенты, а также клеточный центр.

РИБОСОМЫ.

Рибосомы - очень мелкие органеллы, присутствуют во всех типах клеток. Имеют округлую форму, состоят из примерно равных по массе количеств рРНК и белка и представлены двумя субъединицами: большой и малой. Между субъединицами находится пространство, куда присоединяется иРНК.

В клетках рибосомы локализуются свободно в цитоплазме, на мембранах ЭПС, в матриксе митохондрий, на наружной мембране ядра, у растений в пластидах.

Функция рибосом – сборка белковых молекул.

На время активного синтеза белка образуются полирибосомы. Полирибосомы - комплекс рибосом (от 5 до 70 рибосом). Между отдельными рибосомами имеется связь, которая осуществляется при помощи молекул и-РНК.

Рис. 5. Строение рибосомы (схема)

1- малая субъединица; 2 – и-РНК; 3 – большая субъединица 4-рРНК

МИКРОТРУБОЧКИ И МИКРОФИЛАМЕНТЫ

Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков. Микротрубочки имеют вид длинных полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламентыпредставляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обусловливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала. Помимо свободных микротрубочек, пронизывающих цитоплазму, в клетках имеются определенным образом организованные микротрубочки, формирующие центриоли клеточного центра, базальные тельца, реснички и жгутики.

КЛЕТОЧНЫЙ ЦЕНТР

Клеточный центр, или центросома – обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована 9 триплетами микротрубочек. В центре микротрубочек нет. Поэтому систему микротрубочек центриоли можно описать формулой (9×3)+0.

В период подготовки клетки к делению происходит удвоение - дупликация центриолей: материнская и дочерняя расходятся к полюсам клетки, намечая направление будущего деления, около каждой образуется по новой центриоли из микротрубочек цитоплазмы. Основными функциями клеточного центра являются:

1) участие в процессах деления клетки, расхождение центриолей обусловливает ориентировку веретена деления и движение хромосом;

2) с этим органоидом связано строение и функция ресничек и жгутиков (базальные тельца); таким образом, центриоли связаны с процессами движения в клетке.

Одномембранные органоиды

К ним относятся эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы.

5.2.1 Эндоплазматическая сеть (ретикулум) (ЭПС) .

Представляет собой сеть во внутренних слоях цитоплазмы (эндоплазме) - эндоплазматическую сеть, представляющую собой сложную систему канальцев , трубочек и цистерн , ограниченных мембранами.

Различают ЭПС (ЭПР):

Гладкий (агранулярный) (не содержит на мембранах рибосом) Шероховатый (гранулярный) (на мембранах - рибосомы)
1. Синтез гликогена и липидов (сальные железы, печень). 2. Накопление продуктов синтеза. 3. Транспорт секрета. 1. Синтез белка (клетки белковых желез). 2. Участие в секреторных процессах, транспорт секрета. 3. Накопление продуктов синтеза.
4. Обеспечивает связь с органоидами клетки. 5. Обеспечивает транспорт секретов к органо-идам клетки. 6. Обеспечивает связь ядра с клеточными органоидами и цитоплазматической мембраной. 7. Обеспечивает циркуляцию различных ве-ществ по цитоплазме. 8. Участие в пиноцитозе (транспорт различных веществ, поступивших в клетку извне).

Наибольшее развитие ЭПС характерно для секреторных клеток. Слабо ЭПС развита в сперматозоидах.

Образование ЭПС происходит при делении клеток из разрастаний наружной цитоплазматической мембраны и ядерной оболочки, передается из клетки в клетку при клеточном делении.

КОМПЛЕКС ГОЛЬДЖИ

Комплекс Гольджи открыт в 1898 г. Гольджи.

Форма комплекса может быть в виде сети вокруг ядра, в виде шапочки или пояса вокруг ядра, в виде отдельных элементов - округлых, серповидных телец, называемых диктиосомами.

Комплекс Гольджи состоит из трех элементов, способных переходить один в другой и взаимосвязанных друг с другом:

1) система плоских цистерн, расположенных пачками по пять-восемь, в виде стопки монет и плотно прилегающих друг к другу;

2) система трубочек, отходящих от цистерн, анастомозирующих друг с другом и образующих сеть;

3) крупные и мелкие пузырьки, замыкающие концевые отделы трубочек.

Наиболее хорошо этот органоид развит в железистых клетках, например, в лейкоцитах и овоцитах, а также в других клетках, вырабатывающих белковые продукты, полисахариды и липиды.

Слабое развитие комплекса Гольджи наблюдается в недифференцированных и опухолевых клетках.

Состав: фосфолипиды, белки, ферменты для синтеза полисахаридов и липидов.

1) участие в секреторной деятельности клетки;

2) накопление готовых или почти готовых продуктов;

3) транспортировка продуктов секрета по клетке по системе трубочек и пузырьков;

4) конденсация секреторных гранул (осмотическое удаление воды);

5) обособление и накопление ядовитых для клеток веществ, поступивших извне (токсинов, анестезирующих веществ), которые затем удаляются из клетки;

6) образование зерен желтка в овоцитах;

7) образование перегородок клеток (в растительных клетках).

Комплекс Гольджи при делении клеток передается из материнской в дочерние.

ЛИЗОСОМЫ

Выполняют функцию внутриклеточного переваривания макромолекул пищи и чужеродных компонентов, поступающих в клетку при фаго- и пиноцитозе, обеспечивая клетку дополнительным сырьём для химических и энергетических процессов. Для осуществления этих функций лизосомы содержат около 40 гидролитических ферментов – гидролаз, разрушающих белки, нуклеиновые кислоты, липиды, углеводы при кислом рН (протеиназы, нуклеазы, фосфатазы, липазы). Различают первичные лизосомы, вторичные лизосомы (фаголизосомы и аутофагосомы) и остаточные тельца. Первичные лизосомы – это отшнуровавшиеся от полостей аппарата Гольджи микропузырьки, окруженные одиночной мембраной и содержащие набор ферментов. После слияния первичных лизосом с каким-нибудь субстратом, подлежащим расщеплению, образуются различные вторичные лизосомы. Примером вторичных лизосом являются пищеварительные вакуоли простейших. Такие лизосомы называются фаголизосомы, или гетерофагосомы. Если слияние происходит с измененными органеллами самой клетки, то образуются аутофагосомы. Лизосомы, в полостях которых накапливаются непереваренные продукты, носят название телолизосомы или остаточные тельца.

ЭПС, аппарат Гольджи и лизосомы представляют собой функционально связанные внутриклеточные структуры, отграниченные от цитоплазмы одинарной мембраной. Они составляют единую канальцево-вакуолярную систему клетки.

Пероксисомы

Имеют овальную форму. В центральной части матрикса находятся кристалло подобные структуры. В матриксе содержатся ферменты окисления аминокислот, при работе которых образуется перекись водорода. Также присутствует фермент каталаза, которая разрушает перекись.(Характерны для клеток печени и почек)

Двумембранные органоиды

Митохондрии

По форме митохондрии могут быть овальные, палочковидные, нитевидные, сильноразветвленные. Формы митохондрий могут меняться из одной в другую при изменении рН, осмотического давления, температуры. Форма может быть разной и в разных клетках, и в разных участках одной клетки.

Снаружи митохондрии ограничены гладкой наружной мембраной. Внутренняя мембрана образует многочисленные выросты – кристы. Внутреннее содержимое митохондрий называется матрикс. Митохондрии являются полуавтономными органоидами, поскольку в них содержится собственный аппарат биосинтеза белка (кольцевая ДНК, РНК, рибосомы, аминокислоты, ферменты).

Матрикс - вещество более плотное, чем цитоплазма, гомогенное.

Крист много в клетках печени, расположены они плотно друг относительно друга; в мышцах - меньше.

Рис.7. Строение митохондрии (схема)

1- гладкая наружная мембрана; 2 - внутренняя мембрана; 3 – кристы; 4 –матрикс (и в нем кольцевая молекула ДНК, много рибосом, ферменты).

Размер митохондрий варьирует от 0,2 до 20 микрон.

Количество митохондрий разное в разных типах клеток: от 5-7 до 2500, зависит от функциональной активности клеток. Большое количество митохондрий в клетках печени, работающих мышцах (больше - в молодых, чем в старых).

Расположение митохондрий может быть равномерным по всей цитоплазме, как например, в клетках эпителия, нервных клетках, клетках простейших, или неравномерным, например, в участке наиболее активной клеточной активности. В секреторных клетках это участки, где вырабатывается секрет, в клетках сердечной мышцы и гаметах (окружают ядро). Обнаружена структурная связь митохондрий с клеточным ядром в периоды, предшествующие клеточному делению. Считается, что в этот период активно протекают процессы обмена веществ и энергии и осуществляется он по структурам, напоминающим трубочки.

Химический состав: белки - 70 %, липиды - 25 %, нуклеиновые кислоты (ДНК, РНК - незначительно), витамины А, В 12 , В 6 , К, Е, ферменты.

Митохондрии являются наиболее чувствительными органоидами к воздействию различных факторов: наркотики, повышение температуры, яды приводят к набуханию, увеличению объема митохондрий, у них разжижается матрикс, уменьшается число крист и появляются складки на наружной мембране. Эти процессы приводят к нарушению клеточного дыхания и могут стать необратимыми при частых и чрезвычайных воздействиях.

В митохондриях осуществляется синтез АТФ в результате процессов окисления органических субстратов и фосфорилирования АДФ и синтез стероидных гормонов

В процессе эволюции разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функций. Это требовало наличия в них особых органоидов, которые называют специализированными.

Такие органоиды присутствуют только в клетках определенных тканей, например, миофибриллы - в мышечных, нейрофибриллы - в нервных, тоно-фибриллы, реснички и жгутики - в эпителиальных.

ВКЛЮЧЕНИЯ

В отличие от органоидов, включения являются временными струк-турами, появляющимися в клетке в определенные периоды жизнедеятель-ности клетки. Основное место локализации включений - цитоплазма, но иногда и ядро.

Включения являются продуктами клеточного метаболизма, могут иметь вид гранул, зерен, капель, вакуолей и кристаллов; используются или самой клеткой по мере надобности, или служат для всего макроорганизма.

Включения классифицируются по химическому составу:

жировые: углеводные: белковые: пигментные:
1) в любой клетке в виде капелек жи-ра; 2) белый жир - специализированная жировая ткань взрослых; 3) бурый жир - специализированная жировая ткань эм-брионов; 4) в результате пато- логических про-цессов - жировая дистрофия клеток (печень, сердце); 5) у растений - в се-менах содержится до 70 % включе-ний; 1) гликоген - в клет-ках скелетных мышц, печени, нейронах; 2) в клетках эндопа-разитов (анаэроб-ный тип дыха-ния); 3) крахмал - в клет-ках растений; 1) в яйцеклетках, клетках печени, простейших; 1) липофусцин - пигмент старения; 2) липохромы - в корковом вещест-венапдпочеников и желтом теле яичника; 3) ретинин - зри-тельный пурпур глаза; 4) меланин - в пиг-ментных клетках; 5) гемоглобин - ды-хательный - в эри-троцитах;
секреторные: могут быть белками, жирами, углеводами, или смешанными и находятся в клетках соответствующих желез: 1) сальная железа; 2) железы внутренней секреции; 3) железы пищеварительной системы; 4) молочные железы; 5) слизь в бокаловидных клетках; 6) эфирные масла растений.

КЛЕТОЧНОЕ ЯДРО

Клеточное ядро участвует в дифференцировке клеток по форме, по количеству, по расположению и по размеру. Форма ядра зачастую связана с формой клетки, но может быть и совершенно неправильной. В шаровидных, кубических и многогранных клетках ядро обычно имеет сферическую форму; в цилиндрических, призматических и веретенообразных - форму эллипса (гладкий миоцит).

Рис 8. Гладкий миоцит

Примером неправильной формы ядра могут служить ядра лейкоцитов (сегментированные – сегментоядерный нейтрофильный лейкоцит). Моноциты крови имеют ядро бобовидной формы.


Рис. 9 . Моноцит крови Рис. 10 Сегментоядерный

нейтрофильный лейкоцит

Большинство клеток имеет по одному ядру. Но существуют двуядерные клетки: клетки печени гепатоциты и хрящей хондроциты, и многоядерные: остеокласты костной ткани и мегакариоциты красного костного мозга - до 100 ядер. Особенно многочисленны ядра в симпластах и синцитиях (поперечно-полосатые мышечные волокна и ретикулярная ткань), но эти образования не являются собственно клетками.

Рис.11 . Гепатоцит Рис. 12 .Мегакариацит

Расположение ядер индивидуально для каждого типа клеток. Обычно в недифференцированных клетках ядро располагается в геометрическом центре клетки. По мере созревания, накопления запасных питательных веществ и органоидов, ядро смещается к периферии. Есть клетки, у которых ядро занимает резко эксцентричное положение. Наиболее ярким примером этого являются клетки белого жира адипоциты, в которых почти весь объем цитоплазмы занимает капля жира. В любом случае, как бы ни располагалось ядро в клетке, оно почти всегда окружено зоной недифференцированной цитоплазмы.

Рис. 13Адипоциты

Размер ядра зависит от типа клетки и обычно прямо пропорционален объему цитоплазмы. Соотношение между объемом ядра и цитоплазмы принято выражать так называемым ядерно-плазматическим (Я-Ц) соотношением Гертвига: при увеличении объема цитоплазмы увеличивается также объем ядра. Момент наступления клеточного деления, по-видимому, определяется изменением Я-Ц-соотношения и связано с тем, что только определенный объем ядра способен контролировать определенный объем цитоплазмы. Обычно более крупные ядра обнаруживаются в молодых, опухолевых клетках, клетках, готовящихся к делению. Вместе с тем, объем ядра - признак, характерный для каждой ткани. Существуют ткани, клетки которых имеют мелкое относительно объема цитоплазмы ядро, это так называемые клетки цитоплазматического типа. К ним относятся большинство клеток организма, например, все виды эпителиев.

Другие - имеют крупное ядро, занимающее практически всю клетку и тонкий ободок цитоплазмы - клетки ядерного типа, таковыми являются лимфоциты крови.

Рис.16 Строение ядра (схема)

1- рибосомы на наружной мембране; 2 - ядерные поры; 3 - наружная мембрана; 4 - внутренняя мембрана; 5 - ядерная оболочка; (кариолемма, нуклеолемма); 6 - щелевидное перинуклеарное пространство; 7 - ядрышко;

8 - ядерный сок (кариоплазма, нуклеоплазма); 9 - гетерохроматин;

10 – эухроматин.

Ядерная оболочка образована двумя элементарными биологическими мембранами, между которыми находится щелевидное перинуклеарное пространство. Ядерная оболочка служит отграничению внутриядерного пространства от цитоплазмы клетки. Она не сплошная и имеет мельчайшие отверстия - поры. Ядерная пора образуется за счет слияния ядерных мембран и представляет собой сложноорганизованную глобулярно-фибриллярную структуру, заполняющую перфорацию в ядерной оболочке. Это так называемый комплекс ядерной поры . По границе отверстия располагается три ряда гранул (по восемь - в каждом). Первый ряд прилежит к внутриядерному пространству, второй - к цитоплазме, а третий - располагается между ними. От гранул отходят фибриллярные отростки, которые соединяются в центре припомощи гранулы и создают перегородку, диафрагму поперек поры. Число пор непостоянно и зависит от метаболической активности клетки.

Ядерный сок - неокрашенная масса, которая заполняет все внутреннее пространство ядра между его компонентами и представляет собой коллоидную систему и обладает тургором.

Ядрышки - одной или несколько стероидных телец, часто довольно большого размера (в нейроцитах и овоцитах). Ядрышки - нуклеолы - самая плотная структура ядра, хорошо окрашиваются основными красителями, так как богаты РНК. Он неоднородны по своему строению, имеют тонкозернистую или мелковолокнистую структуру. Служат местом образования рибосом .

Хроматин - зоны плотного вещества, которые хорошо воспринимают красители, характерны для неделящейся клетки. Хроматин имеет другое агрегатное состояние - во время клеточного деления превращается путем конденсации и спирализации в хромосомы . Каждая хромосома имеет центромеру - место прикрепления к нитям веретена деления при митозе центромера делит хромосому на два плеча.

Кроме центромеры (первичной перетяжки) у хромосомы может быть вторичная перетяжка и отделенный ею спутник . Снаружи каждая хромосома покрыта пелликулой , под которой находится белковый матрикс . В матриксе располагаются хроматиды . Хроматиды состоят из хромонем , а те - из элементарных нитей . Совокупность хромосом каждого организма составляют хромосомный набор .

Рис17 . Строение хромосомы (схема)

1 - центромера (первичная перетяжка); 2- плечи; 3 – вторичная перетяжка; 4-спутник; 5 – пелликула; 6 – белковый матрикс; 7 - хроматин

ВОСПРОИЗВЕДЕНИЕ КЛЕТОК.

Все живые организмы состоят из клеток. В процессе жизнедеятельности часть клеток организма изнашивается, стареет и погибает. Единственным способом образования клеток является деление предшествующих. Деление клеток – жизненно важный процесс для всех организмов.

Жизненный (клеточный) цикл.

Жизнь клетки от момента её возникновения в результате деления материнской летки до её собственного деления или смерти называется жизненным (клеточным) циклом . Обязательным компонентом клеточного цикла является митотический цикл , включающий период подготовки клетки к делению и само деление. Подготовка клетки к делению, или интерфаза, составляет значительную часть времени митотического цикла и состоит из периодов:

1. Пресинтетический (постмитотический) G1 – наступает сразу после деления клетки. В клетках идут процессы биосинтеза, образуются новые органоиды. Молодая клетка растет. Этот период самый вариабельный по продолжительности.

2. Синтетический S – главный в митотическом цикле. Происходит репликация ДНК. Каждая хромосома становится двунитчатой, то есть состоит из двух хроматид – идентичных молекул ДНК. Кроме того, клетка продолжает синтезировать РНК, белки. В делящихся клетках млекопитающих он длится около 6 – 10 часов.

3. Постсинтетический (премитотический) G2 – относительно короток, в клетках млекопитающих он составляет порядка 2 – 5 часов. В это время количество центриолей и митохондрий удваивается, идут активные метаболические процессы, накапливаются белки и энергия для предстоящего деления. Клетка приступает к делению.

7.2 ДЕЛЕНИЕ КЛЕТКИ .

Описано три способа деления эукариотических клеток:

1) амитоз (прямое деление),

2) митоз (непрямое деление).

3) мейоз (редукционное деление).

7.2.1 Амитоз - клеточное деление без спирализации хромосом, возник ранее митоза. Этим способом размножаются прокариоты, высокоспециализиро-ванные и деградирующие клетки. При этом ядерная мембрана и ядрышки не исчезают, хромосомы остаются спирализованными.

Типы амитоза:

1) перешнуровка (характерна для бактерий)

2) фрагментация (мегакариобласт, мегакариоцит)

3)почкование (от мегакариоцита отпочковываются тромбоциты)

По распределению генетического материала

К делению без митотического аппарата приводит облучение, дистрофия ткани, действие различных агентов, нарушающих вступление клеток в митоз.

Митоз

Характеризуется разрушением ядерной оболочки и ядрышек, спирализацией хромосом. В митозе различают профазу , метафазу , анафазу и телофазу .

Рис.18 . Схема митоза

I. Профаза:

1) Форма клетки становится округлой, ее содержимое - более вязким, хромосомы приобретают вид длинных тонких нитей, скрученных внутри ядра. Каждая хромосома состоит из двух хроматид.

2) Хроматиды постепенно укорачиваются и приближаются к ядерной оболочке, что является признаком начала разрушения кариолеммы.

3) Развивается веретено: центриоли расходятся к полюсам и удваиваются, между ними формируются нити веретена деления.

4) Происходит разрушение ядерной оболочки, в центре клетки образуется зона жидкой цитоплазмы, куда устремляются хромосомы.


Поздняя метафаза

Хромосомы выстраиваются в экваториальной плоскости, образуя метафизарную пластинку . К центромерам хромосом прикрепляются нити веретена деления.

Различают два типа нитей веретена деления: одни из них связаны с хромосомами и называются хромосомными , а другие - тянутся от полюса к полюсу и называются непрерывными .

Материнская

IV. Телофаза.

Завершается миграция двух дочерних групп хромосом к противоположным полюсам клетки.Происходят реконструкция ядер и деконденсация хромосом, они деспирализуются, восстанавливается кариолемма, появляются ядрышки. Деление ядра завершается.

Начинается цитокинез (цитотомия) - процесс перешнуровки и разделения цитоплазмы с образованием перетяжки. Наблюдается «вскипание» клеточной поверхности из-за ее интенсивного роста. Цитоплазма теряет свою вязкость, центриоли утрачивают активность, органоиды разделяются приблизительно пополам между дочерними клетками.

Рис.24 Цитокинез

Типы митоза:


1) Любая ткань является саморегулирующейся системой, в связи с этим количество клеток, погибших в ткани, уравновешивается числом их образовавшихся.

2) Существуют суточные ритмы митотической активности. Наибольшая митотическая активность совпадает с периодами покоя ткани, а усиление функции ткани приводит к торможению митозов (у ночных животных - в ранне-утреннее время, а у животных, ведущих дневной образ жизни, - в ночные часы).

3) Тормозящее влияние на митотическую активность оказывают гормоны стресса: адреналин и норадреналин, а стимулирующее - гормон роста. Изменение митотической активности происходит за счет изменения длительности интерфазы. В каждой клетке изначально заложена способность к делению, но при некоторых условиях эта способность заторможена . Торможение может быть разной степени, вплоть до необратимой.

Продолжительность жизни клеток можно рассматривать как период от одного деления до другого. В стабильных клеточных популяциях, в которых практически не происходит размножения клеток, продолжительность их жизни максимальная (печень, нервная система).

Эндорепродукция - все случаи, когда происходит редупликация хромосом или репликация ДНК, деления клетки не происходит. Это приводит к полиплодии, увеличению объёма ядра и клетки. Может возникнуть при нарушениях митотического аппарата, наблюдается как в норме, так и при патологии. Характерна для клеток печени, мочевыводящих путей.

Эндомитоз протекает при неразрушающейся ядерной оболочке. Редупликация хромосом происходит как при обычном делении, в результате образуются гигантские хромосомы. Наблюдаются все характерные для митоза фигуры, но они происходят внутри ядра. Различают эндопрофазу ,эндометафазу ,эндоанафазу ,эндотелофазу . Поскольку оболочка ядра сохраняется, в результате получается полиплоидная клетка. Значение эндомитоза состоит в том, что в ходе его не прекращается основная деятельность клетки.

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) - это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом .

Матрикс - это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами. Включения - относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды - постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

К мембранным органоидам эукариотической клетки относят эндоплазматическую сеть, аппарат Гольджи, митохондрии, лизосомы, пластиды.

Эндоплазматическая сеть . Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи (см. рис.4). Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки - белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Митохондрии. В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) - митохондрии (греч. "митос" - нить, "хондрион" - зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. "криста" - гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют "силовыми станциями" клеток" так как их основная функция - синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Лизосомы . Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Пластиды. В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые - хлоропласты; красные, оранжевые и желтые - хромопласты; бесцветные - лейкопласты.

Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения . К ним относятся рибосомы, микрофиламенты, микротрубочки, клеточный центр.

Рибосомы . Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Микротрубочки и микрофиламенты - нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков - тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.

Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обуславливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала и т.д.

Клеточный центр (центросома) (см. рис.3). В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца - центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции. Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения. К их числу относят сократительные вакуоли простейших, миофибриллы мышечного волокна, нейрофибриллы и синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики некоторых простейших.

С помощью ресничек и жгутиков клетки могут передвигаться в жидкой среде так как эти органоиды способны совершать ритмические движения. Если на поверхности клетки имеется большое количество волосковидных выростов небольшой длины то их называют ресничками если же таких выростов мало и длина их значительная то они называются жгутиками. Клетки высших растений и высших грибов а также споровики не имеют ресничек и жгутиков даже у мужских половых клеток. Миофибриллы Миофибриллы представляют собой особые дифференцированные сократимые элементы...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №4

СПЕЦИАЛЬНЫЕ ОРГАНОИДЫ И ВКЛЮЧЕНИЯ

Органоиды специального назначения

Органоиды специального назначения содержатся во многих животных и растительных клетках. От общих органоидов они отличаются тем, что характерны только для определенных высоко дифференцированных клеток и выполняют строго определенную функцию, характерную для этих клеток.

Классификация органоидов специального назначения:

1. Органоиды движения: реснички, жгутики, миофибриллы.

2. Опорные структуры: тонофибриллы.

3. Органоиды, участвующие в передаче возбуждения: нейрофибриллы.

4. Органоиды, воспринимающие внешние раздражения: фоторецепторы, статорецепторы, фонорецепторы.

5. Органоиды поверхности клеток: микроворсинки, кутикула.

6. Органоиды защиты и нападения у одноклеточных: трихоцисты – у инфузорий; коноид, роптрии – у представителей класса Споровиков.

Рассмотрим более подробно основные из этих органоидов.

Реснички и жгутики

Реснички и жгутики – это нитевидные или волосковидные выросты свободной поверхности клеток. С помощью ресничек и жгутиков клетки могут передвигаться в жидкой среде, так как эти органоиды способны совершать ритмические движения. Если же реснички и жгутики имеются у прикрепленных к какому-либо субстрату клеток, то они вызывают движение окружающей жидкости.

Различий в тонкой организации этих структур нет. Если на поверхности клетки имеется большое количество волосковидных выростов небольшой длины, то их называют ресничками , если же таких выростов мало и длина их значительная, то они называются жгутиками .

У животных реснички и жгутики встречаются: а) в клетках ресничного эпителия (эпителий трахеи, некоторых отделов полового тракта); б) у сперматозоидов (у нематод и десятиногих раков спермии не имеют жгута); в) у простейших (жгутиконосцы, инфузории, корненожки). В мире растений они имеются у подвижных зооспор водорослей, мхов, папоротников, низших грибов, миксомицетов. Клетки высших растений и высших грибов, а также споровики не имеют ресничек и жгутиков даже у мужских половых клеток.

Толщина ресничек и жгутиков составляет около 200 нм (0,2 мкм). Поскольку принципиальных различий в строении ресничек и жгутиков нет, рассмотрим ультраструктуру этих образований на примере реснички. Снаружи ресничка покрыта цитоплазматической мембраной. Внутри нее расположена аксонема (или осевой цилиндр), состоящая из микротрубочек. Нижняя проксимальная часть реснички, базальное тельце , погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковы.

Базальное тельце по своей структуре совершенно сходно с центриолью и состоит из 9 триплетов микротрубочек. Аксонема в своем составе, в отличие от базального тельца, имеет 9 пар (дублетов) микротрубочек, образующих внешнюю стенку цилиндра аксонемы. Дублеты микротрубочек слегка повернуты (около 10 0 ) по отношению к радиусу аксонемы. Кроме периферических дублетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. Эти две центральные микротрубочки, в отличие от периферических, не доходят до базальных телец. Поскольку в базальных тельцах содержится сократимый белок типа актомиозина, периферические микротрубочки выполняют двигательную функцию, а центральные – только опорную.

В основании ресничек и жгутиков часто встречаются корешки или кинетодесмы , представляющие собой пучки тонких (6 нм) фибрилл, обладающих поперечных исчерченностью. Часто такие исчерченные кинетодесмы простираются от базальных телец в глубь цитоплазмы в направлении к ядру. Роль этих структур еще недостаточно выяснена.

Отклонения от вышеизложенного плана строения встречаются редко, но у некоторых клеток, например, в жгутиках сперматозоидов и некоторых жгутиконосцев, обнаружены 9 дополнительных фибрилл, расположенных между центральными и периферическими микротрубочками. Эти дополнительные фибриллы соединены с трубочками аксонемы с помощью очень тонких волокон.

Миофибриллы

Миофибриллы представляют собой особые дифференцированные сократимые элементы клетки, за счет которых происходят сложные и совершенные движения мышц. Различают два типа миофибрилл: гладкие и поперечнополосатые. Оба типа миофибрилл широко распространены у многоклеточных животных и у простейших.

Поперечнополосатые миофибриллы широко известны в составе соматической и сердечной мускулатуры членистоногих и хордовых животных. Гладкие миофибриллы типичны для мускулатуры внутренних органов позвоночных и для соматических мышц многих низших беспозвоночных.

Строение миофибрилл наиболее подробно изучено в поперечно-полосатых мышечных волокнах. Миофибрилла имеет толщину 0,5 мкм и длину, которая равна от 10-20 мкм до нескольких миллиметров и даже сантиметров. В световой микроскоп видно, что пучки миофибрилл окрашиваются неравномерно: через равные промежутки длины в них видно чередование темных и светлых участков. Темные участки имеют двойное лучепреломление и называются анизотропными дисками (А-диски) . Светлые участки двойного лучепреломления не обнаруживают и называются изотропными дисками (I -диски) .

Каждый А-диск разделяется на две половины менее плотной, чем остальные его участки, полосой, называемой Н-зоной (полоска Ханзена). Посередине каждого I -диска проходит темная линия, называемая Z -линией (телофрагма) . Участок миофибриллы между двумя Z -линиями называется саркомером. Он является единицей строения и функционирования миофибриллы.

Подробности строения саркомера были получены только при изучении миофибрилл в электронном микроскопе. Каждая миофибрилла состоит из пучка очень тонких нитей – миофиламентов. Различают два типа миофиламентов: толстые и тонкие. Тонкие миофиламенты имеют диаметр около 7 нм и длину около 1 мкм; они состоят в основном из белка актина. Они располагаются в пределах I -диска и заходят в А-диск до Н-зоны. Толстые миофиламенты длиной до 1,5 мкм и толщиной около 15 нм состоят из белка миозина; они расположены только в пределах А-диска. В тонких миофиламентах кроме актина находятся также белки тропомиозин и тропонин. Z -линии имеют в своем составе белок α-актинин и десмин.

Ни актин, ни миозин по отдельности не обладают сократительной способностью. Актин, белок с молекулярным весом 43,5 тысяч, является глобулярным белком размером около 3 нм. В присутствии АТФ и некоторых белковых факторов он способен к агрегации в виде нитчатых структур толщиной до 7 нм. Такие актиновые фибриллы состоят из двух спиралей, обвивающих друг друга. Миозин, входящий в состав толстых нитей, – очень крупный белок (мол. вес 470 тысяч), состоящий из шести цепей: двух длинных, спирально обвивающихся одна вокруг другой, и четырех коротких, которые связываются с концами длинных цепей и образуют глобулярные «головки». Последние обладают АТФ-азной активностью, могут реагировать с фибриллярным актином, образуя актомиозиновый комплекс, способный к сокращению.

Актиновые миофиламенты связаны на одном конце с Z -линией, которая состоит из ветвящихся молекул белка α-актинина, образующих фибриллярную сеть, идущую поперек миофибриллы. С двух сторон к Z -линии прикрепляются концы актиновых нитей соседних саркомеров. Функция Z -линий заключается как бы в связывании соседних саркомеров друг с другом; Z -линии не являются сократимыми структурами.

Механизм мышечного сокращения заключается в одновременном укорачивании всех саркомеров по всей длине миофибриллы. Г. Хаксли показал, что в основе сокращения лежит перемещение относительно друг друга толстых и тонких нитей. При этом толстые миозиновые нити как бы входят в пространство между актиновыми нитями, приближая друг к другу Z -линии. Эта модель скользящих нитей может объяснить не только сокращение поперечнополосатых мышц, но и любых сократимых структур.

В гладких мышечных клетках также имеются актиновые и миозиновые нити, но они не так правильно расположены, как в исчерченных мышцах. Здесь нет саркомеров, а просто среди пучков актиновых миофиламентов без особого порядка располагаются миозиновые молекулы.

Тонофибриллы

Тонофибриллы характерны для клеток одноклеточных организмов и для эпителиальных клеток многоклеточных животных. Электронно-микроскопическое исследование показало, что они состоят из пучка тонофиламентов – тончайших нитей с диаметром 6-15 нм. В одном пучке может быть от 3 до нескольких сотен тонофиламентов.

Тонофибриллы располагаются пучками в клетке в разных направлениях, прикрепляются либо к десмосомам, либо к любому участку цитоплазматической мембраны и никогда не переходят из одной клетки в другую.

Тонофибриллы выполняют в клетке опорную функцию.

Нейрофибриллы

Нейрофибриллы открыты в 1855 г. Ф.В. Овсянниковым. Они характерны для нервных клеток (нейронов). Состоят из более тонких нитей – нейрофиламентов .

В теле нейрона нейрофибриллы расположены беспорядочно, а в отростках образуют пучок параллельно длине отростка. Из этого правила имеется всего лишь два исключения: параллельное, упорядоченное расположение нейрофибрилл в теле нейрона впервые обнаружено у бешеных животных, а затем у животных, которые впадают в спячку.

Открытие нейрофибрилл привело к возникновению нейрофибриллярной теории проведения нервного возбуждения. Сторонники этой теории считали, что нейрофибриллы являются беспрерывным проводящим элементом нервной системы. Однако в дальнейшем было установлено, что нейрофибриллы не переходят из одного нейрона в другой. В настоящее время мы придерживаемся нейронной теории , согласно которой в проведении нервного импульса основная роль принадлежит плазмалемме нейрона, а по нейрофибриллам из тела нейрона к его окончанию передаются вещества, участвующие в образовании нервных импульсов. А с одной клетки на другую возбуждение передается с помощью синапса (строение синапса описывалось ранее при рассмотрении коммуникационных межклеточных контактов). В синапсе возбуждение передается химическим путем с помощью медиатора.

Непостоянные включения в клетке

В отличие от органоидов, как общего, так и специального назначения, включения представляют собой непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки. Основное место локализации включений – это цитоплазма, но они иногда встречаются и в ядре.

По своему характеру все включения – это продукты клеточного метаболизма. По химическому составу и по выполняемым функциям они классифицируются следующим образом:

1. трофические (белковые, углеводные, жировые);

2. секреторные;

3. экскреторные;

4. пигментные.

Трофические включения

Белковые включения . Имеют форму зерен, гранул, дисков. Они могут присутствовать во всех клетках, но встречаются реже, чем жиры и углеводы. Примером белковых включений служит желток в яйцеклетках, алейроновые зерна в эндосперме семян. В этом случае белковые гранулы служат запасным питательным материалом для зародыша; в других клетках – это трофический (строительный) материал для дальнейшего построения элементов клетки. Энергетическим запасом белковые включения могут служить в самом крайнем случае, когда углеводные и жировые запасы полностью израсходовались.

В клетках растений наиболее часто откладывается крахмал в виде зерен различной формы и размеров, причем форма крахмальных зерен специфична для каждого вида растений и для определенных тканей. Отложениями крахмала богата цитоплазма клубней картофеля, зерен злаков, бобовых растений и др. У низших растений встречаются другие полисахариды: парамилоид, крахмал красных водорослей.

Углеводные включения являются основным энергетическим запасом клетки. При распаде 1 г углевода выделяется 17,6 кДж энергии, которая накапливается в виде АТФ.

Жировые включения . Жиры в цитоплазме откладываются в виде мелких капель. Они встречаются как у животных, так и у растений. В одних клетках жировых включений очень мало и они постоянно используются самой клеткой в процессе обмена веществ, в других клетках они накапливаются в большом количестве, например, жировые клетки соединительной ткани, клетки эпителия печени рыб и амфибий. Большое количество жировых капель встречается и в цитоплазме многих видов простейших, например, инфузорий. Очень много жира содержится в семенах растений, причем количество его может доходить до 70% сухого веса семян (масличные культуры).

Процесс отложения жиров не связан с какими-либо органоидами клетки; они откладываются в основном веществе цитоплазмы. При определенных условиях жировые капли могут сливаться друг с другом, увеличиваясь в размерах, в конечном итоге гигантская жировая капля заполняет собой всю клетку, цитоплазма с ядром отмирают и клетка превращается в мешочек с жиром. Это явление называется жировое перерождение клетки . Этот процесс может носить патологический характер (например, при жировом перерождении печени, сердечной мышцы и т.д.) или являться естественным процессом в жизнедеятельности организма (например, клетки сальных желез, клетки подкожной жировой клетчатки китов, тюленей).

Жировые включения могут выполнять следующие функции:

1) являются долговременным энергетическим запасом клетки (при распаде 1 г жира выделяется 38,9 кДж энергии);

2) терморегуляция (например, у животных, обитающих в холодном климате слой жира в подкожной клетчатке достигает 1 м);

3) амортизация при движении (например, прослойки жира на подошвах ног, на лапах у наземных животных, ладонях рук, вокруг внутренних органов);

4) запас питательных веществ у животных, впадающих в спячку (например, медведь, барсук, еж);

5) источник метаболической воды в организме у животных, обитающих в засушливых условиях (при распаде 1 кг жира образуется 1,1 кг воды).

Секреторные включения

Секреты – это продукты анаболических реакций клетки, которые выполняют в организме различные жизненно важные функции.

Секреторные включения накапливаются в секреторных клетках в виде зерен, гранул, капель. Химическая природа их весьма разнообразна. Это могут быть белки, липиды, кетоны, спирты, соляная кислота и другие. В клетках многих растений встречаются и кристаллические включения, причем чаще всего это оксалаты кальция.

Функции секреторных включений:

1) гуморальная регуляция жизнедеятельности организма (гормоны в клетках желез внутренней секреции);

2) катализация процессов переваривания пищи (ферменты в клетках желез пищеварительного тракта);

3) передача возбуждения в синапсах (медиаторы в пресинаптических окончаниях нейронов);

4) питательные вещества для детенышей (молоко в млечных железах млекопитающих);

5) защитная функция (слизь у земноводных защищает кожу от пересыхания; яды, токсины у животных защищают от врагов и помогают умерщвлять добычу).

Из клеток секреты удаляются различными способами. По способу удаления секрета из клетки выделяют 3 типа секреции:

1) мерокриновая – секрет удаляется через поры без повреждения клетки; такая клетка функционирует непрерывно (например, железы дна желудка);

2) апокриновая – капли секрета отшнуровываются с частью цитоплазмы; такая клетка функционирует с перерывами, необходимыми для ее восстановления (например, слюнные железы, часть потовых)

3) голокриновая – секрет заполняет клетку целиком, цитоплазма отмирает, клетка гибнет и превращается в мешочек с секретом; такая клетка функционирует всего один раз (например, сальные железы).

Экскреторные включения

Экскреторные включения – это продукты катаболических реакций, которые клеткой и организмом не используются, часто являются ядовитыми и должны удаляться. Экскреты могут накапливаться в жидком (капли) и в твердом (зерна, гранулы) состоянии.

Примерами экскреторных включений могут служить капли пота в клетках потовых желез, моча в клетках почечных канальцев. У многих беспозвоночных животных существуют специальные клетки – нефроциты , которые функционируют как почки накопления. Они накапливают экскреты, а затем либо выносят их в кишечник или на поверхность тела, либо оставляют в составе своей цитоплазмы. Важную роль в обособлении ядовитых экскретов играет комплекс Гольджи. Примерами нефроцитов являются хлорагогенные клетки у кольчатых червей, перикардиальные клетки у моллюсков и насекомых, экскретофоры у ресничных червей и асцидий.

Пигментные включения

Пигментные включения могут существовать в виде гранул, зерен, изредка в виде капель. Основная их функция – придание окраски растительным и животным клеткам и организму в целом. Но в ряде случаев пигментные включения выполняют более сложные функции. Рассмотрим в качестве примера некоторые пигменты животного и растительного мира.

Пигменты животного мира:

1). Меланин – пигмент коричневого цвета, расположен в клетках базального слоя кожи, придает окраску эпителию кожи и всем ее производным (волосы у человека, шерсть у животных, ногти, когти, перья у птиц, чешуи у рептилий), а также радужной оболочке глаза. У животных меланин создает различные виды защитной окраски, а у человека выполняет функцию защиты от ультрафиолетового излучения.

2). Липофусцин – пигмент желтого цвета, гранулы которого накапливаются в процессе жизнедеятельности клеток и, особенно, по мере старения их, а также при разных дистрофических процессах («пигмент старения»).

3). Лютеин – желтый пигмент, содержащийся в желтом теле беременности.

4). Ретинин – характерный пигмент, входящий в состав зрительного пурпура сетчатки глаза.

5). Дыхательные пигменты животных:

– гемоцианин – пигмент, содержащий в своем составе медь; он может изменять свою окраску от синей (в окисленном состоянии) до бесцветной (в восстановленном состоянии); встречается у ракообразных, некоторых улиток, головоногих моллюсков (растворен в плазме крови или гемолимфе);

– гемоэритрин – пигмент, содержащий в своем составе железо; он может изменять свою окраску от красной (в окисленном состоянии) до бесцветной (в восстановленном состоянии); встречается у некоторых кольчатых червей (находится в клетках крови);

– хлорокруорин – пигмент, также содержащий в своем составе железо; он может изменять свою окраску от красной (в окисленном состоянии) до зеленой (в восстановленном состоянии); встречается у некоторых многощетинковых червей (растворен в плазме крови);

– гемоглобин – железосодержащий пигмент, меняет свою окраску от оранжево-красной (в окисленном состоянии) до пурпурно-красной (в восстановленном состоянии). Это наиболее широко распространенный в природе дыхательный пигмент, встречается у некоторых моллюсков (растворен в плазме крови), у некоторых кольчатых червей (в плазме или в клетках), у всех позвоночных животных (в эритроцитах крови).

Пигменты растительного мира:

1). Хлорофилл – пигмент зеленого цвета, находится в гранах хлоропластов и участвует в процессе фотосинтеза.

2). Группа каротиноидов – каротин (оранжевый), ксантофилл (красный), ликопин (желтый); эти пигменты содержатся в хромопластах и обеспечивают окраску плодов, семян и других органов растений.

5). Фикобилины – это пигменты низших растений; в состав сине-зеленых водорослей входит фикоциан (пигмент синего цвета), а в состав красных водорослей – фикоэритрин (красный пигмент).

Изменение окраски клеток обусловлено перераспределением пигментов.

Другие похожие работы, которые могут вас заинтересовать.вшм>

11989. Специальные электрические детонаторы мгновенного действия и специальные водостойкие капсюли-детонаторы с различными степенями замедления 17.47 KB
Пиротехнические замедлители для СКД разработаны на базе окислительновосстановительных реакций имеющих высокую стабильность горения среднеквадратичное отклонение менее 15 от общего времени горения даже после длительного хранения в негерметичном состоянии в сложных климатических условиях. Разработано два состава: со скоростью горения 0004÷004м с и временем замедления – до 10с размер замедляющего элемента до 50мм; со скоростью горения 004÷002м с обладает повышенными воспламенительными свойствами.
6231. ГИАЛОПЛАЗМА. ОБЩИЕ ОРГАНОИДЫ КЛЕТКИ 22.06 KB
Все внутреннее содержимое клетки за исключением ядра носит название цитоплазмы. Это общий термин который подчеркивает разделение клетки на два главных компонента: цитоплазму и ядро. Гиалоплазма представляет собой внутреннюю среду клетки в электронном микроскопе имеет вид гомогенного или тонкозернистого вещества. Являясь основной внутренней средой клетки она объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.
6659. Биполярный транзистор и схемы его включения 50.81 KB
Назначением эмиттерного слоя является формирование рабочих носителей заряда транзистора.8 для транзистора типа npn. Одна из схем включения транзистора приведена на рис. Поскольку техническое направление тока соответствует направлению переноса положительного заряда то эмиттерный ток для транзистора типа npn направлен от эмиттера а коллекторный ток – к коллектору см.
13091. Фазы внедрения, соединения включения 511.79 KB
Включение возможно только при том условии что полость в кристаллах молекул хозяев соответствует размерам молекул гостей. Однако одной из основных причин являются высокие энергии кристаллических решеток переходных металлов. Известно немало случаев когда при rВ rА 059 атомы В не могут внедриться в плотную упаковку атомов А. Не все металлы побочных подгрупп например поглощают водород.
13295. Процесс включения молодежи во взрослое общество или обряд инициации зрелости 93.19 KB
Понимая как устроены механизмы интеграции во взрослое общество мы способны диагностировать подобные процессы моделировать и программировать их что актуально в сфере молодежной политики. Лукова Теории молодежи: междисциплинарный анализ 4 мы можем говорить о том что теория молодежи своими корнями уходит в античность. Что касается вопроса интеграции то мы основывались на работах Э. Цель данного исследования состоит в том чтобы с помощью нового...
13238. Разработка предложений для включения в процедуру управления беспристрастностью органа по сертификации продукции 75.92 KB
В работе проанализированы требования к органам по сертификации продукции установленные в международных нормативных и правовых российских документах предъявляемые при аккредитации. Представлены предложения по разработке документов органа по сертификации ОС продукции содержащих нормы правила и методы обеспечения беспристрастности – гарантии доверия всех заинтересованных лиц к сертификации. Разработана методика идентификации угроз и оценки рисков беспристрастности при выполнении работ по сертификации продукции.
8517. Внебюджетные специальные фонды 20.31 KB
Для этих целей за счет бюджетных источников средств предприятий и населения во всех государствах создаются общественные фонды потребления которые используются для финансирования учреждений просвещения и здравоохранения содержания нетрудоспособных и престарелых граждан оказания материальной помощи отдельным группам населения одиноким матерям и многодетным семьям семьям потерявшим кормильца безработным и др. Объем средств выделяемых на социальную защиту граждан зависит от уровня экономического развития страны состояния сферы...
10562. СПЕЦИАЛЬНЫЕ ФОРМИРОВАНИЯ ЗДРАВООХРАНЕНИЯ 42.83 KB
Для участия в медицинском обеспечении личного состава Вооруженных Сил Российской Федерации в период мобилизации и в военное время в тылу страны создаются специальные формирования здравоохранения которые предназначены в первую очередь для специализированного лечения наиболее тяжелых контингентов раненых и больных их реабилитации восстановления бое и трудоспособности а также для участия в проведении противоэпидемических мероприятий среди войск осуществляющих передислокацию. Тыловые госпитали здравоохранения являются специальными...
9325. Специальные аспекты финансового менеджмента 58.51 KB
Как правило руководит этим финансовый менеджер корпорации причем в его обязанности входит: определение характера и принципов организации пенсионного фонда; определение размера необходимых ежегодных отчислений в этот фонд; 3 управление активами фонда. Очевидно однако что компания не имеет права полного контроля над принятием подобных решений: служащие прежде всего с помощью своих профсоюзов могут сказать веское слово относительно структуры пенсионного фонда да и федеральное правительство ограничивает некоторые аспекты...
15563. СПЕЦИАЛЬНЫЕ ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ 58.05 KB
Модель авторегрессии выражает текущее значение процесса через линейную комбинацию предыдущих значений процесса и отсчета белого шума. Название процесса – термин математической статистики где линейная комбинация x = 1y1 2 y2 p yp z = z Ty связывающая неизвестную переменную x с отсчетами y = T называется моделью регрессии x регрессирует на y. Для стационарности процесса необходимо чтобы корни k характеристического уравнения p 1p-1 p =0 лежали внутри круга единичного круга I 1 . Корреляционная...

В школьном курсе изучения биологии перед учениками частенько, как частокол перед яблоневым садом, встает специфическая терминология. Термины «органеллы» и «включения» возникают в разделе цитологии или клеточной теории, но что они означают и какая между ними разница? Вопросы эти так и остаются невыясненными для большинства школяров.

Определение

Включения – это образования, которые могут появиться в живой клетке в процессе ее жизнедеятельности.

Органеллы – это обязательные структуры клетки, которые обеспечивают ее функционирование.

Сравнение

Включения в живой клетке могут быть, а могут так и не появиться. Традиционно к включениям относятся:

  • трофические включения, или результат накоплений питательных веществ – белков, липидов и углеводов. К примеру, в растительных клетках запасается полисахарид крахмала как запасная форма углеводов. В эндосперме некоторых культур он образует особо крупные гранулы, называемые алейроновыми зернами. В животных клетках может скапливаться «животный крахмал» – гликоген. Наибольшее количество этого включения наблюдается в клетках печени, в мышцах. При экстренной потребности в работе тела именно гликоген расходуется в первую очередь. Включения белка вителлина в цитоплазме яйцеклетки имеют вид гранул;
  • экскреторные включения. Это скопления продуктов обмена веществ, которые по каким-либо причинам не были выведены за пределы клетки. К этой же группе относятся инородные агенты. С этими включениями «расправляются» лизосомы, а остатки экскретируются – удаляются из клетки;
  • секреторные включения. Они синтезируются в специализированных клетках и выделяются наружу специальными протоками или с помощью крови, лимфы. Классическим примером секреторных включений являются гормоны;
  • пигментные включения. Это узкоспециализированные пигментоциты, которые присутствуют в клетках дермы и в структурах глаза и защищают «нутро» органов от интенсивного солнечного света. В эту же группу входит гемоглобин, обеспечивающий переноску кислорода, и пигмент липофусцин, накапливающийся в стареющих соматических клетках.

Органеллы клетки можно сравнить с органами человека. Практически каждая клетка, кроме узкоспециализированных, имеет стандартный набор органелл. К ним относятся:

  1. клеточная мембрана, которая ограничивает внутреннее содержимое клетки, исполняет защитную и пропускную функцию;
  2. эндоплазматическая сетка, которая транспортирует питательные вещества и участвует в синтезе белка;
  3. рибосомы, которые синтезируют белки;
  4. митохондрии, в которых происходит расщепление органических веществ и высвобождение энергии;
  5. лейкопласты, хромопласты, хлоропласты присутствуют только в растительных клетках. Участвуют в процессе фотосинтеза, накапливают включения. Пластиды могут переходить из одной стадии в другую, изменяя цвет и функции;
  6. аппарат Гольджи, который участвует в процессе обмена веществ и заведует строением клеточной мембраны;
  7. клеточный центр, который организовывает процесс воспроизводства у низших растений и примитивных животных;
  8. органоиды движения;
  9. ядро и его структуры – ядерная оболочка, ядрышко, хромосомы и ядерный сок. Они отвечают за размножение клетки или всего организма и передают генетическую информацию потомству.

Органеллы клетки являются структурами, без которых существование и воспроизведение клетки или отдельного организма невозможно.

Органеллы

Выводы сайт

  1. Главная разница между включениями и органеллами – в их функционале. Без органелл клетка будет недееспособна. Отсутствие или наличие включений для большинства клеток не является жизнеутверждающим фактором.
  2. Органеллы присутствуют в клетке постоянно, включения исчезают и появляются в процессе метаболизма.
  3. Узкая специализация некоторых клеток связана с включениями. В то же время у них могут атрофироваться некоторые органеллы.

ОСНОВЫ ЦИТОЛОГИИ

I. Общие принципы структурно-функциональной организации клетки и её компоненты. Плазмолемма, её структура и функции.

Клетка – элементарная структурная, функциональная и генетическая единица в составе всех живых организмов.

Морфологическая характеристика клетки варьирует в зависимости от её функции. Процесс, в ходе которого клетки приобретают свои структурные и функциональные свойства и особенности (специализация) - клеточная дифференцировка . Молекулярно-генетические основы дифференцировки – синтез специфических и-РНК и на них – специфических белков.

Клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов.

Каждая клетка эукариот состоит из двух основных компонентов: ядра и цитоплазмы, ограниченных клеточной мембраной (плазмолеммой).

Цитоплазма отделена от внешней среды плазматической мембраной и содержит:

органеллы

включения , погруженные в

клеточный матрикс (цитозоль, гиалоплазма ).

Органеллы постоянные компоненты цитоплазмы, имеющие характерную структуру и специализированные на выполнении определенных функций в клетке.

Включения непостоянные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (плазмолемма, цитолемма, внешняя клеточная мембрана )

Все клетки эукариотических организмов имеют пограничную мембрану – плазмолемму. Плазмолемма играет роль полупроницаемого селективного барьера , и с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой – обеспечивает её связь с этой средой.

Функции плазмолеммы:

Поддержание формы клетки;

Регуляция переноса веществ и частиц в цитоплазму и из неё;

Распознавание данной клеткой других клеток и межклеточного вещества, прикрепление к ним;

Установление межклеточных контактов и передача информации от одной клетки к другой;

Взаимодействие с сигнальными молекулами (гормоны, медиаторы, цитокины) в связи с наличием на поверхности плазмалеммы специфических рецепторов к ним;

Осуществление движения клетки благодаря связи плазмалеммы с сократимыми элементами цитоскелета.

Строение плазмолеммы :

Молекулярное строение плазмолеммы описывается как жидкостно-мозаичная модель: липидный бислой, в который погружены молекулы белков (рис.1.).

Рис.1.

Толщина п лазмолеммы варьирует от 7,5 до10 нм ;

Липидный бислой представлен преимущественно молекулами фосфолипидов состоящими из двух длинных неполярных (гидрофобных) цепей жирных кислот и полярной (гидрофильной) головки. В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – кнаружи.

Химический состав плазмолеммы:

· липиды (фосфолипиды, сфинголипиды, холестерин);

· белки;

· олигосахариды , ковалентно связанные с некоторыми из этих липидов и белков (гликопротеины и гликолипиды).

Белки плазмолеммы . Мембранные белки составляют более 50% массы мембран. Они удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов.Белки обеспечиваютспецифические свойства мембраны и играют различную биологическую роль:

структурные молекулы;

ферменты;

переносчики;

рецепторы.

Мембранные белки подразделяются на 2 группы: интегральные и периферические:

периферические белки обычно находятся вне липидного бислоя и непрочно связаны с поверхностью мембраны;

интегральные белки представляют собой белки, либо полностью (собственно интегральные белки), либо частично (полуинтегральные белки) погруженные в липидный бислой. Часть белков целиком пронизывает всю мембрану (трансмембранные белки ); они обеспечивают каналы, через которые транспортируется мелкие водорастворимые молекулы и ионы по обе стороны мембраны.

Белки распределены в пределах клеточноймембраны мозаично. Липиды и белки мембран не фиксированы в пределах мембраны, а обладают подвижностью : белки могут перемещаться в плоскости мембран, как бы «плавая» в толще липидного бислоя (как «айсберги в липидном «океане»).

Олигосахариды. Цепочки олигосахаридов, связанные с белковыми частицами (гликопротеины) или с липидами (гликолипиды), могут выступать за пределы наружной поверхности плазмолеммы, и образуют основу гликокаликса , надмембранного слоя, который выявляется под электронным микроскопом в виде рыхлого слоя умеренной электронной плотности.

Углеводные участки придают клетке отрицательный заряд и являются важным компонентом специфических молекул – рецепторов. Рецепторы обеспечивают такие важные процессы в жизнедеятельности клеток, как распознавание других клеток и межклеточного вещества, адгезивные взаимодействия, ответ на действие белковых гормонов, иммунный ответи.т.д.Гликокаликсявляется также местом концентрации многих ферментов, часть которых может образовываться не самой клеткой, а лишь адсорбироваться в слое гликокаликса.

Мембранный транспорт . Плазмолемма – место обмена материала между клеткой и окружающей клетку средой:

Механизмы мембранного транспорта (рис.2) :

Пассивная диффузия;

Облегченная диффузия;

Активный транспорт;

Эндоцитоз.

Рис.2.

Пассивный транспорт – это процесс, который не требует затрат энергии, так как перенос мелких водорастворимых молекул (кислород, углекислый газ, вода) и части ионов осуществляется путем диффузии. Такой процесс малоспецифичен, и зависит от градиента концентрации транспортируемой молекулы.

Облегченный транспорт также зависит от градиента концентрации и обеспечивает перенос более крупных гидрофильных молекул, таких как молекулы глюкозы и аминокислот. Этот процесс пассивный, но требует присутствия белков-переносчиков , обладающих специфичностью в отношении транспортируемых молекул.

Активный транспорт - процесс, при котором перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента . Для осуществления этого процесса необходимы затраты энергии, которая высвобождается за счет расщепления АТФ . Примером активного транспорта служит натриево-калиевый насос: посредством белка-переносчика Na+-K+-АТФ-азы ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в неё.

Эндоцитоз - процесс транспорта макромолекул из внеклеточного пространства в клетку. При этом внеклеточный материал захватывается в области впячивания (инвагинации) плазмалеммы, края впячивания затем смыкаются, и таким образом формируется эндоцитозный пузырек (эндосома), окруженный мембраной.

Разновидностями эндоцитоза являются (рис.3):

пиноцитоз,

фагоцитоз,

рецепторно-опосредованный эндоцитоз.

Рис.3 .

Пиноцитоз жидкости вместе с растворимыми в ней веществами («клетка пьёт»). В цитоплазме клетки пиноцитозные пузырьки обычно сливаются с первичными лизосомами, и их содержимое подвергается внутриклеточной обработке.

Фагоцитоз - захват и поглощение клеткой плотных частиц (бактерии, простейшие, грибки, поврежденные клетки, некоторые внеклеточные компоненты).

Фагоцитоз обычно сопровождается образованием выпячиваний цитоплазмы (псевдоподии, филоподии ), которые охватывают плотный материал. Края цитоплазматических отростков смыкаются, и образуются фагосомы . Фагосомы сливаются с лизосомами, образуя фаголизосомы, где ферменты лизосом переваривают биополимеры до мономеров.

Рецепторно-опосредованный эндоцитоз. Рецепторы ко многим веществам, расположены на клеточной поверхности. Эти рецепторы связываются с лигандами (молекулами поглощаемого вещества с высоким сродством к рецептору).

Рецепторы, перемещаясь, могут скапливаться в особых областях, называемых окаймленными ямками . Вокруг таких ямок и образующихся из них окаймленных пузырьков образуется сетевидная оболочка, состоящая из нескольких полипептидов, главный из которых белок клатрин. Окаймленные эндоцитозные пузырьки переносят комплекс рецептор-лиганд внутрь клетки. В дальнейшем, после поглощения веществ, комплекс рецептор-лиганд расщепляется, и рецепторы возвращаются в плазмолемму. С помощью окаймленных пузырьков транспортируются иммуноглобулины, факторы роста, липопротеины низкой плотности (ЛНП).

Экзоцитоз – процесс обратный эндоцитозу. При этом мембранные экзоцитозные пузырьки, содержащие продукты собственного синтеза или непереваренные, вредные вещества, приближаются к плазмалемме и сливаются с ней своей мембраной, которая встраивается в плазмалемму - содержимое экзоцитозного пузырька выделяется во внеклеточное пространство.

Трансцитоз - процесс, объединяющий эндоцитоз и экзоцитоз. На одной поверхности клетки формируется эндоцитозный пузырёк, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство. Такой процесс характерен для клеток, выстилающих кровеносные сосуды, - эндотелиоцитов, особенно в капиллярах.

Во время эндоцитоза часть плазмолеммы становится эндоцитозным пузырьком; во время экзоцитоза, напротив, мембрана встраивается в плазмолемму. Это явление называется мембранным конвейером.

II. ЦИТОПЛАЗМА. Органеллы. Включения.

Органеллы – постоянно присутствующие в цитоплазме структуры, имеющие определенное строение и специализированные на выполнении определенных (специфических) функций в клетке.

Органеллы подразделяются на:

органеллы общего значения

специальные органеллы .

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся:

митохондрии,

рибосомы

эндоплазматическая сеть (ЭПС),

комплекс Гольджи