Биографии Характеристики Анализ

Как делится ядро. Деление ядер урана

Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана. Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками Л. Мейтнерома и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка:

где k > 1.

При делении ядра урана тепловой нейтрон с энергией ~ 0,1 эВ освобождает энергию ~ 200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана, – цепная реакция деления . Таким образом, один нейтрон может дать начало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях :

· управляемая ядерная реакция деления – создание атомных реакторов;

· неуправляемая ядерная реакция деления – создание ядерного оружия.

В 1942 г. в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 г. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Как видно из рис. 4.2, с ростом значения А удельная энергия связи увеличивается вплоть до А » 50. Это поведение можно объяснить сложением сил; энергия связи отдельного нуклона усиливается, если его притягивают не один или два, а несколько других нуклонов. Однако в элементах со значениями массового числа больше А » 50 удельная энергия связи постепенно уменьшается с ростом А. Это связано, с тем, что ядерные силы притяжения являются короткодействующими радиусом действия порядка размеров отдельного нуклона. За пределами этого радиуса преобладают силы электростатического отталкивания. Если два протона удаляются более чем на 2,5×10 - 15 м, то между ними преобладают силы кулоновского отталкивания, а не ядерного притяжения.

Следствием такого поведения удельной энергии связи в зависимости от А является существование двух процессов - синтеза и деления ядер . Рассмотрим взаимодействие электрона и протона. При образовании атома водорода высвобождается энергия 13,6 эВ и масса атома водорода оказы­вается на 13,6 эВ меньше суммы масс свободного электрона и протона. Аналогично, масса двух легких ядер превышает мaccу после их соединения на DМ . Если их соединить, то они сольются с выделением энергии DМс 2 . Этот процесс называется синтезом ядер . Разность масс может превышать 0,5 %.

Если расщепляется тяжелое ядро на два более легких ядра, то их масса будет меньше массы родительского ядра на 0,1 %. У тяжелых ядер существует тенденция к делению на два более легких ядра с выделением энергии . Энергия атомной бомбы и ядерного реактора представляет собой энергию , высвобождающуюся при делении ядер . Энергия водородной бомбы - это энергия, выделяющаяся при ядерном синтезе. Альфа-распад можно рассматривать как сильно асимметричное деление, при котором родительское ядро М расщепляется на маленькую альфа-частицу и большое остаточное ядро . Альфа-распад возможен, только если в реакции

масса М оказывается больше суммы масс и альфа-частицы. У всех ядер с Z > 82 (свинец) .При Z > 92 (уран) полупериоды альфа-распада оказываются значительно длиннее возраста Земли, и такие элементы не встречаются в природе. Однако их можно создать искусственно. Например, плутоний (Z = 94) можно получить из урана в ядерном реакторе. Эта процедура стала обычной и обходится всего в 15 долларов за 1 г. До сих пор удалось получить элементы вплоть до Z = 118, однако гораздо более дорогой ценой и, как правило, в ничтожных количествах. Можно надеяться, что радиохимики научатся получать, хотя и в небольших количествах, новые элементы сZ > 118.

Если бы массивное ядро урана удалось разделить на две группы нуклонов, то эти группы нуклонов перестроились бы в ядра с более сильной связью. В процессе перестройки выделилась бы энергия. Спонтанное деление ядер разрешено законом сохранения энергии. Однако потенциальный барьер в реакции деления у встречающихся в природе ядер настолько высок, что вероятность спонтанного деления оказывается много меньше вероятности альфа-распада. Период полураспада ядер 238 U относительно спонтанного деления составляет 8×10 15 лет. Это более чем в миллион раз превышает возраст Земли. Если нейтрон сталкивается с тяжелымядром, то оно может перейти на более высокий энергетический уровень вблизи вершины электростатического потенциального барьера, в результате возрастет вероятность деления. Ядро в возбужденном состоянии может обладать значительным моментом импульса и приобрести овальную форму. Участки на периферии ядра легче проникают сквозь барьер, поскольку они частично уже находятся за барьером. У ядра овальной формы роль барьера еще больше ослабляется. При захвате ядром или медленного нейтрона образуются состояния с очень короткими временами жизни относительно деления. Разность масс ядра урана и типичных продуктов деления такова, что в среднем при делении урана высвобождается энергия 200 МэВ. Масса покоя ядра урана 2,2×10 5 МэВ. В энергию превращается около 0,1 % этой массы, что равно отношению 200 МэВ к величине 2,2×10 5 МэВ.

Оценка энергии , освобождающейся при делении , может быть получена из формулы Вайцзеккера :

При делении ядра на два осколка изменяется поверхностная энергия и кулоновская энергия , причем поверхностная энергия увеличивается, а кулоновская энергия уменьшается. Деление возможно в том случае, когда энергия, высвобождающаяся при делении, Е > 0.

.

Здесь A 1 = A /2, Z 1 = Z /2. Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости . Энергия Е , освобождающаяся при делении, растет с увеличением Z 2 /A .

В процессе деления ядро изменяет форму - последовательно проходит черезследующие стадии (рис. 9.4): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка.

После того как деление произошло, и осколки находятся друг от друга на расстоянии много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Вследствие эволюции формы ядра, изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий . Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между нуклонами. В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.

В области тяжелых ядер сумма поверхностной и кулоновской энергий увеличивается с увеличением деформации. При малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно и делению. Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию, превышающую высоту барьера деления Н .

Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А. Чем тяжелее ядро, тем меньше высота барьера Н , так как параметр делимости увеличивается с ростом массового числа:

Более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление. Из формулы Вайцзеккера следует, что высота барьера деления обращается в нуль при . Т.е. согласно капельной модели в природе должны отсутствовать ядра с , так как они практически мгновенно (за характерное ядерное время порядка 10 –22 с) самопроизвольно делятся. Существование атомных ядер с («остров стабильности ») объясняется оболочечной структурой атомных ядер. Самопроизвольное деление ядер с , для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения осколков через потенциальный барьер и носит название спонтанного деления . Вероятность спонтанного деления растет с увеличением параметра делимости , т.е. с уменьшением высоты барьера деления.

Вынужденное деление ядер с может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, α-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления.

Массы осколков, образующихся при делении тепловыми нейтронами, не равны. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов осколка образовала устойчивый магический остов. На рис. 9.5 приведено распределение по массам при делении . Наиболее вероятная комбинация массовых чисел - 95 и 139.

Отношение числа нейтронов к числу протонов в ядре равно 1,55, в то время как у стабильных элементов, имеющих массу, близкую к массе осколков деления, это отношение 1,25 - 1,45. Следовательно, осколки деления сильно перегружены нейтронами и неустойчивы к β-распаду - радиоактивны.

В результате деления высвобождается энергия ~ 200 МэВ. Около 80 % ее приходится на энергию осколков. За один акт деления образуется более двух нейтронов деления со средней энергией ~ 2 МэВ.

В 1 г любого вещества содержится . Деление 1 г урана сопровождается выделением ~ 9×10 10 Дж. Это почти в 3 млн раз превосходит энергию сжигания 1 г угля (2,9×10 4 Дж). Конечно, 1 г урана обходится значительно дороже 1 г угля, ностоимость 1 Дж энергии, полученной сжиганием угля, оказывается в 400 раз выше, чем в случае уранового топлива. Выработка 1 кВт×ч энергии обходилась в 1,7 цента на электростанциях, работающих на угле, и в 1,05 цента на ядерных электростанциях.

Благодаря цепной реакции процесс деления ядер можно сделать самоподдерживающимся . При каждом делении вылетают 2 или 3 нейтрона (рис. 9.6). Если одному из этих нейтронов удастся вызвать деление другого ядра урана, то процесс будет самоподдерживающимся.

Совокупность делящегося вещества, удовлетворяющая этому требованию, называется критической сборкой . Первая такая сборка, названная ядерным реактором , была построена в 1942 г. под руководством Энрико Ферми на территории Чикагского университета. Первый ядерный реактор был запущен в 1946 г. под руководством И. Курчатова в Москве. Первая атомная электростанция мощностью 5 МВт была пущена в СССР в 1954 г. в г. Обнинске (рис. 9.7).

Массу и можно также сделать надкритической . В этом случае возникающие при делении нейтроны будут вызывать несколько вторичных делений. Поскольку нейтроны движутся со скоростями, превышающими 10 8 см/с, надкритическая сборка может полностью прореагировать (или разлететься) быстрее, чем за тысячную долю секунды. Такое устройство называется атомной бомбой . Ядерный заряд из плутония или урана переводят в надкритическое состояние обычно с помощью взрыва. Подкритическую массу окружают химической взрывчаткой. При ее взрыве плутониевая или урановая масса подвергается мгновенному сжатию. Поскольку плотность сферы при этом значительно возрастает, скорость поглощения нейтронов оказывается выше скорости потери нейтронов за счет их вылета наружу. В этом и заключается условие надкритичности.

На рис. 9.8 изображена схема атомной бомбы «Малыш», сброшенной на Хиросиму. Ядерной взрывчаткой в бомбе служил , разделенный на две части, масса которых была меньше критической. Необходимая для взрыва критическая масса создавалась в результате соединения обеих частей «методом пушки» с помощью обычной взрывчатки.

При взрыве 1 т тринитротолуола (ТНТ) высвобождается 10 9 кал, или 4×10 9 Дж. При взрыве атомной бомбы, расходующей 1 кг плутония , высвобождается около 8×10 13 Дж энергии.

Или это почти в 20 000 раз больше, чем при взрыве 1 т ТНТ. Такая бомба называется 20-килотонной бомбой. Современные бомбы мощностью в мегатонны в миллионы раз мощнее обычной ТНТ-взрывчатки.

Производство плутония основано на облучении 238 U нейтронами, ведущем к образованию изотопа 239 U, который в результате бета-распада превращается в 239 Np, а затем после еще одного бета-распада в 239 Рu. При поглощении нейтрона с малой энергией оба изотопа 235 U и 239 Рu испытывают деление. Продукты деления характеризуются более сильной связью (~ 1 МэВ на нуклон), благодаря чему в результате деления высвобождается примерно 200 МэВ энергии.

Каждый грамм израсходованного плутония или урана порождает почти грамм радиоактивных продуктов деления, обладающих огромной радиоактивностью.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

В 1934 г. Э. Ферми решил получить трансурановые элементы, облучая 238 U нейтронами. Идея Э. Ферми заключалась в том, что в результате β - -распада изотопа 239 U образуется химический элемент с порядковым номером Z = 93. Однако идентифицировать образование 93-его элемента не удавалось. Вместо этого в результате радиохимического анализа радиоактивных элементов, выполненного О.Ганом и Ф.Штрассманом, было показано, что одним из продуктов облучения урана нейтронами является барий (Z = 56) – химический элемент среднего атомного веса, в то время как согласно предположению теории Ферми должны были получаться трансурановые элементы.
Л. Мейтнер и О. Фриш высказали предположение, что в результате захвата нейтрона ядром урана происходит развал составного ядра на две части

92 U + n → 56 Ba + 36 Kr + xn.

Процесс деления урана сопровождается появлением вторичных нейтронов (x > 1), способных вызвать деление других ядер урана, что открывает потенциальную возможность возникновения цепной реакции деления – один нейтрон может дать начало разветвленной цепи делений ядер урана. При этом число разделившихся ядер должно возрастать экспоненциально. Н. Бор и Дж. Уиллер рассчитали критическую энергию необходимую, чтобы ядро 236 U, образовавшееся в результате захвата нейтрона изотопом 235 U, разделилось. Эта величина равна 6,2 МэВ, что меньше энергии возбуждения изотопа 236 U, образующегося при захвате теплового нейтрона 235 U. Поэтому при захвате тепловых нейтронов возможна цепная реакция деления 235 U. Для наиболее распространенного изотопа 238 U критическая энергия равна 5,9 МэВ, в то время как при захвате теплового нейтрона энергия возбуждения образовавшегося ядра 239 U составляет только 5,2 МэВ. Поэтому цепная реакция деления наиболее распространенного в природе изотопа 238 U под действием тепловых нейтронов оказывается невозможной. В одном акте деления высвобождается энергия ≈ 200 МэВ (для сравнения в химических реакциях горения в одном акте реакции выделяется энергия ≈ 10 эВ). Возможности создания условий для цепной реакции деления открыли перспективы использования энергии цепной реакции для создания атомных реакторов и атомного оружия. Первый ядерный реактор был построен Э.Ферми в США в 1942 г. В СССР первый ядерный реактор был запущен под руководством И.Курчатова в 1946 г. В 1954 г. в г. Обнинске начала работать первая в мире атомная электро­станция. В настоящее время электрическая энергия вырабатывается примерно в 440 ядерных реакторах в 30 странах мира.
В 1940 г. Г.Флеров и К.Петржак открыли спонтанное деление урана. О сложности проведения эксперимента свидетельствуют следующие цифры. Парциальный период полураспада по отношению спонтанному делению изотопа 238 U составляет 10 16 –10 17 лет, в то время как период распада изотопа 238 U составляет 4.5∙10 9 лет. Основным каналом распада изотопа 238 U является α-распад. Для того, чтобы наблюдать спонтанное деление изотопа 238 U, нужно было регистрировать один акт деления на фоне 10 7 –10 8 актов α-распада.
Вероятность спонтанного деления в основном определяется проницаемостью барьера деления. Вероятность спонтанного деления увеличивается с увеличением заряда ядра, т.к. при этом увеличивается параметр деления Z 2 /A. В изотопах Z < 92-95 деление происходит преимущественно с образованием двух осколков деления с отношением масс тяжёлого и лёгкого осколков 3:2. В изотопах Z > 100 преобладает симметричное деление с образованием одинаковых по массе осколков. С увеличением заряда ядра доля спонтанного деления по сравнению с α-распадом увеличивается.

Изотоп Период полураспада Каналы распада
235 U 7.04·10 8 лет α (100%), SF (7·10 -9 %)
238 U 4.47·10 9 лет α (100%), SF (5.5·10 -5 %)
240 Pu 6.56·10 3 лет α (100%), SF (5.7·10 -6 %)
242 Pu 3.75·10 5 лет α (100%), SF (5.5·10 -4 %)
246 Cm 4.76·10 3 лет α (99,97%), SF (0.03%)
252 Cf 2.64 лет α (96,91%), SF (3.09%)
254 Cf 60.5 лет α (0,31%), SF (99.69%)
256 Cf 12.3 лет α (7.04·10 -8 %), SF (100%)

Деление ядер. История

1934 г. − Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра, природу которых установить не удалось.
Л. Сциллард выдвинул идею цепной ядерной реакции.

1939 г. − О. Ган и Ф. Штрассман обнаружили среди продуктов реакций барий.
Л. Мейтнер и О. Фриш впервые объявили, что под действием нейтронов происходило деление урана на два сравнимых по массе осколка.
Н. Бор и Дж. Уилер дали количественную интерпретацию деления ядра, введя параметр деления.
Я. Френкель развил капельную теорию деления ядер медленными нейтронами.
Л. Сциллард, Э. Вигнер, Э. Ферми, Дж. Уилер, Ф. Жолио-Кюри, Я. Зельдович, Ю. Харитон обосновали возможность протекания в уране цепной ядерной реакции деления.

1940 г. − Г. Флеров и К. Петржак открыли явление спонтанного деления ядер урана U.

1942 г. − Э. Ферми осуществил управляемую цепную реакцию деления в первом атомного реакторе.

1945 г. − Первое испытание ядерного оружия (штат Невада, США). На японские города Хиросима (6 августа) и Нагасаки (9 августа) американскими войсками были сброшены атомные бомбы.

1946 г. − Под руководством И.В. Курчатова был пущен первый в Европе реактор.

1954 г. − Запущена первая в мире атомная электростанция (г. Обнинск, СССР).

Деление ядер. С 1934 г. Э.Ферми стал применять нейтроны для бомбардировки атомов. С тех пор количество устойчивых или радиоактивных ядер, полученных путем искусственного превращения, возросло до многих сотен, и почти все места периодической системы заполнились изотопами.
Атомы, возникающие во всех этих ядерных реак­циях, занимали в периодической системе то же место, что и бомбардированный атом, или соседние места. Поэтому произвело большую сенсацию доказательство Ганом и Штрассманом в 1938 г. того, что при обстреле нейтронами последнего элемента периодической системы
урана происходит распад на элементы, которые стоят в средних частях периодической системы. Здесь выступают различные виды распада. Возникаю­щие атомы в большинстве своем неустойчивы и тотчас же распадаются дальше; у некоторых время полурас­пада измеряется секундами, так что Ган должен был применить аналитический метод Кюри для продления такого быстрого процесса. Важно отметить, что стоя­щие перед ураном элементы, протактиний и торий, также обнаруживают подобный распад под действием нейтронов, хотя для того, чтобы распад начался, требуется более высокая энергия нейтронов, чем в случае урана. Наряду с этим в 1940 г. Г. Н. Флеров и К. А. Петржак обнаружили спонтанное расщепление уранового ядра с самым большим из известных до тех пор периодом полураспада: около 2 ·10 15 лет; этот факт становится явным благодаря освобождающимся при этом нейтронам. Так явилась возможность понять, почему «естественная» периодическая система заканчивается тремя названными элементами. Теперь стали известны трансурановые элементы, но они настолько неустойчивы, что быстро распадаются.
Расщепление урана посредством нейтронов дает те­перь возможность того использования атомной энер­гии, которое уже многим мерещилось, как «мечта Жюля Верна».

М. Лауэ, «История физики»

1939 г. О. Ган и Ф. Штрассман, облучая соли урана тепловыми нейтронами, обнаружили среди продуктов реакции барий (Z = 56)


Отто Ганн
(1879 – 1968)

Деление ядер – расщепление ядра на два (реже три) ядра с близкими массами, которые называют осколками деления. При делении возникают и другие частицы – нейтроны, электроны, α-частицы. В результате деления высвобождается энергия ~200 МэВ. Деление может быть спонтанным либо вынужденным под действием других частиц, чаще всего нейтронов.
Характерной особенностью деления является то, что осколки деления, как правило, существенно различаются по массам, т. е. преобладает асимметричное деление. Так, в случае наиболее вероятного деления изотопа урана 236 U, отношение масс осколков равно 1.46. Тяжёлый осколок имеет при этом массовое число 139 (ксенон), а легкий – 95 (стронций). С учётом испускания двух мгновенных нейтронов рассматриваемая реакция деления имеет вид

Нобелевская премия по химии
1944 г. – О. Ган.
За открытие реакции деления ядер урана нейтронами.

Осколки деления


Зависимость средних масс легкой и тяжелой групп осколков от массы делящегося ядра.

Открытие деления ядер. 1939 г.

Я приехал в Швецию, где Лизе Мейтнер страдала от одиночества, и я, как преданный племянник, решил навестить ее на рождество. Она жила в маленьком отеле Кунгэльв около Гетеборга. Я застал ее за завтраком. Она обдумывала письмо, только что полученное ею от Гана. Я был весьма скептически настроен относительно содержания письма, в котором сообщалось об образовании бария при облучении урана нейтронами. Однако ее привлекла такая возможность. Мы гуляли по снегу, она пешком, я на лыжах (она сказала, что может проделать этот путь, не отстав от меня, и доказала это). К концу прогулки мы уже могли сформулировать некоторые выводы; ядро не раскалывалось, и от него не отлетали куски, а это был процесс, скорее напоминавший капельную модель ядра Бора; подобно капле ядро могло удлиняться и делиться. Затем я исследовал, каким образом электрический заряд нуклонов уменьшает поверхностное натяжение, которое, как мне удалось установить, падает до нуля при Z = 100 и, возможно, весьма мало для урана. Лизе Мейтнер занималась определением энергии, выделяющейся при каждом распаде из-за дефекта массы. Она очень ясно представляла себе кривую дефекта масс. Оказалось, что за счет электростатического отталкивания элементы деления приобрели бы энергию около 200 МэВ, а это как раз соответствовало энергии, связанной с дефектом массы. Поэтому процесс мог идти чисто классически без привлечения понятия прохождения через потенциальный барьер, которое, конечно, оказалось бы тут бесполезным.
Мы провели вместе два или три дня на рождество. Затем я вернулся в Копенгаген и едва успел сообщить Бору о нашей идее в тот самый момент, когда он уже садился на пароход, отправляющийся в США. Я помню, как он хлопнул себя по лбу, едва я начал говорить, и воскликнул: «О, какие мы были дураки! Мы должны были заметить это раньше». Но он не заметил, и никто не заметил.
Мы с Лизе Мейтнер написали статью. При этом мы постоянно поддерживали связь по междугородному телефону Копенгаген – Стокгольм.

О. Фриш, Воспоминания. УФН. 1968. Т. 96, вып.4, с. 697.

Спонтанное деление ядер

В описанных ниже опытах мы использовали метод, впервые предложенный Фришем для регистрации процессов деления ядер. Ионизационная камера с пластинами, покрытыми слоем окиси урана, соединяется с линейным усилителем, настроенным таким образом, что α частицы, вылетающие из урана, не регистрируются системой; импульсы же от осколков, намного превышающие по величине импульсы от α-частиц, отпирают выходной тиратрон и считаются механическим реле.
Была специально сконструирована ионизационная камера в виде многослойного плоского конденсатора с общей площадью 15 пластин в 1000 см. Пластины, расположенные друг от друга на расстоянии 3 мм, были покрыты слоем окиси урана 10-20 мг/см
2 .
В первых же опытах с настроенным для счета осколков усилителем удалось наблюдать самопроизвольные (в отсутствие источника нейтронов) импульсы на реле и осциллографе. Число этих импульсов было невелико (6 в 1 час), и вполне понятно поэтому, что это явление не могло наблю­даться с камерами обычного типа…
Мы склонны думать, что наблюдаемый нами эффект следует приписать осколкам, получающимся в результате спонтанного деления урана…

Спонтанное деление следует приписать одному из невозбужденных изотопов U с периодами полураспада, полученными из оценки наших результатов:

U 238 – 10 16 ~ 10 17 лет,
U
235 – 10 14 ~ 10 15 лет,
U
234 – 10 12 ~ 10 13 лет.

Распад изотопа 238 U

Спонтанное деление ядер


Периоды полураспада спонтанно делящихся изотопов Z = 92 - 100

Первая экспериментальная система с уран-графитовой решёткой была построена в 1941 г. под руководством Э. Ферми. Она представляла собой графитовый куб с ребром длиной 2,5 м, содержащий около 7 т окиси урана, заключенной в железные сосуды, которые были размещены в кубе на одинаковых расстояниях друг от друга. На дне уран-графитовой решётки был помещён RaBe источник нейтронов. Коэффициент размножения в такой системе был ≈ 0.7. Окись урана содержала от 2 до 5% примесей. Дальнейшие усилия были направлены на получение более чистых материалов и к маю 1942 г. была получены окись урана, в которой примесь составляла меньше 1%. Чтобы обеспечить цепную реакцию деления, было необходимо использовать большое количество графита и урана – порядка нескольких тонн. Примеси должны были составлять меньше нескольких миллионных долей. Реактор, собранный к концу 1942 г. Ферми в Чикагском университете, имел форму срезанного сверху неполного сфероида. Он содержал 40 т урана и 385 т графита. Вечером 2 декабря 1942 г. после того, как были убраны стержни нейтронного поглотителя, было обнаружено, что внутри реактора происходит цепная ядерная реакция. Измеренный коэффициент составлял 1.0006. Вначале реактор работал на уровне мощности 0.5 Вт. К 12 декабря его мощность была увеличена до 200 Вт. В дальнейшем реактор был перенесен в более безопасное место, и мощность его была повышена до нескольких кВт. При этом реактор потреблял 0.002 г урана-235 в день.

Первый ядерный реактор в СССР

Здание для первого в СССР исследовательского ядерного реактора Ф-1 было готово к июню 1946 г.
После того как были проведены все необходимые эксперименты, раз­работана система управления и защиты реактора, установлены размеры реактора, проведены все необходимые опыты с моделями реактора, определена плотность нейтронов на нескольких моделях, получены графитовые блоки (так называемой ядерной чистоты) и (после нейтронно-физической проверки) урановые блочки, в ноябре 1946 г. приступили к сооружению реактора Ф-1.
Общий радиус реактора был 3,8 м. Для него потребовалось 400 т графита и 45 т урана. Реактор собирали слоями и в 15 ч 25 декабря 1946 г. был собран последний, 62-й слой. После извлечения так называемых аварийных стержней был произведен подъем регулирующего стержня, начался отсчет плотности нейтронов, и в 18 ч 25 декабря 1946 г. ожил, заработал первый в СССР реактор. Это была волнующая победа ученых - создателей ядерного реактора и всего советского народа. А через полтора года, 10 июня 1948 г., промышленный реактор с водой в каналах достиг критического состояния и вскоре началось промышленное производство нового вида ядерного горючего − плутония.

Ядерные реакции деления ядра - реакции деления,заключающиеся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось, и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.

Особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемых нейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z ≈ 1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z ≈ 1,6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд β - -превращений, сопровождаемых испусканием γ-квантов. Так как β - -распад сопровождается превращением нейтрона в протон, то после цепочки β - -превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу. Например, при делении ядра урана U

U + n → Хе + Sr +2 n (265.1)

осколок деления Хе в результате трех актов β - -распада превращается в стабильный изотоп лантана La:

Хе CsBaLa.

Осколки деления могут быть разнообразными, поэтому реакция (265.1) не единственная, приводящая к делению U.

Большинство нейтронов при делении испускается практически мгновенно (t ≤ 10 –14 c), а часть (около 0,7%) испускается осколками деления спустя некоторое время после деления (0,05 c ≤ t ≤ 60 с). Первые из них называются мгновенными, вторые – запаздывающими. В среднем на каждый акт деления приходится 2,5 испущенных нейтронов. Они имеют сравнительно широкий энергетический спектр в пределах от 0 до 7 МэВ, причем на один нейтрон в среднем приходится энергия около 2 МэВ.

Расчеты показывают, что деление ядер должно сопровождаться также выделением большого количества энергии. В самом деле, удельная энергия связи для ядер средней массы составляет примерно 8,7 МэВ, в то время как для тяжелых ядер она равна 7,6 МэВ. Следовательно, при делении тяжелого ядра на два осколка должна освобождаться энергия, равная примерно 1,1 МэВ на один нук­лон.

В основу теории деления атомных ядер (Н. Бор, Я. И. Френкель) положена капельная модель ядра. Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной, и подчиняющейся законам квантовой механики), частицы которой при попадании нейтрона в ядро приходят в колебательное движение, в результате чего ядро разрывается на две части, разлетающиеся с огромной энергией.


Вероятность деления ядер определяется энергией нейтронов. Например, если высокоэнергетичные нейтроны вызывают деление практически всех ядер, то нейтроны с энергией в несколько мега-электрон-вольт – только тяжелых ядер (А >210), Нейтроны, обладающие энергией активации (минимальной энергией, необходимой для осуществления реакции деления ядра) порядка 1 МэВ, вызывают деление ядер урана U, тория Тh, протактиния Pa, плутония Pu. Тепловыми нейтронами делятся ядра U, Pu, и U, Th (два последних изотопа в природе не встречаются, они получаются искусственным путем).

Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления - ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данное поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k ≥ 1.

Оказывается, что не все образующиеся вторичные нейтроны вызывают последующее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит ценная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.

Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа – от его количества, а также размеров и формы активной зоны. Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называются критическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакции, называется критической массой.

Скорость развития цепных реакций различна. Пусть Т - среднее время

жизни одного поколения, а N - число нейтронов в данном поколении. В следующем поколении их число равно kN ,т. е. прирост числа нейтронов за одно поколение dN = kN – N = N (k – 1). Прирост же числа нейтронов за единицу времени, т. е. скорость нарастания цепной реакции,

. (266.1)

Интегрируя (266.1), получим

,

где N 0 – число нейтронов в начальный момент времени, а N - их число в момент времени t . N определяется знаком (k – 1). При k >1 идет развивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k =1 идет самоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяется. При k <1 идет затухающая реакция,

Цепные реакции дпятся на управляемые и неуправляемые. Взрыв атомном бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней U (или Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближаются, общая масса делящегося вещества становится больше критической и возникает взрывная цепная ре акция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах.

Цепная ядерная реакция. В результате опытов по облучению нейтронами урану было найдено, что под действием нейтронов ядра урана делятся на два ядра (осколка) примерно половинной массы и заряда; этот процесс сопровождается испусканием нескольких (двух-трех) нейтронов (рис. 402). Помимо урана, способны делиться еще некоторые элементы из числа последних элементов периодической системы Менделеева. Эти элементы, так же как и уран, делятся не только под действием нейтронов, но также без внешних воздействий (спонтанно). Спонтанное деление было установлено на опыте советскими физиками К. А. Петржаком и Георгием Николаевичем Флеровым (р. 1913) в 1940г. Оно представляет собой весьма редкий процесс. Так, в 1г урана происходит всего лишь около 20 спонтанных делений в час.

Рис. 402. Деление ядра урана под действием нейтронов: а) ядро захватывает нейтрон; б) удар нейтрона о ядро приводит последнее в колебания; в) ядро делится на два осколка; при этом испускается еще несколько нейтронов

Благодаря взаимному электростатическому отталкиванию осколки деления разлетаются в противоположные стороны, приобретая огромную кинетическую энергию (около ). Реакция деления происходит, таким образом, со значительным выделением энергии. Быстродвижущиеся осколки интенсивно ионизуют атомы среды. Это свойство осколков используют для обнаружения процессов деления при помощи ионизационной камеры или камеры Вильсона. Фотография следов осколков деления в камере Вильсона приведена на рис. 403. Крайне существенным является то обстоятельство, что нейтроны, испущенные при делении уранового ядра (так называемые вторичные нейтроны деления), способны вызывать деление новых ядер урана. Благодаря этому можно осуществить цепную реакцию деления: однажды возникнув, реакция в принципе может продолжаться сама собой, охватывая все большее число ядер. Схема развития такой нарастающей целлон реакции изображена на рис. 404.

Рис. 403. Фотография следов осколков деления урана в камере Вильсона: осколки () разлетаются в противоположные стороны из тонкого слоя урана, нанесенного на пластинке, перегораживающей камеру. На снимке видно также множество более тонких следов, принадлежащих протонам, выбитым нейтронами из молекул водяного кара, содержащегося в камере

Осуществление цепной реакции деления на практике не просто; опыт показывает, что в массе природного урана цепная реакция не возникает. Причина этого кроется в потере вторичных нейтронов; в природном уране большая часть нейтронов выходит из игры, не вызывая делений. Как выявили исследования, потеря нейтронов происходит в наиболее распространенном изотопе урана - уране - 238 (). Этот изотоп легко поглощает нейтроны по реакции, подобно реакции серебра с нейтронами (см. § 222); при этом образуется искусственно-радиоактивный изотоп . Делится же с трудом и только под действием быстрых нейтронов.

Более удачными для цепной реакции свойствами обладает изотоп , который содержится в природном уране в количестве . Он делится под действием нейтронов любой энергии - быстрых и медленных и тем лучше, чем меньше энергия нейтронов. Конкурирующий с делением процесс - простое поглощение нейтронов - мало вероятен в в отличие от . Поэтому в чистом уране - 235 возможна цепная реакция деления при условии, однако, что масса урана-235 достаточно велика. В уране малой массы реакция деления обрывается из-за вылета вторичных нейтронов за пределы его вещества.

Рис. 404. Развитие ценной реакции деления: условно принято, что при делении ядра испускается два нейтрона и потерь нейтронов нет, т.е. каждый нейтрон вызывает новое деление; кружочки - осколки деления, стрелки - нейтроны деления

В самом деле, ввиду крошечных размеров атомных ядер нейтрон проходит в веществе значительный путь (измеряемый сантиметрами), прежде чем случайно натолкнется на ядро. Если размеры тела малы, то вероятность столкновения на пути до выхода наружу мала. Почти все вторичные нейтроны деления вылетают через поверхность тела, не вызывая новых делений, т. е. не продолжая реакции.

Из тела больших размеров вылетают наружу главным образом нейтроны, образовавшиеся в поверхностном слое. Нейтроны, образовавшиеся внутри тела, имеют перед собой достаточную толщу урана и в большинстве своем вызывают новые деления, продолжая реакцию (рис. 405). Чем больше масса урана, тем меньшую долю объема составляет поверхностный слой, из которого теряется много нейтронов, и тем благоприятнее условия для развития цепной реакции.

Рис. 405. Развитие цепной реакции деления в . а) В малой массе большинство нейтронов деления вылетает наружу. б) В большой массе урана многие нейтроны деления вызывают деления новых ядер; число делений возрастает от поколения к поколению. Кружочки - осколки деления, стрелки - нейтроны деления

Увеличивая постепенно количество , мы достигнем критической массы, т. е. наименьшей массы, начиная с которой возможна незатухающая цепная реакция деления в . При дальнейшем увеличении массы реакция начнет бурно развиваться (начало ей положат спонтанные деления). При уменьшении массы ниже критической реакция затухает.

Итак, можно осуществить цепную реакцию деления. Если располагать достаточным количеством чистого , отделенного от .

Как мы видели в §202, разделение изотопов представляет собой хотя сложную и дорогую, но все же выполнимую операцию. И действительно, извлечение из природного урана явилось одним из тех способов, при помощи которых цепная реакция деления была осуществлена на практике.

Наряду с этим цепная реакция была достигнута и другим способом, не требующим разделения изотопов урана. Этот способ несколько более сложен в принципе, но зато более прост в осуществлении. Он использует замедление быстрых вторичных нейтронов деления до скоростей теплового движения. Мы видели, что в природном уране незамедленные вторичные нейтроны поглощаются главным образом изотопом . Так как поглощение в не приводит к делению, то реакция обрывается. Как показывают измерения, при замедлении нейтронов до тепловых скоростей поглощающая способность возрастает сильнее поглощающей способности . Поглощение нейтронов изотопом , ведущее к делению, получает перевес. Поэтому, если замедлить нейтроны деления, не дав им поглотится в , цепная реакция станет возможной и с природным ураном.

Рис. 406. Система из природного урана и замедлителя, в которой может развиваться цепная реакция деления

На практике такого результата добиваются, помещая топкие стержни из природного урана в виде редкой решетки в замедлитель (рис. 406). В качестве замедлителей используют вещества, обладающие малой атомной массой и слабо поглощающие нейтроны. Хорошими замедлителями являются графит, тяжелая вода, бериллий.

Пусть в одном из стержней произошло деление ядра урана. Так как стержень сравнительно тонкий, то быстрые вторичные нейтроны вылетят почти все в замедлитель. Стержни расположены в решетке довольно редко. Вылетевший нейтрон до попадания в новый стержень испытывает много соударений с ядрами замедлителя и замедляется до скорости теплового движения (рис. 407). Попав затем в урановый стержень, нейтрон поглотится скорее всего в и вызовет новое деление, продолжая тем самым реакцию. Цепная реакция деления была впервые осуществлена в США в 1942г. группой ученых под руководством итальянского физика Энрико Ферми (1901-1954) в системе с природным ураном. Независимо этот процесс был реализован в СССР в 1946г. академиком Игорем Васильевичем Курчатовым (1903-1960) с сотрудниками.

Рис. 407. Развитие ценной реакции деления в системе из природного урана и замедлителя. Быстрый нейтрон, вылетев из тонкого стержня, попадет в замедлитель и замедляется. Попав снова в уран, замедленный нейтрон скорее всего поглощается в , вызывая деление (обозначение: два белых кружка). Некоторые нейтроны поглощаются в , не вызывая деления (обозначение: черный кружок)