Биографии Характеристики Анализ

Корреляционный анализ спирмена. Корреляционный метод - реферат

Не со всеми проблемами можно справиться экспериментальным методом. Существует множество ситуаций, когда исследователь не может контролировать, какие испытуемые попадают в те или иные условия. Например, если надо проверить гипотезу, что люди с анорексией более чувствительны к изменениям вкуса, чем люди с нормальным весом, то не можем же мы собрать группу испытуемых с нормальным весом и потребовать, чтобы у половины из них появилась анорексия! На самом деле нам придется отобрать людей, уже страдающих анорексией, и тех, у кого вес в норме, и проверить, различаются ли они также по вкусовой чувствительности. Вообще говоря, можно использовать метод корреляций, чтобы определить связана ли некоторая переменная, которую мы не можем контролировать, с другой интересующей нас переменной, или, иначе говоря, коррелируют ли они между собой.

В вышеприведенном примере у переменной веса есть только два значения -- нормальный и анорексичный. Чаще случается, что каждая из переменных может принимать много значений, и тогда надо определить, насколько величины одной и другой переменной коррелируют между собой. Определить это может статистический параметр, называемый коэффициентом корреляции и обозначаемый буквой r. Коэффициент корреляции позволяет оценить, насколько связаны две переменные, и выражается числом от -1 до +1. Ноль означает отсутствие связи; полная связь выражается единицей (+1, если отношение положительное, и -1, если оно отрицательное). По мере увеличения r от 0 до 1 сила связи возрастает.

Рис.6.

Эти гипотетические данные принадлежат 10 пациентам, каждый из которых имеет некоторое повреждение участков мозга, ответственных, насколько известно, за узнавание лиц. На рис. 6а пациенты располагаются вдоль горизонтали соответственно объему повреждения мозга, причем самая левая точка показывает пациента с наименьшим повреждением (10%), а самая правая точка показывает пациента с наибольшим повреждением (55%). Каждая точка на графике отражает показатель для отдельного пациента в тесте на узнавание лиц. Корреляция положительная и равна 0,90. На рис. 6б изображены те же самые данные, но теперь они показывают долю правильных ответов, а не ошибок. Здесь корреляция отрицательная, равная -0,90. На рис..6в успехи пациентов в тесте на распознавание отображены в зависимости от их роста. Здесь корреляция равна нулю.

Суть коэффициента корреляции можно пояснить на примере графического представления данных гипотетического исследования. Как показано на рис. 6а, в исследовании участвуют пациенты, о которых заранее известно, что у них поврежден мозг, и это вызвало разной степени трудности в узнавании лиц (прозопагнозия). Предстоит выяснить, возрастает ли трудность, или ошибка узнавания лиц, с увеличением процента поврежденной мозговой ткани. Каждая точка на графике 6а показывает результат для отдельного пациента при его тестировании на узнавание лиц. Например, пациент с 10%-ным повреждением ошибался в тесте на распознавание лиц в 15% случаев, а пациент с 55%-ным повреждением делал ошибки в 95% случаев. Если бы ошибка узнавания лиц постоянно возрастала с увеличением процента повреждения мозга, точки на графике располагались бы все время выше при движении слева направо; если бы они размещались на диагонали рисунка, коэффициент корреляции был бы r = 1,0. Однако несколько точек расположены по разные стороны этой линии, поэтому корреляция составляет около 90%. Корреляция 90% означает очень сильную связь между объемом поврежденного мозга и ошибками узнавания лиц. Корреляция на рис. 6а -- положительная, поскольку большее повреждение мозга вызывает больше ошибок.

Если бы вместо ошибок мы решили отобразить долю правильных ответов в тесте на распознавание, то получили бы график, изображенный на рис. 6б. Здесь корреляция отрицательная (равная примерно -0,90), поскольку с увеличением повреждения мозга доля правильных ответов уменьшается. Диагональ на рис. 6б -- это просто инверсный вариант той, что на предыдущем рисунке.

Наконец, обратимся к графику на рис. 6в. Здесь отображена доля ошибок пациентов в тесте на распознавание лиц в зависимости от их роста. Разумеется, нет оснований считать, что доля узнанных лиц связана с ростом пациента, и график подтверждает это. При движении слева направо точки не проявляют согласованного движения ни вниз, ни вверх, а разбросаны вокруг горизонтальной линии. Корреляция равна нулю.

Числовой метод вычисления коэффициента корреляции описан в Приложении II. Сейчас, однако, мы сформулируем несколько элементарных правил, которые помогут вам разобраться с коэффициентом корреляции, когда вы встретитесь с ним в последующих главах.

Корреляция бывает положительной (+) и отрицательной (-). Знак корреляции показывает, связаны ли две переменные положительной корреляцией (величина обеих переменных растет или уменьшается одновременно) или отрицательной корреляцией (одна переменная растет при уменьшении другой). Предположим, например, что количество пропусков занятий студентом имеет корреляцию -0,40 с баллами в конце семестра (чем больше пропусков, тем меньше баллов). С другой стороны, корреляция между полученными баллами и количеством посещенных занятий будет +0,40. Прочность связи одна и та же, но знак ее зависит от того, считаем ли мы пропущенные или посещенные занятия.

По мере усиления связи двух переменных r увеличивается от 0 до 1. Чтобы лучше это представить, рассмотрим несколько известных положительных коэффициентов корреляции:

Коэффициент корреляции между баллами, полученными в первый год обучения в колледже, и баллами, полученными на втором году, составляет около 0,75.

Корреляция между показателями геста на интеллект в возрасте 7 лет и при повторном тестировании в 18 лет составляет примерно 0,70.

Корреляция между ростом одного из родителей и ростом ребенка во взрослом возрасте, составляет около 0,50.

Корреляция между результатами теста на способность к обучению, полученными в школе и в колледже, равна примерно 0,40.

Корреляция между баллами, полученными индивидуумами в бланковых тестах, и суждением психолога-эксперта об их личностных качествах составляет около 0,25.

В психологических исследованиях коэффициент корреляции 0,60 и выше считается достаточно высоким. Корреляция в диапазоне от 0,20 до 0,60 имеет практическую и теоретическую ценность и полезна при выдвижении предсказаний. К корреляции от 0 до 0,20 следует относиться осторожно, при выдвижении предсказаний ее польза минимальна.

Тесты. Знакомый пример использования корреляционного метода -- тесты по измерению некоторых способностей, достижений и других психологических качеств. При тестировании группе людей, различающихся по какому-нибудь качеству (например, математическим способностям, ловкости рук или агрессивности), предъявляют некоторую стандартную ситуацию. Затем можно вычислить корреляцию между изменениями показателей данного теста и изменением другой переменной. Например, можно установить корреляцию между показателями группы студентов в тесте на математические способности и их оценками по математике при дальнейшем обучении в колледже; если корреляция значительная, то на основе результатов этого теста можно решить, кого из нового набора студентов можно перевести в группу с повышенными требованиями.

Тестирование -- важный инструмент психологических исследований. Оно позволяет психологам получать большое количество данных о людях с минимальным отрывом их от повседневных дел и без применения сложного лабораторного оборудования. Построение тестов включает множество этапов, которые мы подробно рассмотрим в последующих главах.

Корреляция и причинно-следственные связи. Между экспериментальными и корреляционными исследованиями есть важное различие. Как правило, в экспериментальном исследовании систематически манипулируют одной переменной (независимой) с целью определить ее причинное воздействие на некоторые другие переменные (зависимые). Такие причинно-следственные связи нельзя вывести из корреляционных исследований. Ошибочное понимание корреляции как причинно-следственного отношения можно проиллюстрировать на следующих примерах. Может существовать корреляция между мягкостью асфальта на улицах города и количеством солнечных ударов, случившихся за день, но отсюда не следует, что размягченный асфальт выделяет какой-то яд, приводящий людей на больничную койку. На самом деле изменение обеих этих переменных -- мягкости асфальта и числа солнечных ударов -- вызывается третьим фактором -- солнечным теплом. Еще один простой пример -- высокая положительная корреляция между большим количеством аистов, гнездящихся во французских деревнях, и высокой рождаемостью, зарегистрированной там же. Предоставим изобретательным читателям самим догадываться о возможных причинах такой корреляции, не прибегая к постулированию причинно-следственной связи между аистами и младенцами. Эти примеры служат достаточным предостережением от понимания корреляции как причинно-следственного отношения. Если между двумя переменными есть корреляция, изменение одной может вызывать изменения другой, но без специальных экспериментов такой вывод будет неоправданным.

Все явления в природе и обществе находятся во взаимной связи. Выяснение

наличия связей между изучаемыми явлениями ― одна из важных

задач статистики. Многие медико-биологические и медико-социальные

исследования требуют установления вида связи (зависимости) между

случайными величинами. Сама постановка большого круга задач

в медицинских исследовательских работах предполагает построение

и реализацию алгоритмов «фактор ― отклик», «доза ― эффект».

Зачастую нужно установить наличие эффекта при имеющейся дозе

и оценить количественно полученный эффект в зависимости от дозы. Решение

этой задачи напрямую связано с вопросом прогнозирования определенного

эффекта и дальнейшего изучения механизма возникновения именно такого

Как известно, случайные величины X и Y могут быть либо независимыми,

либо зависимыми. Зависимость случайных величин подразделяется на

функциональную и статистическую (корреляционную).

Функциональная зависимость ― такой вид зависимости, когда каждому

значению одного признака соответствует точное значение другого.

В математике функциональную зависимость переменной X от переменной

Y называют зависимостью вида X= f (Y), где каждому допустимому значению

Y ставится в соответствие по определенному правилу единственно возможное

значение X.

Например: взаимосвязь площади круга (S) и длины окружности (L). Известно,

что площадь круга и длина окружности связаны вполне определенным

отношением S = r L, где r – радиус круга. Умножив длину окружности

на половину ее радиуса, можно точно определить площадь крута. Такую

изменение одного признака изменением другого. Этот вид связи характерен

для объектов, являющихся сферой приложения точных наук.

В медико-биологических исследованиях сталкиваться с функциональной

связью приходится крайне редко, поскольку объекты этих исследований

имеют большую индивидуальную вариабельность (изменчивость). С

другой стороны, характеристики биологических объектов зависят,

как правило, от комплекса большого числа сложных взаимосвязей и не могут

быть сведены к отношению двух или трех факторов. Во многих

медицинских исследованиях требуется выявить зависимость какой-либо

величины, характеризующей результативный признак, от нескольких

факториальных признаков.

Дело в том, что на формирование значений случайных величин X и Y

оказывают влияние различные факторы. Обе величины ― и X, и

Y ― являются случайными, но так как имеются общие факторы, оказывающие

влияние на них, то X и Y обязательно будут взаимосвязаны. И связь эта

уже не будет функциональной, поскольку в медицине и биологии часто

бывают факторы, влияющие лишь на одну из случайных величин и

разрушающие прямую (функциональную) зависимость между значениями

X и Y. Связь носит вероятностный, случайный характер, в численном выражении

меняясь от испытания к испытанию, но эта связь определенно присутствует

и называется корреляционной.

Корреляционной является зависимость массы тела от роста, поскольку

на нее влияют и многие другие факторы (питание, здоровье,

наследственность и т.д.). Каждому значению роста (X) соответствует множество

значений массы (Y), причем, несмотря на общую тенденцию, справедливую

для средних: большему значению роста соответствует и большее

значение массы, ― в отдельных наблюдениях субъект с большим ростом

может иметь и меньшую массу. Корреляционной будет зависимость

заболеваемости от воздействия внешних факторов, например

запыленности, уровня радиации, солнечной активности и т.д. Имеется

корреляционная зависимость между дозой ионизирующего излучения и

числом мутаций, между пигментом волос человека и цветом глаз, между

показателями уровня жизни населения и смертностью, между числом

пропущенных студентами лекций и оценкой на экзамене.

Именно корреляционная зависимость наиболее часто встречается в

природе в силу взаимовлияния и тесного переплетения огромного множества

самых разных факторов, определяющих значение изучаемых показателей.

Корреляционная зависимость ― это зависимость, когда при изменении

одной величины изменяется среднее значение другой.

Строго говоря, термин «зависимость» при статистической обработке

материалов медико-биологических исследований должен использоваться

весьма осторожно. Это связано с природой статистического анализа,

который сам по себе не может вскрыть истинных причинно-следственных

отношений между факторами, нередко опосредованными третьими факторами,

причем эти третьи факторы могут лежать вообще вне поля зрения

исследователя. С помощью статистических критериев можно дать только

формальную оценку взаимосвязей. Попытки механически

перенести данные статистических расчетов в объективную реальность

могут привести к ошибочным выводам. Например, утверждение: «Чем

громче утром кричат воробьи, тем выше встает солнце», несмотря на явную

несуразность, с точки зрения формальной статистики вполне правомерно.

Таким образом, термин «зависимость» в статистическом анализе подразумевает

только оценку соответствующих статистических критериев.

Корреляционные связи называют также статистическими (например,

зависимость уровня заболеваемости от возраста населения). Эти связи

непостоянны, они колеблются от нуля до единицы. Ноль означает отсутствие

зависимости между признаками, а единица ― полную, или функциональную,

связь, когда имеется зависимость только от одного признака.

Мерой измерения статистической зависимости служат раз личные

коэффициенты корреляции. Выбор метода для определения взаимосвязей

обусловлен видом самих признаков и способами их группировки.

Для количественных данных применяют линейную регрессию и

коэффициент линейной корреляции Пирсона. Для качественных признаков

применяются таблицы сопряженности и рассчитываемые на их основе

коэффициенты сопряженности (С и Ф), Чупрова (К). Для при знаков,

сформированных в порядковой (ранговой, балльной) шкале, можно применять

ранговые коэффициенты корреляции Спирмена или Кендэла.

Любую существующую зависимость по направлению связи можно

подразделить на прямую и обратную. Прямая зависимость

― это зависимость, при которой увеличение или уменьшение значения

одного признака ведет, соответственно, к увеличению или уменьшению второго.

Например: при увеличении температуры возрастает давление газа

(при его неизменном объеме), при уменьшении температуры снижается

и давление. Обратная зависимость имеется тогда, когда при увеличении

одного признака второй уменьшается, и наоборот: при уменьшении

одного второй увеличивается. Обратная зависимость, или обратная

связь, является основой нормального регулирования почти

всех процессов жизнедеятельности любого организма.

Оценка силы корреляционной связи проводится в соответствии со шкалой тесноты.

Если размеры коэффициента корреляции от ±0,9(9) до ±0,7, то связь

сильная, коэффициенты корреляции от ±0,31 до ±0,69 отражают связь средней

силы, а коэффициенты от ±0,3 до нуля характеризуют слабую связь.

Известное представление о наличии или отсутствии корреляционной связи

между изучаемыми явлениями или признаками (например, между массой тела и

ростом) можно получить графически, не прибегая к специальным расчетам. Для

этого достаточно на чертеже в системе прямоугольных координат отложить,

например,

на оси абсцисс величины роста, а на оси ординат ― массы тела и нанести ряд точек,

каждая из которых соответствует индивидуальной величине веса при данном

росте обследуемого. Если полученные точки располагаются кучно по наклонной

прямой к осям ординат в виде овала (эллипса) или по кривой линии,

то это свидетельствует о зависимости между явлениями. Если же точки

расположены беспорядочно или на прямой, параллельной абсциссе либо ординате,

то это говорит об отсутствии зависимости.

По форме корреляционные связи подразделяются на прямолинейные, когда

наблюдается пропорциональное изменение одного признака в зависимости от

изменения другого (графически эти связи изображаются в виде прямой линии или

близкой к ней), и криволинейные, когда одна величина признака

Корреляционные методы (correlation methods)

К. м., получившие свое назв. благодаря тому, что основываются на «со-отношении» («co-relation») переменных, представляют собой статистические методы, начало к-рым было положено в работах Карла Пирсона примерно в конце XIX в. Они тесно связаны с понятием регрессии, еще раньше сформулированным сэром Фрэнсисом Гальтоном, к-рый первым начал статистически изучать связь между ростом отцов и сыновей. Именно Гальтон нанял Пирсона в качестве статистика для обработки рез-тов исслед., к-рые он и его отец, находясь под влиянием идей своих родственников - Дарвинов, проводили с целью определения вклада наследственности в развитие челов. качеств. Благодаря этому сотрудничеству между Гальтоном и Пирсоном и более ранним открытиям первого в области регрессионного анализа символ «r» (первая буква слова regression) исторически закрепился в качестве маркера К. м.

Корреляция как произведение моментов

Пирсон определял коэффициент корреляции как «среднее произведение Z-оценок». С этих пор r известен всем как коэффициент произведения моментов:

r = (aZxZy) / N.

Его обоснованное вычисление предполагает, что: а) две коррелируемые переменные непрерывны и нормально распределены; б) линии наилучшего соответствия для совместного двумерного распределения яв-ся прямыми; в) одинаковая вариабельность сохраняется по всей широте совместного распределения переменных. Простая формула для вычисления коэффициента корреляции произведения моментов Пирсона по «сырым» (нестандартизованным) данным выглядит следующим образом:

Бисериальная корреляция

Разновидностью коэффициента корреляции произведения моментов яв-ся бисериальный коэффициент корреляции, тж разраб. Пирсоном. В тех случаях, когда только одна из переменных непрерывна и имеет приемлемо нормальное распределение, а др. искусственно дихотомизирована (предполагается, что она тоже непрерывна и нормально распределена, но представлена в бинарной форме, напр.: «справился/не справился»), связь между этими двумя переменными тж можно выразить при помощи r. В этом случае коэффициент корреляции обозначается через rbis. Как и коэффициент произведения моментов r, он изменяется в диапазоне от +1,00 (прямая функциональная связь) через 0,00 (отсутствие связи) до -1,00 (обратная функциональная связь). Метод бисериальной корреляции оказался весьма полезным в процедурах анализа заданий, т. к. он измеряет связь между рез-тами выполнения каждого задания теста, выраженными в бинарной форме («справился/не справился»), и общей оценкой по данному тесту.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r. Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через rpbis Поскольку в rpbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае rbis, его знак определяется произвольно. Поэтому для всех практ. целей rpbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции rtet, к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления rtet достаточно сложны. Поэтому при практ. применении этого метода используются приближения rtet, получаемые на основе сокращенных процедур и таблиц.

Ранговая корреляция

Непараметрический аналог параметрических методов корреляции существует в форме коэффициента ранговой корреляции, обозначаемого греческой буквой ρ(ро). Он применяется для определения степени связи между двумя переменными, значения к-рых представлены рангами, а не «сырыми» или стандартизованными оценками. Логическое обоснование вывода коэффициента ρ не требует соблюдения строго определенного набора допущений, и потому ρ является непараметрической стат. Его формула, получаемая из формулы произведения моментов Пирсона путем замены интервальных данных на ранжированные, приводится к виду:

ρ = 1 - (6Σd2) / N(N2 - 1), где d - ранговая разность, а N - число пар вариантов.

Множественная корреляция

Методы корреляции произведения моментов Пирсона и линейного регрессионного анализа Гальтона были обобщены и расширены в 1897 г. Джорджем Эдни Юлом до модели множественной линейной регрессии, предполагающей использование многомерного нормального распределения. Методы множественной корреляции позволяют оценить связь между множеством непрерывных независимых переменных и одной зависимой непрерывной переменной. Коэффициент множественной корреляции обозначается через R0.123...p Его вычисление требует решения совместной системы линейных уравнений. Число линейных уравнений равно числу независимых переменных.

Иногда необходимо исключить эффект третьей переменной, с тем чтобы определить «чистую» связь между любой парой переменных. Частный (парциальный) коэффициент корреляции выражает связь между двумя переменными при исключенном (элиминированном) влиянии еще одной или неск. др. переменных. В простейшем случае частный коэффициент корреляции вычисляется как функция парных корреляций (произведений моментов) между Y, X1 и Х2:

Если требуется исключить влияние двух переменных, скажем, Х2 и Х3, то формула принимает вид:

Каноническая корреляция

Множественная корреляция, позволяющая оценивать тесноту связи между множеством независимых переменных и одной из множества зависимых переменных, представляет собой частный случай более общего метода - канонической корреляции. Этот метод был разраб. в 1935 г. Гарольдом Хотеллингом. Коэффициенты канонической корреляции (RCi) определяются на двух множествах переменных. Чтобы показать связи, существующие между этими двумя множествами непрерывных переменных, вычисляется неск. канонических коэффициентов; их число определяется по числу переменных в меньшем множестве (если число переменных в них не одинаково). При канонической корреляции в обоих множествах (по отдельности) отыскиваются линейные комбинации входящих в них переменных, позволяющие определить (новые) координатные оси в пространстве каждого множества. Каждая такая линейная комбинация наз. канонической величиной (или канонической переменной). Канонические переменные отличаются друг от друга весами, к-рые они придают первичным переменным в соотв. множестве. Каноническая корреляция - это корреляция произведения моментов между парой канонических переменных, по одной из каждого множества. Т. о., каждый коэффициент канонической корреляции является мерой тесноты линейной связи между двумя координатными осями соотв. множеств переменных. Каноническая корреляция яв-ся методом многомерного статистического анализа.

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

ЛЕКЦИЯ на тему: " КОРРЕЛЯЦИОННЫЙ АНАЛИЗ "

1.1. Виды взаимосвязей между признаками

Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью к заболеваниям существует определенная связь.
Чаще всего рассматриваются простейшие ситуации, когда в ходе исследования измеряют значения только одного варьирующего признака генеральной совокупности. Остальные признаки либо считаются постоянными для данной совокупности, либо относятся к случайным факторам, определяющим варьирование исследуемого признака. Как правило, исследования в спорте значительно сложнее и носят комплексный характер. Например, при контроле за ходом тренировочного процесса измеряется спортивный результат, и одновременно может оцениваться целый ряд биомеханических, физиологических, биохимических и других параметров (скорость и ускорения общего центра масс и отдельных звеньев тела, углы в суставах, сила мышц, показатели систем дыхания и кровообращения, объем физической нагрузки и энергозатраты организма на ее выполнение и т. д.). При этом часто возникает вопрос о взаимосвязи отдельных признаков. Например, как зависит спортивный результат от некоторых элементов техники спортивных движений? как связаны энергозатраты организма с объемом физической нагрузки определенного вида? насколько точно по результатам выполнения некоторых стандартных упражнений можно судить о потенциальных возможностях человека в конкретном виде спортивной деятельности? и т. п. Во всех этих случаях внимание исследователя привлекает зависимость между различными величинами, описывающими интересующие его признаки.
Этой цели служит математическое понятие функции, имеющее в виду случаи, когда определенному значению одной (независимой) переменной Х, называемой аргументом , соответствует определенное значение другой (зависимой) переменной Y, называемой функцией . Однозначная зависимость между переменными величинами Y и X называется функциональной , т.е. Y = f(X) (“игрек есть функция от икс”).
Например, в функции Y = 2X каждому значению X соответствует в два раза большее значение Y . В функции Y = 2X 2 каждому значению Y соответствует 2 определенных значения X . Графически это выглядит так (рис.1.1, 1.2 соответственно):


Рис.1.1. Рис.1.2.

Но такого рода однозначные или функциональные связи между переменными величинами встречаются не всегда. Известно, например, что между ростом (длиной тела) и массой человека существует положительная связь: более высокие индивиды имеют обычно и большую массу, чем индивиды низкого роста. То же наблюдается и в отношении качественных признаков: блондины, как правило, имеют голубые, а брюнеты - карие глаза. Однако из этого правила имеются исключения, когда сравнительно низкорослые индивиды оказываются тяжелее высокорослых, и среди населения хотя и нечасто, но встречаются кареглазые блондины и голубоглазые брюнеты. Причина таких “исключений” в том, что каждый биологический признак, выражаясь математическим языком, является функцией многих переменных; на его величине сказывается влияние и генетических и средовых факторов, в том числе и случайных, что вызывает варьирование признаков. Отсюда зависимость между ними приобретает не функциональный, а статистический характер , когда определенному значению одного признака, рассматриваемого в качестве независимой переменной, соответствует не одно и то же числовое значение, а целая гамма распределяемых в вариационный ряд числовых значений другого признака, рассматриваемого в качестве независимой переменной. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией (термин “корреляция” происходит от лат. correlatio - соотношение, связь). При этом данный вид взаимосвязи между признаками проявляется в том, что при изменении одной из величин изменяется среднее значение другой.
Если функциональные связи одинаково легко обнаружить и на единичных, и на групповых объектах, то этого нельзя сказать о связях корреляционных, которые изучаются только на групповых объектах методами математической статистики.
Задача корреляционного анализа сводится к установлению направления и формы связи между признаками, измерению ее тесноты и к оценке достоверности выборочных показателей корреляции.
Корреляционная связь между признаками может быть линейной и криволинейной (нелинейной), положительной и отрицательной.
Прямая корреляция отражает однотипность в изменении признаков: с увеличением значений первого признака увеличиваются значения и другого, или с уменьшением первого уменьшается второй.
Обратная корреляция указывает на увеличение первого признака при уменьшении второго или уменьшение первого признака при увеличении второго.
Например, больший прыжок и большее количество тренировок - прямая корреляция, уменьшение времени, затраченного на преодоление дистанции, и большее количество тренировок - обратная корреляция.

1.2. Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i ) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.
Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i .
Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i г рафически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем .
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: x , y – средние значения (математические ожидания); x , y – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y .
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рис.1.3, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y .


Рис.1.3. Графическая интерпретация взаимосвязи между показателями.

Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX) . В этом случае говорят о полной корреляции. При р = 1 значения x i , y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рис.1.3, б).
В промежуточных случаях (-1 точки, соответствующие значениям xi , y i , попадают в область, ограниченную некоторым эллипсом (рис.1.3, в. г), причем при p > 0 имеет место положительная корреляция (с увеличением x i значения y i имеют тенденцию к возрастанию), при p корреляция отрицательная. Чем ближе р к , тем уже эллипс и тем теснее экспериментальные значения группируются около прямой линии.
Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях мы рассматривали бы так называемую, нелинейную (или криволинейную) корреляцию (рис.1.3, д).
Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту и форму. Это имеет существенное значение для следующего шага в анализе ѕ выбора и вычисления соответствующего коэффициента корреляции.
Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида Y = f(X) , где признак Y зависимая переменная , или функция от независимой переменной X , называемой аргументом . Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Пример 1.2. Определить форму и направление взаимосвязи между показателями пульса покоя и абсолютными значениями пробы PWC 170 у 13 исследуемых с помощью построения графика корреляционного поля, если данные выборок таковы:

x i , уд/мин ~ 80; 72; 71; 80; 84; 82; 78; 70; 83; 72; 72; 73; 81
y i , кГм/мин ~ 858; 979; 1071; 920; 982; 1000; 1004; 1022; 807; 1099; 817; 879; 982

1. Построим график данного корреляционного поля, отложив на оси Х в порядке возрастания показатели пульса покоя, на оси Y - абсолютные значения пробы PWC 170 .

2. Сделать вывод о форме и направлении взаимосвязи между исследуемыми показателями.

Вывод: график данного корреляционного поля позволяет предположить, что, возможно, между пульса покоя и абсолютными значениями пробы PWC 170 у исследуемой группы наблюдается прямая, обратная зависимость, т.е. со снижением показателя пульса покоя происходит увеличение абсолютных значений PWC 170 .


Задача 1 . Определить форму и направление взаимосвязи между результатами в беге на первой и второй половине дистанции 400 м у 13 исследуемых с помощью построения графика корреляционного поля, если данные выборок таковы:
x i , с ~ 25,2; 26,4; 26,0; 25,8; 24,9; 25,7; 25,7; 25,7; 26,1; 25,8; 25,9; 26,2; 25,6 (первые 200 м).
y i , с ~ 30,8; 29,4; 30,2; 30,5; 31,4; 30,3; 30,4; 30,5; 29,9; 30,4; 30,3; 30,5; 30,6 (последние 200 м).

Задача 2 . Определить форму и направление взаимосвязи между результатами в толчке штанги и прыжка в высоту с места у 12 тяжелоатлетов весовой категории до 60 кг с помощью построения графика корре-ляционного поля, если данные выборок таковы:
Результат в толчке: x i , кг ~ 107,5; 110; 110; 115; 115; 107,5; 107,5; 120; 122,5; 112,5; 120; 110.
Прыжок в высоту с места: y i , см ~ 57; 60; 58; 61; 63; 58; 55; 64; 65; 64; 66; 61.

Задача 3 . Определить форму и направление взаимосвязи между результатами кистевой динамометрии правой и левой рук у 7 школьников с помощью построения графика корреляционного поля, если данные выборок таковы:
Правая рука: x i , кГ ~ 14,0; 14,2; 14,9; 15,4; 16,0; 17,2; 18,1.
Левая рука: y i , кГ ~ 12,1; 13,8; 14,2; 13,0; 14,6; 15,9; 17,4.

1.3. Коэффициенты корреляции и их свойства.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (x i , y i ), полученную при совместном измерении двух признаков Х и Y . Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции ). Его принято обозначать символом r .
Коэффициенты корреляции - удобный показатель связи, получивший широкое применение в практике. К их основным свойствам необходимо отнести следующие:

В практической деятельности, когда число коррелируемых пар признаков Х и Y не велико (), то при оценке зависимости между показателями используется следующую градацию:
1) высокая степень взаимосвязи – значения коэффициента корреляции находится в пределах от 0,7 до 0,99;
2) средняя степень взаимосвязи – значения коэффициента корреляции находится в пределах от 0,5 до 0,69;
3) слабая степень взаимосвязи – значения коэффициента корреляции находится от 0,2 до 0,49.

1.4. Нормированный коэффициент корреляции Браве-Пирсона

В качестве оценки генерального коэффициента корреляции р используется коэффициент корреляции r Браве–Пирсона. Для его определения принимается предположение о двумерном нормальном распределении генеральной совокупности, из которой получены экспериментальные данные. Это предположение может быть проверено с помощью соответствующих критериев значимости. Следует отметить, что если по отдельности одномерные эмпирические распределения значений x i и y i согласуются с нормальным распределением, то из этого еще не следует, что двумерное распределение будет нормальным. Для такого заключения необходимо еще проверить предположение о линейности связи между случайными величинами Х и Y . Строго говоря, для вычисления коэффициента корреляции достаточно только принять предположение о линейности связи между случайными величинами, и вычисленный коэффициент корреляции будет мерой этой линейной связи.
Коэффициент корреляции Браве–Пирсона () относится к параметрическим коэффициентам и для практических расчетов вычисляется по формуле:
(1.1)
Из формулы (1.1) видно, что для вычисления необходимо найти средние значения признаков Х и Y , а также отклонения каждого статистического данного от его среднего . Зная эти значения, находятся суммы . Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным для k = n –2 (табл. 10 приложения). Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Просмотрите примеры решения задач.

Пример 1.4. Определить достоверность взаимосвязи между показателями веса и количеством подтягиваний на перекладине у 11 исследуемых с помощью расчета нормированного коэффициента корреляции, если данные выборок таковы:

x i , кг ~ 51; 50; 48; 51; 46; 47; 49; 60; 51; 52; 56.
y i , кол-раз ~ 13; 15; 13; 16; 12; 14; 12; 10; 18; 10; 12.

1. Расчет нормированного коэффициента корреляции Пирсона произвести по формуле (1):

2. Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

x i

y i

Тогда

К = n –2 (2)

K = 11 – 2 = 9

4. Сравнить расчетное значение нормированного коэффициента корреляции (r ф = -0,34) с табличным значением для К = 9
при  = 5% (табл.1 приложения) и сделать вывод.

Вывод:
1) т.к. r ф = -0,34 2) т.к. r ф = -0,34

Задания на тему лекции
Самостоятельно решите следующие задачи:

Задача 1. Определить достоверность взаимосвязи между показателями веса и результатами прыжков в длину с места у 9 исследуемых с помощью расчета нормированного коэффициента корреляции, если данные выборок таковы:
Показатели веса: x i , кг ~ 66; 80; 73; 74; 85; 79; 68; 71; 70.
Результаты прыжков: y i , см ~ 203; 185; 199; 197; 183; 205; 217; 190; 200.

Задача 2. Определить достоверность взаимосвязи между показателями пульса покоя и пульса восстановления 8 исследуемых с помощью рас-чета нормированного коэффициента корреляции, если данные выборок таковы:
ЧСС покоя: x i , уд/мин ~ 66; 80; 73; 74; 85; 79; 68; 71.
ЧСС восстановления: y i , уд/мин ~ 70; 85; 78; 78; 90; 84; 66; 72.

Задача 3. Определить достоверность взаимосвязи между результатами времени прохождения дистанции и показателями абсолютных значений в пробе PWC 170 у 10 юных яхтсменов с помощью расчета нормированного коэффициента корреляции, если данные выборок таковы:
Результат на дистанции:
x i , с ~ 61,3; 65,0; 79,3; 80,0; 74,7; 72,0; 72,0; 61,7; 79,3; 74,7; 65,7.
Проба PWC 170:
y i , кГм/мин ~ 917; 875; 810; 608; 746; 632; 710; 850; 911;. 732; 915.

1.5. Коэффициент ранговой корреляции Спирмена

Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (x i и y i ) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ():
(1.2)
где: d x и d y – ранги показателей x i и y i ;
n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений x i и y i , то все разности рангов (d x - d y ) = 0 и = 1. Если ранги x i и y i расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений x i и y i .
Когда ранги всех значений x i и y i строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений x i и y i совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y .
Из формулы (8.2) видно, что для вычисления необходимо сначала проставить ранги (d x и d y ) показателей x i и y i , найти разности рангов (d x - d y ) для каждой пары показателей и квадраты этих разностей (d x - d y ) 2 . Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным (табл. 9 приложения). Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.
Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.
Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

Просмотрите примеры решения задач.

Пример 1.6. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

x i , кг ~ 55; 45; 43; 47; 47; 51; 48; 60; 53; 50
y i , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

1. Расчет рангового коэффициента корреляции Спирмена произвести по формуле (1):

где: d x и d y - ранги показателей х и у ;
n - число коррелируемых пар или исследуемых.

2. Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

x i

d x

y i

d y

Тогда

3. Сравнить расчетное значение рангового коэффициента корреляции (r ф = -0,13) с табличным значением для n = 10 при  = 5% (табл.2 приложения) и сделать вывод.

Вывод:
1) т.к. r ф = -0,13 2) т.к. r ф = -0,13

Задания по теме лекции
Самостоятельно решите следующие задачи:

Задача 1. Определить достоверность взаимосвязи между показателями длины прыжков с места и с разбега 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
Прыжок с места: x i , см ~ 216; 180; 230; 224; 185; 209; 218; 250; 249; 254.
Прыжок с разбега: y i , см ~ 313; 275; 330; 320; 300; 315; 315; 370; 365; 330.

Задача 2. Определить достоверность взаимосвязи между показателями становой динамометрии и количеством подтягиваний на перекладине у 9 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
Становая динамометрия: x i , кГ ~ 156; 130; 143; 124; 135; 125; 138; 141; 139.
Подтягивание на перекладине: y i , кол-во раз ~ 16; 15; 20; 20; 16; 15; 15; 20; 15.

Задача 3. Определить достоверность взаимосвязи между показателями индекса Кетле и местами в соревнованиях у 11 акробатов с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
Индекс Кетле: x i , г/см ~ 389; 370; 382; 358; 358; 366; 370; 354; 382; 363; 350.
Место: y i , ~ 5; 2; 6; 10; 11; 1; 3; 9; 4; 7; 8.

Социальные психологи, как правило, стремятся не только описать социальное поведение. Цель социальной науки - понять отношения между переменными и быть в состоянии предсказать, когда и как будут себя вести люди в разных социальных ситуациях. Например, каковы взаимосвязи между порнографией, которую видят люди, и вероятностью их участия в актах насилия? Существует ли связь между количеством насилия, которое дети видят по телевизору, и их агрессивностью? Чтобы ответить на такие вопросы, исследователи часто используют другой подход - корреляционный метод.

Корреляционный метод (correlational method) - это техника, посредством которой систематически измеряются две или более переменные и отношения между ними. В корреляционном исследовании поведение людей и установки можно определить по-разному. Так же как и в методе наблюдения, исследователи иногда непосредственно наблюдают за человеческим поведением. Например, применив корреляцонный метод, психологи имеют возможность проверить взаимосвязь между детским агрессивным поведением и просмотром телевизионных передач с насилием. Они также могут наблюдать за детьми на игровой площадке, однако теперь стоит иная цель - оценить взаимозависимость, или корреляцию, между детской агрессивностью и другими факторами, как, например, их привычкой смотреть телевизор, что исследователи также измеряют.

Метод корреляции (correlational method) - техника, при помощи которой систематически измеряются две или более переменные и оценивается зависимость между ними (например, как можно, зная одну переменную, предсказать другую).

Исследователи проверяют наличие подобных взаимосвязей путем подсчета коэффициента корреляции, статистического показателя, оценивающего, насколько вы можете предсказывать одну переменную, зная другую, например, насколько вы можете предсказывать вес человека, зная его рост. Положительная корреляция означает, что увеличение значения одной переменной сопровождается повышением значения другой.

Высота и вес позитивно коррелируют между собой; чем человек выше, тем больше будет его вес. Отрицательная корреляция, наоборот, подразумевает, что увеличение показателей одной переменной связано с уменьшением показателей другой. Если бы высота и вес людей коррелировали отрицательно, мы бы выглядели очень смешно - коротышки, например, дети походили бы на пингвинов, а высонимно) об их поведении или отношениях. Опросы - наиболее удобный способ измерения отношений людей; например, людям можно позвонить по телефону и спросить, какого кандидата они будут поддерживать на приближающихся выборах или что они думают по поводу тех или иных социальных проблем. Исследователи нередко применяют корреляционный метод к результатам опросов, чтобы определить, насколько ответы испытуемых на одни вопросы предопределяют их ответы на другие. Политологи, например, могут быть заинтересованы в том, можно ли на основе мнений людей о какой-либо социальной проблеме, такой как регулирование торговли оружием, предсказывать, как они проголосуют. Психологи часто используют опросы для содействия пониманию социального поведения и отношений, например, рассматривая, связано ли то, что говорят люди о количестве читаемой ими порнографии, с их отношением к женщинам.

Опросы - исследования, в которых репрезентативной выборке людей задаются вопросы (часто анонимно) об их поведении или отношениях.

У опросов есть много преимуществ, в частности, они позволяют исследователям судить о взаимосвязях между труднонаблюдаемыми переменными, подобными тому, насколько часто люди занимаются безопасным сексом. Когда интересующие переменные нельзя легко пронаблюдать, исследователи полагаются на опросы, в которых людей спрашивают об их убеждениях, отношениях и поведении. Исследователь проверяет наличие взаимосвязей между полученными ответами, например, чаще ли кие люди, как игроки в баскетбол, были бы совсем тощими - «кожа и кости»! Возможно, конечно, что две переменные совершенно не коррелируют, так что исследователь не сможет предсказать одну переменную, зная другую.

Коэффициент корреляции (correlation coefficient) - статистическая величина, которая оценивает, насколько хорошо вы можете предсказать одну переменную, зная другую; скажем, насколько вы можете предсказать вес людей, зная их рост.

Коэффициент корреляции выражается числом от -1,00 до +1,00. Корреляция 1,00 означает, что две переменные полностью коррелируют в позитивном направлении; таким образом, зная один показатель у человека, исследователь может точно определить второй. В повседневной жизни полные корреляции, конечно, встречаются редко. Например, в одном исследовании было выявлено, что корреляция между ростом и весом составляет 0,47 для выборки мужчин в возрасте 18-24 лет (Freedman, Pisani, Purves & Adhikari, 1991). Это означает, что в среднем более высокие люди тяжелее низкорослых, но есть и исключения. Корреляция -1,00 означает полную отрицательную корреляцию, а нулевая корреляция означает, что две переменные не коррелируют.