Биографии Характеристики Анализ

Линейные системы с постоянными коэффициентами. Примеры систем линейных уравнений: метод решения

Свободная и вынужденная составляющие переходного процесса и показатели, их характеризующие

2. Два подхода к определению выходного сигнала системы автоматического управления

3. Точность систем автоматического управления и различные способы ее оценки

4. Представление сигнала ошибки замкнутой системы через входной сигнал и его производные. Коэффициенты ошибок

5. Представление выходного сигнала замкнутой системы через входной сигнал и его производные

6. Определение коэффициентов ошибок выходного сигнала через импульсную переходную функцию

7. Соотношение между коэффициентами ошибки замкнутой системы и коэффициентами разложения в ряд Тейлоравыходного сигнала

8. Метод вычисления коэффициентов ошибок через коэффициенты передаточной функции разомкнутой системы

9. Коэффициенты ошибки для систем автоматического управления различного порядка астатизма.

10. Практический способ вычисления коэффициентов ошибок по выражению передаточной функции ошибки

11. Добротность систем автоматического управления

11.1 Сигнал ошибки и коэффициенты добротности для статической системы.

11.2 Сигнал ошибки и коэффициенты добротности для астатической системы первого порядка.

11.3 Сигнал ошибки и коэффициенты добротностидля астатической системы второго порядка.

1. Свободная и вынужденная составляющие переходного процесса и показатели, их характеризующие

При исследовании систем автоматического управления приходится решать задачу обеспечения требуемых показателей качества переходного процесса: быстродействия,колебательности, перерегулирования. Качественные показатели (качество) переходных процессов в системах автоматического управления обычно рассматривается на основе анализа переходных процессов, вызванных внешним воздействием.

Будем полагать, что система автоматического управления описывается линейным дифференциальным уравнением с постоянными коэффициентами.

При изменении внешнего воздействия на входе системы выходную величину можно записать следующим образом: .

где - решение дифференциального уравнения, описывающего систему ;

- свободная составляющая переходного процесса, соответствующая общему решению однородного дифференциального уравнения.

- вынужденная (установившаяся) составляющая переходного процесса, обусловленная законом изменения .

Если дифференциальное уравнениене имеет кратных корней, то свободная составляющая переходного процесса может быть представлена в следующем виде:

где - постоянная интегрирования, значение которой определяют параметры системы и начальные условия;

s, - корни характеристического уравнения замкнутой системы

Качество переходногопроцесса можно оценить по его составляющим и .

В этом смысле различают две группы показателей:

первая- показатели качества переходного процесса ;

вторая - показатели, характеризующие вынужденную (установившуюся) составляющую , по которой определяют точность системы.

Показатели качества, определяемые непосредственно по кривой переходного процесса, называют прямыми оценками качества. Кривая переходного процесса может быть получена теоретически или экспериментально.

В тех случаях, когда расчет переходного процесса связан с большими трудностями, используют косвенные оценки качества. Например, обращаются к косвенным оценкам качества по вещественной частотной характеристике замкнутой системы.

Помимо статистических ошибок, которые будут рас­смотрены позже, точность работы систем автоматического управления характери­зуетсядинамическимиипереходными ошибками.

Соотношение (в математике) - это взаимосвязь между двумя или более числами одного рода. Соотношения сравнивают абсолютные величины или части целого. Соотношения вычисляются и записываются по-разному, но основные принципы одинаковы для всех соотношений.

Шаги

Часть 1

Определение соотношений

    Использование соотношений. Соотношения используются как в науке, так и в повседневной жизни для сравнения величин. Простейшие соотношения связывают только два числа, но есть соотношения, сравнивающие три или более значения. В любой ситуации, в которой присутствует более одной величины, можно записать соотношение. Связывая некоторые значения, соотношения могут, например, подсказать, как увеличить количество ингредиентов в рецепте или веществ в химической реакции.

  1. Определение соотношений. Соотношение - это взаимосвязь между двумя (или более) значениями одного рода. Например, если для приготовления торта необходимы 2 стакана муки и 1 стакан сахара, то соотношение муки к сахару равно 2 к 1.

    • Соотношения могут быть использованы и в тех случаях, когда две величины не связаны друг с другом (как в примере с тортом). Например, если в классе учатся 5 девочек и 10 мальчиков, то соотношение девочек к мальчикам равно 5 к 10. Эти величины (число мальчиков и число девочек) не зависят друг от друга, то есть их значения изменятся, если кто-то уйдет из класса или в класс придет новый ученик. Соотношения просто сравнивают значения величин.
  2. Обратите внимание на разные способы представления соотношений. Соотношения могут быть представлены словами или при помощи математических символов.

    • Очень часто соотношения выражены словами (как показано выше). Особенно такая форма представления соотношений применяется в повседневной жизни, далекой от науки.
    • Также соотношения можно выразить через двоеточие. При сравнении двух чисел в соотношении вы будете использовать одно двоеточие (например, 7:13); при сравнении трех и более значений ставьте двоеточие между каждой парой чисел (например, 10:2:23). В нашем примере с классом вы можете выразить соотношение девочек и мальчиков так: 5 девочек: 10 мальчиков. Или так: 5:10.
    • Реже соотношения выражаются при помощи наклонной черты. В примере с классом оно может быть записано так: 5/10. Тем не менее это не дробь и читается такое соотношение не как дробь; более того, запомните, что в соотношении цифры не представляют собой часть единого целого.

    Часть 2

    Использование соотношений
    1. Упростите соотношение. Соотношение можно упростить (аналогично дробям), разделив каждый член (число) соотношения на . Однако при этом не упустите из виду исходных значений соотношения.

      • В нашем примере в классе 5 девочек и 10 мальчиков; соотношение равно 5:10. Наибольший общий делитель членов соотношения равен 5 (так как и 5, и 10 делятся на 5). Разделите каждое число соотношения на 5 и получите соотношение 1 девочка к 2 мальчикам (или 1:2). Однако при упрощении соотношения помните об исходных значениях. В нашем примере в классе не 3 ученика, а 15. Упрощенное соотношение сравнивает количество мальчиков и количество девочек. То есть на каждую девочку приходится 2 мальчика, но в классе не 2 мальчика и 1 девочка.
      • Некоторые соотношения не упрощаются. Например, соотношение 3:56 не упрощается, так как у этих чисел нет общих делителей (3 - простое число, а 56 не делится на 3).
    2. Используйте умножение или деление для увеличения или уменьшения соотношения. Распространены задачи, в которых необходимо увеличить или уменьшить два значения, пропорциональных друг другу. Если вам дано соотношение и нужно найти соответствующее ему большее или меньшее соотношение, умножьте или разделите исходное соотношение на некоторое данное число.

      • Например, пекарю нужно утроить количество ингредиентов, данных в рецепте. Если по рецепту соотношение муки к сахару составляет 2 к 1 (2:1), то пекарь умножит каждый член соотношения на 3 и получит соотношение 6:3 (6 чашек муки к 3 чашкам сахара).
      • С другой стороны, если пекарю необходимо уполовинить количество ингредиентов, данных в рецепте, то пекарь разделит каждый член соотношения на 2 и получит соотношение 1:½ (1 чашка муки к 1/2 чашке сахара).
    3. Поиск неизвестного значения, когда даны два эквивалентных соотношения. Это задача, в которой необходимо найти неизвестную переменную в одном соотношении при помощи второго соотношения, которое эквивалентно первому. Для решения таких задач пользуйтесь . Запишите каждое соотношение в виде обыкновенной дроби, поставьте между ними знак равенства и перемножьте их члены крест-накрест.

      • Например, дана группа учеников, в которой 2 мальчика и 5 девочек. Каково будет число мальчиков, если число девочек увеличить до 20 (пропорция сохраняется)? Во-первых, запишите два соотношения - 2 мальчика:5 девочек и х мальчиков:20 девочек. Теперь запишите эти соотношения в виде дробей: 2/5 и х/20. Перемножьте члены дробей крест-накрест и получите 5x = 40; следовательно, х = 40/5 = 8.

      Часть 3

      Распространенные ошибки
      1. Избегайте сложения и вычитания в текстовых задачах на соотношение. Многие текстовые задачи выглядят примерно так: «В рецепте необходимо использовать 4 клубня картофеля и 5 корнеплодов моркови. Если вы хотите добавить 8 клубней картофеля, то сколько понадобится моркови, чтобы соотношение осталось неизменным?» При решении подобных задач ученики часто допускают ошибку, прибавляя одинаковое количество ингредиентов к исходному числу. Однако, чтобы сохранить соотношение, нужно использовать умножение. Вот примеры правильного и неправильного решения:

        • Неверно: «8 - 4 = 4 - так мы добавили 4 клубня картофеля. Значит, нужно взять 5 корнеплодов моркови и к ним добавить еще 4... Стоп! Соотношения так не вычисляют. Стоит попробовать снова».
        • Верно: «8 ÷ 4 = 2 - значит, мы умножили количество картофеля на 2. Соответственно, 5 корнеплодов моркови тоже нужно умножить на 2. 5 x 2 = 10 - в рецепт нужно добавить 10 корнеплодов моркови».
        • В текстовых задачах гораздо проще распознать ошибку, если записывать единицы измерения после каждого значения. Помните, что величины с одними и теми же единицами измерения в числителе и знаменателе сокращаются. Сократив выражение, вы получите верный ответ.
          • Пример: дано 6 коробок, в каждой третьей коробке находится 9 шариков. Сколько всего шариков?
          • Неверно: 6 коробок x 3 коробки/9 шариков = ... Стоп, ничего нельзя сократить. Ответ будет таким: «коробки x коробки / шарики». Он не имеет смысла.
          • Верно: 6 коробок x 9 шариков/3 коробки = 6 коробок * 3 шарика/1 коробку = 6 коробок * 3 шарика/1 коробку = 6 * 3 шарика/1 = 18 шариков.

58. Способ сложения и вычитания или способ уравнения коэффициентов . Решим совместно следующие 2 уравнения:

7x + 5y = 47 и 7x – 5y = 9 (1)

Мы видим, что в левой части одного уравнения входит член +5y, а в левой части другого - член –5y. Если бы пришлось эти части сложить между собою, то эти члены уничтожились бы. И этого достигнуть легко: из данных двух уравнений составим вытекающее из них новое, для чего сложим и левые части обоих уравнений между собою, и правые части между собою – результаты этих сложений, очевидно, должны быть равны между собою, т. е. получим:

(члены +5y и –5y взаимно уничтожились). Отсюда получим x = 4. Умножим затем обе части второго уравнения на –1; получим:

7x + 5y = 47
–7x + 5y = –9

и теперь опять сложим левые части между собою и правые между собою (говорят: сложим эти 2 уравнения по частям). Получим, так как члены +7x и –7x взаимно уничтожаются:

10y = 38, откуда y = 3,8

Мы могли бы взамен этого сделать и так: вернемся к уравнениям (1) и вычтем по частям (т. е. из левой части левую часть и из правой части правую часть) из первого уравнения второе. Тогда надо у всех членов 2-го уравнения переменить знаки - результат получится тот же самый.

В разобранном примере абсолютные величины коэффициентов при каждом неизвестном в каждом уравнении были равны; рассмотрим теперь пример, когда абсолютные величины этих коэффициентов неравны.

3x + 4y = 23 и 9x + 10y = 65.

Рассматривая эти уравнения, мы видим, что коэффициенты при x не равны, но что их легко сделать равными, если обе части первого уравнения умножим на 3. Сделав это, получим:

9x + 12y = 69
9x + 10y = 65

Теперь вычтем по частям из первого уравнения второе (надо у всех членов 2-го уравнения переменить знаки). Получим:

2y = 4, откуда y = 2.

Рассматривая данные уравнения, мы теперь приходим к возможности уравнять коэффициенты при y, для чего можно поступить по разному: 1) обе части 1-го уравнения умножить на 2 ½ - тогда получим:

7 ½ x + 10y = 57 ½
9x + 10y = 65

Вычтем теперь из 2-го уравнения по частям 1-е, для чего переменим знаки у всех членов 1-го уравнения (мы вычитаем из 2-го первое, а не наоборот, только для того, чтобы в левой части коэффициент при x получился положительный), получим:

1 ½ x = 7 ½, откуда x = 7 ½: 1 ½ = 5.

2) Обе части 2-го уравнения умножим на 2/5, - получим:
3x + 4y = 23 (первое оставляем без изменения).

3 3/5 x + 4y = 26

Вычитая по частям из 2-го уравнения первое, получим:

3/5 x = 3, откуда x = 3: 3/5 = 5.

3) Если не желаем иметь дело с дробными коэффициентами, то найдем общее наименьшее кратное для коэффициентов при y, т. е. для чисел 4 и 10 – оно есть 20 и, умножением обеих частей 1-го уравнения и обеих частей 2-го, сведем дело к тому, чтобы в каждом уравнении коэффициентом при y служило это общее наименьшее кратное. В нашем примере для этого умножим обе части 1-го уравнения на 5 и обе части 2-го уравнения на 2. Получим:

15x + 20y = 115
18x + 20y = 130.

Опять вычтем по частям из 2-го уравнения первое, - получим:

3x = 15, откуда x = 5.

Заметим еще, что когда одно неизвестное определено, можно подстановкою получить другое. Так, мы сначала нашли y = 2. Подставим это значение в 1-ое уравнение:

3x + 4 · 2 = 23

3x = 23 – 8 = 15, откуда x = 5.

Коротко выполним еще один пример:

6x – 15y = 32 | · 3 | · 2
4x + 9y = 34 | · 5 | · 3

Сбоку мы отметили, что надо обе части 1-го уравнения умножить на 3 и обе части 2-го на 5 - мы имеем в виду уравнять абсолютные величины коэффициентов при y. Получим:

18x – 45y = 96.
20x + 45y = 170.

Сложим эти уравнения по частям, получим:

38x = 266 и x = 7.

Теперь умножим обе части 1-го уравнения на 2 и обе части второго на 3 (отмечено сбоку). Получим:

12x – 30y = 64
12x + 27y = 102.

Вычтем по частям из 2-го уравнения первое; получим:

57y = 38 и y = 38/57 = 2/3.

Примем этот способ к решению двух уравнений с двумя неизвестными в общем виде:

ax + by = m | · d | · c
cx + dy = n | · b | · a

Сначала умножим, как отмечено, обе части 1-го уравнения на d и обе части 2-го на b. Получим:

adx + bdy = md
cbx + =bdy = nb.

Вычтем по частям из 1-го уравнения второе, получим:

adx – cbx = md – nb.

Вынесем в левой части x за скобки, получим:

(ad – cb)x = md – nb,

x = (md – nb) / (ad – cb).

Уравняем теперь коэффициенты при x, для чего обе части 1-го уравнения умножим на c и обе части второго на a. Получим:

Вычтем по частям из 2-го уравнения первое, получим:

ady – bcy = na – mc,

(ad – bc) y = na – mc

y = (na – mc) / (ad – bc).

Мы вычитали здесь из 2-го уравнения первое, а не наоборот, с целью получить тот же знаменатель ad – bc, какой получился при определении x – a.

§2. Задачи на исследование решений линейной системы двух уравнений с двумя неизвестными

Пример 1 . Определить, при каких значениях параметра m система уравнений

имеет единственное решение.

Решение

Система имеет единственное решение, если отношение коэффициентов при х неравно отношению коэффициентов при у:

.

Перейдем от сравнения отношений к сравнению произведений. Тогда в рассмотрение включаются и нулевые значения коэффициентов, зависящих от параметре m .

Решая полученное безразличное неравенство, найдем

3 + 8m + 4m 2 ≠ 4 + 5m ; 4m 2 + 3m – 1 ≠ 0.

Если m 1 и m 2 корни многочлена 4m 2 + 3m – 1 ≠ 0, то

m 1 = – 1; m 2 = position:absolute;z-index:1;left:0px;margin-left:11px;margin-top:2px; width:14px;height:74px">

m ≠ – 1,

m ≠

или в виде объединения промежутков:

m (– ∞; – 1) (– 1; )(;+∞).

Еще раз отметим, что при m = –EN-US">m = – или при m = –EN-US">m , так же как и при бесчисленном множестве других, удовлетворяющих полученному числовому множеству, данная система будет иметь единственное решение.

Ответ : Система имеет единственное решение, если

m (– ∞; – 1) (– 1; 0,25)EN-US">m и n система уравнений

имеет бесчисленное множество решений.

Решение

Система имеет бесчисленное множество решений, если отношение коэффициентов при х равно отношению коэффициентов при у и равно отношению свободных членов, то есть

Заменим полученную цепочку равенств системой уравнений

Переходя от дробных уравнений к целым. Включаем в рассмотрение и нулевые значения коэффициентов данной системы. (Следует отметить, что не все коэффициенты данной системы могут обращаться в нуль. Один из них EN-US">n ≠ 0. Очевидно, что искомый ответ должен этому условию удовлетворять.)

EN-US">n 2 + n – 6 = 0,

n (n 2 + m ) = 10.

Разрешая относительно и m 1-е и 2-е уравнения системы, получим

n 1 = – 3; n 2 = 2,

m = – n 2.

Откуда

Если n 1 = – 3; Если n 2 = 2,

то m 1 = –– 9 = –; то m 2 = EN-US">m и n в алфавитном порядке, имеем

Ответ: {(–; –3); (1; 2)}

Пример3 . Определить при каких значениях параметра m система уравнений

(2m – 3)x – my = 3m – 2,

(2m + 3)y – 5x + 5 = 0

не имеет решений.

Решение

Система уравнений не имеет решений, если отношение коэффициентов при х равно отношению коэффициентов при у, но неравно отношению свободных членов. Это правило, как и предыдущие, предлагает, что в записи данных уравнений неизвестные находятся в одной (например левой) части равенств и чередуются одинаково. Предполагается так же, что и свободные члены находятся в одной (например правой) части равенств. Удовлетворяя эти требования

(2m – х)x – my = 3m – 2,

– 5x + (2m + 3)у = – 5

и используя признак несовместимости системы, получим

Система удовлетворяется при m = EN-US">m = 2,25.

Упражнения

1. Определить, при каких значениях параметра m система уравнений

2х + my =5

имеет единственное решение.

Ответ: m (– ∞; – 1,5) position:absolute;z-index:9;left:0px;margin-left:59px;margin-top:23px; width:14px;height:62px"> При каких значениях параметра m система уравнений

(2m + 1)x +7y = 2m ,