Биографии Характеристики Анализ

Магнитная проницаемость. Магнитные свойства веществ

Есть микроскопические круговые токи (молекулярные токи ). Эта идея в дальнейшем, после открытия электрона и строения атома, подтвердилась: эти токи создаются движением электронов вокруг ядра и, так как ориентированы одинаково, в сумме образуют поле внутри и вокруг магнита.

На рисунке а плоскости, в которых размещены элементарные электрические токи , ориентированы беспорядочно из-за хаотичного теплового движения атомов, и вещество не проявляет магнитных свойств. В намагниченном состоянии (под действием, например, внешнего магнитного поля) (рисунок б ) эти плоскости ориентированы одинаково, и их действия суммируются.

Магнитная проницаемость.

Реакция среды на воздействие внешнего магнитного поля с индукцией В0 (поле в вакууме) определяется магнитной восприимчивостью μ :

где В — индукция магнитного поля в веществе. Магнитная проницаемость аналогична диэлектрической проницаемости ɛ .

По своим магнитным свойствам вещества разделяются на диамагнетики , парамагнетики и фер ромагнетики . У диамагнетиков коэффициент μ , который характеризует магнитные свойства среды, меньше единицы (к примеру, у висмута μ = 0,999824); у парамагнетиков μ > 1 (у платины μ - 1,00036); у ферромагнетиков μ ≫ 1 (железо , никель , кобальт).

Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются к нему. По этим призна-кам их можно отличить друг от друга. У многих веществ магнитная проницаемость почти не отличается от единицы, но у ферромагнетиков сильно превосходит ее, достигая нескольких десятков тысяч единиц.

Ферромагнетики.

Самые сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, которые создаваются ферромагнетиками, гораздо сильнее внешнего намагничивающего по-ля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента , а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином .

Температура Кюри (Т с ) — это температура, выше которой ферромагнитные материалы те-ряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа Т с = 753 °С, для никеля Т с = 365 °С, для кобальта Т с = 1000 °С. Существуют ферромагнитные спла-вы, у которых Т с < 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики применяются довольно широко: в качестве постоянных магнитов (в электроизмерительных приборах, громкоговорителях, телефонах и так далее), стальных сердечников в транс-форматорах, генераторах, электродвигателях (для усиления магнитного поля и экономии элек-троэнергии). На магнитных лентах, которые изготовлены из ферромагнетиков, осуществляется запись звука и изображения для магнитофонов и видеомагнитофонов. На тонкие магнитные пленки про-изводится запись информации для запоминающих устройств в электронно-вычислительных ма-шинах.

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

$$\boldsymbol{\vec{B}={\vec{B}}_{0}+{\vec{B}}_{1}}$$

где $\boldsymbol{\vec{B}}$ - магнитная индукция поля в веществе; $\boldsymbol{{\vec{B}}_{0}}$ - магнитная индукция поля в вакууме, $\boldsymbol{{\vec{B}}_{1}}$ - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ , которая называется магнитной проницаемостью вещества

$$ \boldsymbol{\mu =\frac{B}{{B}_{0}}}$$

  • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Все вещества состоят из молекул, молекулы - из атомов. Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Все вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1). Изменение магнитного поля даже в самых сильных диамагнетиках составляет лишь сотые доли процента. Например, висмут обладает магнитной проницаемостью µ = 0,999826.

Для понимания природы диамагнетизма рассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.

Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В" . Это магнитное поле В" направлено противоположно магнитному полю В . Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем. Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998).

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

Рассмотрим причины магнетизма атомов более подробно:

Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых оно состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

Рис. 2

2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля $\boldsymbol{{\vec{B}}_{0}}$ и поля $\boldsymbol{\vec{B"}}$ токов намагничивания i" , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рис. 3

В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции $ \boldsymbol{\vec{B}}$ результирующего поля будет меньше модуль вектора магнитной индукции $ \boldsymbol{{\vec{B}}_{0}} $ внешнего поля.

Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).

Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Рис. 4

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3).

Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Рис. 5

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле B 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 :

Рис. 6

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Рис. 7

Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B" 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

$$\boldsymbol{\mu = \frac B{B_0} = \frac {B_0 + B_1}{B_0} = 1 + \frac {B_1}{B_0};} $$

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).

  • Модуль B oc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой .

Рис. 8

При дальнейшем увеличении B 0 можно намагнитить стержень до насыщения (точка А" ).

Уменьшая теперь B 0 до нуля, получают опять постоянный магнит, но с индукцией B r (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B 0 станет равной B oc . Продолжая увеличивать я B 0 , снова намагничивают стержень до насыщения (точка А ).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0. Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.
  3. Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом

Примечания

  1. Рассматриваем направление вектора индукции магнитного поля только в середине контура.

Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией B {\displaystyle {B}} и напряжённостью магнитного поля H {\displaystyle {H}} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

Обычно обозначается греческой буквой μ {\displaystyle \mu } . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

B → = μ H → , {\displaystyle {\vec {B}}=\mu {\vec {H}},}

и μ {\displaystyle \mu } в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

B i = μ i j H j {\displaystyle \ B_{i}=\mu _{ij}H_{j}}

Для изотропных веществ соотношение:

B → = μ H → {\displaystyle {\vec {B}}=\mu {\vec {H}}}

можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

Нередко обозначение μ {\displaystyle \mu } используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом μ {\displaystyle \mu } совпадает с таковым в СГС).

Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

μ r = 1 + χ , {\displaystyle \mu _{r}=1+\chi ,}

Энциклопедичный YouTube

  • 1 / 5

    Подавляющее большинство веществ относятся либо к классу диамагнетиков ( μ ⪅ 1 {\displaystyle \mu \lessapprox 1} ), либо к классу парамагнетиков ( μ ⪆ 1 {\displaystyle \mu \gtrapprox 1} ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

    У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

    Магнитные проницаемости некоторых веществ и материалов

    Магнитная восприимчивость некоторых веществ

    Магнитная восприимчивость и магнитная проницаемость некоторых материалов

    Medium Восприимчивость χ m
    (объемная, СИ)
    Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
    Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
    Наноперм (англ. Nanoperm ) 10 × 10 -2 80 000 при 0.5 Тл 10 kHz
    Мю-металл 2,5 × 10 -2 20 000 при 0.002 Тл
    Мю-металл 50 000
    Пермаллой 1,0 × 10 -2 70 000 при 0.002 Тл
    Электротехническая сталь 5,0 × 10 -3 4000 при 0.002 Тл
    Феррит (никель-цинк) 2,0 × 10 -5 - 8,0 × 10 -4 16-640 100 kHz ~ 1 MHz [ ]
    Феррит (марганец-цинк) >8,0 × 10 -4 640 (и более) 100 kHz ~ 1 MHz
    Сталь 8,75 × 10 -4 100 при 0.002 Тл
    Никель 1,25 × 10 -4 100 - 600 при 0.002 Тл
    Неодимовый магнит 1.05 до 1,2-1,4 Тл
    Платина 1,2569701 × 10 -6 1,000265
    Алюминий 2,22 × 10 -5 1,2566650 × 10 -6 1,000022
    Дерево 1,00000043
    Воздух 1,00000037
    Бетон 1
    Вакуум 0 1,2566371 × 10 -6 (μ 0) 1
    Водород -2,2 × 10 -9 1,2566371 × 10 -6 1,0000000
    Тефлон 1,2567 × 10 -6 1,0000
    Сапфир -2,1 × 10 -7 1,2566368 × 10 -6 0,99999976
    Медь -6,4 × 10 -6
    or -9,2 × 10 -6
    1,2566290 × 10 -6 0,999994

    Магнетики

    Все вещества в магнитном поле намагничиваются (в них возникает внутреннее магнитное поле). В зависимости от величины и направления внутреннего поля вещества разделяют на:

    1) диамагнетики,

    2) парамагнетики,

    3) ферромагнетики.

    Намагниченность вещества характеризуется магнитной проницаемостью ,

    Магнитная индукция в веществе,

    Магнитная индукция в вакууме.

    Любой атом можно характеризовать магнитным моментом .

    Сила тока в контуре, - площадь контура, - вектор нормали к поверхности контура.

    Микроток атома создается движением отрицательных электронов по орбите и вокруг собственной оси, а также вращением положительного ядра вокруг собственной оси.

    1. Диамагнетики.

    Когда нет внешнего поля , в атомах диамагнетиков токи электронов и ядра скомпенсированы. Суммарный микроток атома и его магнитный момент равны нулю.

    Во внешнем магнитном поле в атомах индуцируются (наводятся) ненулевые элементарные токи. Магнитные моменты атомов при этом ориентируются противоположно .

    Создается небольшое собственное поле , направленное противоположно внешнему , и ослабляющего его.

    В диамагнетиках .

    Т.к. < , то для диамагнетиков 1.

    2. Парамагнетики

    В парамагнетиках микротоки атомов и их магнитные моменты не равны нулю.

    Без внешнего поля эти микротоки расположены хаотично.

    Во внешнем магнитном поле микротоки атомов парамагнетика ориентируются по полю , усиливая его.

    В парамагнетике магнитная индукция = + , незначительно превышает .

    Для парамагнетиков, 1. Для диа- и парамагнетиков можно считать 1.

    Таблица 1. Магнитная проницаемость пара- и диамагнетиков.

    Намагниченность парамагнетиков зависит от температуры, т.к. тепловое движение атомов препятствует упорядоченному расположению микротоков.

    Большинство веществ в природе являются парамагнетиками.

    Собственное магнитное поле в диа- и парамагнетиках незначительно и разрушается, если вещество убрать из внешнего поля (атомы возвращаются в исходное состояние, происходит размагничивание вещества).

    3. Ферромагнетики

    Магнитная проницаемость ферромагнетиков достигает сотен тысяч и зависит от величины намагничивающего поля (сильномагнитные вещества ).

    Ферромагнетики: железо, сталь, никель, кобальт, их сплавы и соединения.

    В ферромагнетиках существуют области самопроизвольного намагничивания («домены»), в которых все микротоки атомов ориентированы одинаково. Размер доменов достигает 0,1 мм.

    В отсутствии внешнего поля магнитные моменты отдельных доменов ориентированы хаотично и компенсируются. Во внешнем поле те домены, в которых микротоки усиливают внешнее поле, увеличивают свои размеры за счет соседних. Результирующее магнитное поле = + в ферромагнетиках намного сильнее по сравнению с пара- и диамагнетиками.

    Домены, включающие миллиарды атомов, обладают инерционностью и не возвращаются быстро в первоначальное беспорядочное состояние. Поэтому, если ферромагнетик удалить из внешнего поля, то его собственное поле сохраняется длительное время.

    Магнит размагничивается при длительном хранении (с течением времени домены возвращаются в хаотичное состояние).

    Другой способ размагничивания – нагревание. Для каждого ферромагнетика существует температура (она называется «точка Кюри»), при которой в доменах разрушаются связи между атомами. В этом случае ферромагнетик превращается в парамагнетик и происходит его размагничивание. Например, точка Кюри для железа составляет 770°С.

    Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией texvc не найден; См. math/README - справку по настройке.): {B} и напряжённостью магнитного поля Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): {H} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

    Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

    Обычно обозначается греческой буквой Невозможно разобрать выражение (Выполняемый файл texvc . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

    В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \vec{B} = \mu\vec{H},

    и Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ B_i = \mu_{ij}H_j

    Для изотропных веществ соотношение:

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \vec{B} = \mu\vec{H}

    можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

    Нередко обозначение Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu совпадает с таковым в СГС).

    Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

    Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu_r = 1 + \chi,

    Классификация веществ по значению магнитной проницаемости

    Подавляющее большинство веществ относятся либо к классу диамагнетиков (Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu \lessapprox 1 ), либо к классу парамагнетиков (Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu \gtrapprox 1 ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

    У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

    Магнитные проницаемости некоторых веществ и материалов

    Магнитная восприимчивость некоторых веществ

    Магнитная восприимчивость и магнитная проницаемость некоторых материалов

    Medium Восприимчивость χ m
    (объемная, СИ)
    Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
    Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
    Наноперм (англ. Nanoperm ) 10×10 -2 80 000 при 0.5 Тл 10 kHz
    Мю-металл 2,5×10 -2 20 000 при 0.002 Тл
    Мю-металл 50 000
    Пермаллой 1,0×10 -2 70 000 при 0.002 Тл
    Электротехническая сталь 5,0×10 -3 4000 при 0.002 Тл
    Феррит (никель-цинк) 2,0×10 -5 - 8,0×10 -4 16-640 100 kHz ~ 1 MHz[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]]
    Феррит (марганец-цинк) >8,0×10 -4 640 (и более) 100 kHz ~ 1 MHz
    Сталь 8,75×10 -4 100 при 0.002 Тл
    Никель 1,25×10 -4 100 - 600 при 0.002 Тл
    Неодимовый магнит 1.05 до 1,2-1,4 Тл
    Платина 1,2569701×10 -6 1,000265
    Алюминий 2,22×10 -5 1,2566650×10 -6 1,000022
    Дерево 1,00000043
    Воздух 1,00000037
    Бетон 1
    Вакуум 0 1,2566371×10 -6 (μ 0) 1
    Водород -2,2×10 -9 1,2566371×10 -6 1,0000000
    Тефлон 1,2567×10 -6 1,0000
    Сапфир -2,1×10 -7 1,2566368×10 -6 0,99999976
    Медь -6,4×10 -6
    or -9,2×10 -6
    1,2566290×10 -6 0,999994
    Вода -8,0×10 -6 1,2566270×10 -6 0,999992
    Висмут -1,66×10 -4 0,999834
    Сверхпроводники −1 0 0

    См. также

    Напишите отзыв о статье "Магнитная проницаемость"

    Примечания

    Отрывок, характеризующий Магнитная проницаемость

    Мне было так его жаль!.. Но, к сожалению, помочь ему было не в моих силах. И мне, честно, очень хотелось узнать, чем же эта необыкновенная малышка ему помогла...
    – Мы нашли их! – опять повторила Стелла. – Я не знала, как это сделать, но бабушка мне помогла!
    Оказалось, что Гарольд, при жизни, даже не успел узнать, как страшно пострадала, умирая, его семья. Он был рыцарем-воином, и погиб ещё до того, как его город оказался в руках «палачей», как и предсказывала ему жена.
    Но, как только он попал в этот, ему незнакомый, дивный мир «ушедших» людей, он сразу же смог увидеть, как безжалостно и жестоко поступила с его «единственными и любимыми» злая судьба. После он, как одержимый, целую вечность пытался как-то, где-то найти этих, самых ему дорогих на всём белом свете людей... И искал он их очень долго, больше тысячи лет, пока однажды какая-то, совершенно незнакомая, милая девочка Стелла не предложила ему «сделать его счастливым» и не открыла ту «другую» нужную дверь, чтобы наконец-то их для него найти...
    – Хочешь, я покажу тебе? – опять предложила малышка,
    Но я уже не была так уверена, хочу ли я видеть что-то ещё... Потому, что только что показанные ею видения ранили душу, и невозможно было от них так быстро избавиться, чтобы желать увидеть какое-то продолжение...
    – Но ты ведь хочешь увидеть, что с ними случилось! – уверенно констатировала «факт» маленькая Стелла.
    Я посмотрела на Гарольда и увидела в его глазах полное понимание того, что я только что нежданно-негаданно пережила.
    – Я знаю, что ты видела... Я смотрел это много раз. Но они теперь счастливы, мы ходим смотреть на них очень часто... И на них «бывших» тоже... – тихо произнёс «грустный рыцарь».
    И тут только я поняла, что Стелла, просто-напросто, когда ему этого хотелось, переносила его в его же прошлое, точно так же, как она сделала это только что!!! И она делала это почти играючи!.. Я даже не заметила, как эта дивная, светлая девчушка всё сильнее и сильнее стала меня к себе «привязывать», становясь для меня почти что настоящим чудом, за которым мне без конца хотелось наблюдать... И которую совершенно не хотелось покидать... Тогда я почти ещё ничего не знала и не умела, кроме того, что могла понять и научиться сама, и мне очень хотелось хотя бы чему-то у неё научиться, пока ещё была такая возможность.
    – Ты ко мне, пожалуйста, приходи! – тихо прошептала вдруг погрустневшая Стелла, – ты ведь знаешь, что тебе ещё нельзя здесь оставаться... Бабушка сказала, что ты не останешься ещё очень, очень долго... Что тебе ещё нельзя умирать. Но ты приходи...
    Всё вокруг стало вдруг тёмное и холодное, будто чёрные тучи вдруг затянули такой красочный и яркий Стеллин мир...
    – Ой, не надо думать о таком страшном! – возмутилась девочка, и, как художник кисточкой по полотну, быстро «закрасила» всё опять в светлый и радостный цвет.
    – Ну вот, так правда лучше? – довольно спросила она.
    – Неужели это были просто мои мысли?.. – опять не поверила я.
    – Ну, конечно же! – засмеялась Стелла. – Ты же сильная, вот и создаёшь по-своему всё вокруг.
    – А как же тогда думать?.. – всё ещё никак не могла «въехать» в непонятное я.
    – А ты просто «закройся» и показывай только то, что хочешь показать, – как само собой разумеющееся, произнесла моя удивительная подружка. – Бабушка меня так научила.
    Я подумала, что видимо мне тоже пришла пора чуть-чуть «потрясти» свою «засекреченную» бабушку, которая (я почти была в этом уверена!) наверняка что-то знала, но почему-то никак не желала меня пока ничему учить...
    – Так ты хочешь увидеть, что стало с близкими Гарольда? – нетерпеливо спросила малышка.
    Желания, если честно, у меня слишком большого не было, так как я не была уверена, чего от этого «показа» можно ожидать. Но чтобы не обидеть щедрую Стеллу, согласилась.
    – Я не буду тебе показывать долго. Обещаю! Но ты должна о них знать, правда же?.. – счастливым голоском заявила девчушка. – Вот, смотри – первым будет сын...

    К моему величайшему удивлению, в отличие от виденного раньше, мы попали в совершенно другое время и место, которое было похожим на Францию, и по одежде напоминало восемнадцатый век. По широкой мощёной улице проезжал крытый красивый экипаж, внутри которого сидели молодые мужчина и женщина в очень дорогих костюмах, и видимо, в очень дурном настроении... Молодой человек что-то упорно доказывал девушке, а та, совершенно его не слушая, спокойно витала где-то в своих грёзах, чем молодого человека очень раздражала...
    – Вот видишь – это он! Это тот же «маленький мальчик»... только уже через много, много лет, – тихонько прошептала Стелла.
    – А откуда ты знаешь, что это точно он? – всё ещё не совсем понимая, спросила я.
    – Ну, как же, это ведь очень просто! – удивлённо уставилась на меня малышка. – Мы все имеем сущность, а сущность имеет свой «ключик», по которому можно каждого из нас найти, только надо знать, как искать. Вот смотри...
    Она опять показала мне малыша, сына Гарольда.
    – Подумай о его сущности, и ты увидишь...
    И я тут же увидела прозрачную, ярко светящуюся, на удивление мощную сущность, на груди которой горела необычная «бриллиантовая» энергетическая звезда. Эта «звезда» сияла и переливалась всеми цветами радуги, то уменьшаясь, то увеличиваясь, как бы медленно пульсируя, и сверкала так ярко, будто и вправду была создана из самых потрясающих бриллиантов.
    – Вот видишь у него на груди эту странную перевёрнутую звезду? – Это и есть его «ключик». И если ты попробуешь проследить за ним, как по ниточке, то она приведёт тебя прямо к Акселю, у которого такая же звезда – это и есть та же самая сущность, только уже в её следующем воплощении.
    Я смотрела на неё во все глаза, и видно заметив это, Стелла засмеялась и весело призналась:
    – Ты не думай, что это я сама – это бабушка меня научила!..
    Мне было очень стыдно чувствовать себя полной неумёхой, но желание побольше узнать было во сто крат сильнее любого стыда, поэтому я запрятала свою гордость как можно глубже и осторожно спросила:
    – А как же все эти потрясающие «реальности», которые мы сейчас здесь наблюдаем? Ведь это чья-то чужая, конкретная жизнь, и ты не создаёшь их так же, как ты создаёшь все свои миры?
    – О, нет! – опять обрадовалась возможности что-то мне объяснить малышка. – Конечно же, нет! Это ведь просто прошлое, в котором все эти люди когда-то жили, и я всего лишь переношу нас с тобой туда.
    – А Гарольд? Как же он всё это видит?
    – О, ему легко! Он ведь такой же, как я, мёртвый, вот он и может перемещаться, куда захочет. У него ведь уже нет физического тела, поэтому его сущность не знает здесь препятствий и может гулять, где ей захочется... так же, как и я... – уже печальнее закончила малышка.
    Я грустно подумала, что то, что являлось для неё всего лишь «простым переносом в прошлое», для меня видимо ещё долго будет являться «загадкой за семью замками»... Но Стелла, как будто услышав мои мысли, тут же поспешила меня успокоить:
    – Вот увидишь, это очень просто! Тебе надо только попробовать.
    – А эти «ключики», они разве никогда не повторяются у других? – решила продолжить свои расспросы я.
    – Нет, но иногда бывает кое-что другое...– почему-то забавно улыбаясь, ответила крошка. – Я в начале именно так и попалась, за что меня очень даже сильно «потрепали»... Ой, это было так глупо!..
    – А как? – очень заинтересовавшись, спросила я.
    Стелла тут же весело ответила:
    – О, это было очень смешно! – и чуть подумав, добавила, – но и опасно тоже... Я искала по всем «этажам» прошлое воплощение своей бабушки, а вместо неё по её «ниточке» пришла совсем другая сущность, которая как-то сумела «скопировать» бабушкин «цветок» (видимо тоже «ключик»!) и, как только я успела обрадоваться, что наконец-то её нашла, эта незнакомая сущность меня безжалостно ударила в грудь. Да так сильно, что у меня чуть душа не улетела!..
    – А как же ты от неё избавилась? – удивилась я.
    – Ну, если честно, я и не избавлялась... – смутилась девочка. – Я просто бабушку позвала...
    – А, что ты называешь «этажами»? – всё ещё не могла успокоиться я.
    – Ну, это разные «миры» где обитают сущности умерших... В самом красивом и высоком живут те, которые были хорошими... и, наверное, самыми сильными тоже.
    – Такие, как ты? – улыбнувшись, спросила я.
    – О, нет, конечно! Я наверное сюда по ошибке попала. – Совершенно искренне сказала девчушка. – А знаешь, что самое интересное? Из этого «этажа» мы можем ходить везде, а из других никто не может попасть сюда... Правда – интересно?..
    Да, это было очень странно и очень захватывающе интересно для моего «изголодавшегося» мозга, и мне так хотелось узнать побольше!.. Может быть потому, что до этого дня мне никогда и никто ничего толком не объяснял, а просто иногда кто-то что-то давал (как например, мои «звёздные друзья»), и поэтому, даже такое, простое детское объяснение уже делало меня необычайно счастливой и заставляло ещё яростнее копаться в своих экспериментах, выводах и ошибках... как обычно, находя во всём происходящем ещё больше непонятного. Моя проблема была в том, что делать или создавать «необычное» я могла очень легко, но вся беда была в том, что я хотела ещё и понимать, как я это всё создаю... А именно это пока мне не очень-то удавалось...