Биографии Характеристики Анализ

Минерал сера химическое название. Минерал сера: описание, свойства, применение и фото

Чистая природная сера — твердое кристаллическое вещество желтого цвета. В природе сера встречается в самородном виде, образуя большие залежи. Коллекционным материалом являются хорошо образованные и ярко окрашенные кристаллы серы с алмазным и матовым блеском размером 1,5-15 см и более, а также щетки и друзы таких кристаллов.

Сера изревле широко использовалась в опытах алхимиков, в медицине. При горении она испускает сильный характерный запах. Ее аромат и цвет послужили для людей поводом использовать серу в магии в течение столетий. Ее часто сжигали, чтобы отвести «демонов» и «дьяволов». Это было связано с представлением, согласно которому положительные силы будут привлечены приятными ароматами, в то время как отрицательные силы ненавидят неприятные запахи и будут бежать от них. Позже серу сжигали, чтобы защитить животных и остановить «очарование» или магическое порабощение.

Сера — постоянная составная часть растений, содержится в них в виде различных неорганических и органических соединений. Неорганическая сера обнаружена в виде сернокислых солей. Известны концентрирующие ее бактерии. Некоторые из микроорганизмов образуют в качестве продуктов жизнедеятельности специфические соединения серы; например, грибки рода Penicillinum синтезируют серосодержащий антибиотик пенициллин.

Сера, подобно азоту, входит в состав белков, в силу чего белковый обмен является одновременно азотистым и серным. В тканях сера находится в виде сложных органических соединений — сульфатов либо в сочетании с углеводами, либо в виде сульфатидов в сочетании с фосфатидами в так называемых липоидах, входящих в состав мозгового вещества.

Сера обнаружена в инсулине, и некоторые исследователи приписывают гипогликемическое действие инсулина содержащейся в нем сере.

Сера содержится в антиневралгическом витамине В-тиамине, что отличает этот витамин от других. В белках сера содержится в аминокислотах: цистеине, цистине, которые участвуют в окислительно-восстановительных реакциях организма. Цистеин входит в состав глютатиона, белкового вещества, которым богаты эритроциты, печень, надпочечники и особенно ткани эмбриона, окислительные процессы в которых происходят весьма интенсивно.

Участвуя в окислительно-восстановительных процессах, сера играет в тканевом дыхании ту же роль, что гемоглобин и оксигемоглобин в газообмене легких.

Элементарная сера не обладает выраженным токсическим действием, но все ее соединения токсичны. Принятые внутрь 3 — 5 г, элементарной серы действуют как слабительное вследствие образования сероводорода в кишечнике, стимулирующего перистальтику. Но при ежедневном приеме малых доз серы от 1,0-2,5-10 мг в течение 1-2 недель появляются головные боли, головокружение, утомляемость, потливость, учащение пульса, запоры, боли в животе, изменение в обмене веществ и т. д.

Сера и ее неорганические соединения применяются в медицине с древнейших времен при кожных заболеваниях, заболеваниях суставов, при отравлениях тяжелыми металлами и в качестве слабительного.

Окуривание серой останавливает насморк. С уксусом и медом ее прикладывают на размозженное ухо.

Лечебные свойства серы используются весьма широко в бальнеологии. Действие серных вод обусловлено содержащимся в них сероводородом. Всасываясь через кожу и легкие, сероводород вызывает покраснение кожи от расширения мельчайших сосудов кожи, замедление пульса на 10-15 ударов, понижение систолического и диастолического давления на 5-10 мм. Лечение серными водами используется при различного рода заболеваниях: хронических артропатиях ревматической и подагрической этиологии, при заболеваниях сердечной мышцы типа кардиосклероза, при остеомиелитах с рецидивирующими свищами, при хронических женских заболеваниях, при хронических кожных болезнях, при отравлениях ртутью, свинцом на производстве.

Противопоказанием к лечению серными водами являются острые и подострые заболевания сердца, суставов, женских органов, гипертония с явлениями нефросклероза, костные анкилозы, фурункулезы, все пиодермические заболевания.

Из неорганических соединений серы в настоящее время применяются следующие:

Natrium hyposulfurosum, тиосульфат натрия (гипосульфат), применяется (по методу Демьяновича) как наружное средство для лечения чесотки и некоторых грибковых заболеваний кожи.

Sulfur depuratum, очищенная сера (Flos sulfurise, серный цвет), применяется как слабительное при запорах (на прием по 0,5-1,0 г) и для лечения энтеробиоза (заражение острицами). Входит в состав сложного лакричного порошка (Pulvis Glycyrrhisae compositae). В 1926 г. датским психиатром К. Шредером было предложено лечение внутримышечными инъекциями 1%-ной очищенной серы таких заболеваний, как невролюэс, табес, параличи, шизофрения.

Наружно применяется в Вилькинсоновой мази и простой серной.

Calcium sulfuricum, сульфат кальция, при нагревании выделяет воду и превращается в жженый гипс, применяемый в хирургии для повязок.

За последние 20 лет медицина стала широко пользоваться органическими препаратами серы. В 1935 г. немецкий ученый Домагк предложил препарат пронтозил, содержащий сульфогруппу 802. Это средство оказалось эффективным в борьбе с микробами. Фармацевтическая промышленность создала большое количество сульфаниламидных препаратов. Самым простым по химическому строению является белый стрептоцид. Все другие сульфаниламидные препараты являются производными белого стрептоцида. Таковы сульфадин, сульфазол, норсульфазол, сульфазин, сульфадимезин, уросульфан, дисульфан, сульгин, фталазол, сульфозин и др. Все эти препараты являются высокоактивными средствами в борьбе с тяжелейшими заболеваниями, вызываемыми кокками и бациллами, на которых они

производят бактериостатическое действие, но содержание в них, помимо бензола, амидо- и сульфогрупп может вести к появлению побочных явлений.

В гомеопатии применяется как элементарная сера, так и ее различные соединения, но во главе всех соединений серы стоит элементарная сера — Sulfur. Сера была неоднократно испытана Ганеманом, В ней он видел главное средство против основного страдания человечества — «псоры». Этим термином Ганеман объединял все кожные заболевания, выражающиеся зудом, сыпями, бородавками и другими кожными изменениями. Опыт показал, что именно сера является средством, без которого редко можно обойтись в лечении тяжелых острых заболеваний и никогда — в лечении хронических.

Сера — сильнейший активатор различных расстройств серного (белкового) обмена и, действительно, является лекарственным средством первостепенного значения. Избирательность серы к коже издавна сделала ее главным лечебным средством при кожных болезнях. Сера применяется также при заболеваниях центральной нервной системы, что легко объяснимо: кожа и нервная система связаны общностью происхождения.

Но применение серы, даже в гомеопатических дозах, требует большой осторожности, особенно у людей с нарушенным серным обменом или страдающих аллергическими заболеваниями — астмой, экземой, отеком Квинке. В подобных случаях сера может вызвать сильное обострение.

Сера - S. Наиболее устойчивую при комнатной температуре α-модификацию серы называют обычно ромбической серой или просто серой.

Химический состав . В ряде случаев устанавливается химически чистая сера, но обычно загрязнена посторонними механическими примесями: глинистым или органическим веществом, капельками нефти, газами и пр. Известны редкие разновидности с изоморфной примесью Se обычно до 1%, изредка до 5,2% - селенистая сера, а также Те, иногда As и в исключительных случаях Тl.

Сингония ромбическая. Кристаллическая структура . Согласно рентгенометрическим исследованиям, ромбическая сера обладает редкой для неорганических соединений молекулярной, и притом очень сложной, решеткой. В кристаллической структуре каждый атом серы с двух сторон имеет сферы, пересекающиеся со сферами соседних атомов, причем цепочки, состоящие из 8 атомов, замкнуты.

Отсюда - молекула серы S 8 . Элементарная ячейка сложена 16 такими электрически нейтральными молекулами (кольцами), очень слабо связанными друг с другом вандерваальсовской связью. Облик кристаллов . Кристаллы чаще имеют пирамидальный или усеченнопирамидальный вид. Агрегаты . Часто встречается в сплошных, иногда землистых массах. Изредка наблюдаются натечные почковидные формы и налеты (в районах вулканических извержений).

Цвет . У α-серы наблюдаются различные оттенки желтого цвета: соломенно-желтый, медово-желтый, желтовато-серый, бурый и черный (от углеродистых примесей). Черты почти не дает, порошок слабожелтоватый. Блеск на гранях алмазный, в изломе жирный. В кристаллах просвечивает. Твердость 1-2. Хрупка. Спайность несовершенная. Удельный вес 2,05-2,08. Прочие свойства . Электропроводность и теплопроводность очень слабые (хороший изолятор). При трении заряжается отрицательным электричеством. Растрескивается от теплоты руки.

Диагностические признаки . Характерный цвет, низкая твердость, хрупкость, жирный блеск в изломе кристаллов и легкоплавкость. П. п. тр. и от спички легко плавится (при 112,8°С) и загорается голубым пламенем с выделением характерного запаха SO 2 .

Самородная сера - единственный среди рассматриваемых в классе самородных элементов минерал, обладающий молекулярным строением вещества. S характеризуется совершенно особыми свойствами. Наличие в решетке в качестве структурных единиц электрически нейтральных молекул S 8 объясняет такие свойства, как плохая электропроводность, низкая теплопроводность, слабая связь между молекулами.

Происхождение . Самородная сера встречается исключительно в самой верхней части земной коры и на ее поверхности. Образуется различными путями:

При вулканических извержениях, осаждаясь в виде возгонов на стенках кратеров, в трещинах пород, иногда изливаясь в жидком виде с горячими водами в виде потоков (Япония). Возникает в результате неполного окисления сероводорода H 2 S в сольфатарах или как продукт реакции H 2 S с сернистым газом: 2H 2 S + 20 = 2Н 2 O + 2S; H 2 S + SO 2 = Н 2 O + О + 2S;

Сольфатары (итал., единственное число solfatara, от solfo - сера), струи сернистого газа и сероводорода с примесью паров воды, углекислого и других газов, выделяющиеся из каналов и трещин на стенках и дне кратера, на склонах вулканов.

При разложении сернистых соединений металлов, главным образом пирита, в нижних частях зоны окисления рудных месторождений. Обычно сильно загрязнена различными механическими примесями;

При разложении гипсоносных осадочных толщ. Часто наблюдается парагенезис самородной серы с гипсом, на разъеденных участках которого она образуется в виде кристаллических и порошковатых масс;

Осадочным (биохимическим) путем в осадочных породах, представленных пластами, содержащими гипс, твердые и жидкие битумы (асфальт, нефть) и др. Этот тип месторождений широко распространен на земном шаре и имеет большое промышленное значение. Происхождение серы биохимическим путем связывают с жизнедеятельностью анаэробных бактерий, в результате чего образуется сероводород, неполное окисление которого приводит к выпадению серы.

Применение . Основное количество серы расходуется на производство серной кислоты, используемой во многих отраслях промышленности; затем в сельском хозяйстве (для борьбы с вредителями); в резиновом производстве (процесс вулканизации резины); при изготовлении спичек, фейерверков, красок и пр.

Алмаз

Алмаз - С. Название происходит от греческого слова "адамас" - непреодолимый (очевидно, имеется в виду наивысшая твердость и устойчивость по отношению к физическим и химическим агентам). Имя собственное образца – «Горняк»

Разновидности :

-борт - неправильной формы сростки и шаровидные лучистые агрегаты;

-карбонадо - тонкозернистые пористые агрегаты, окрашенные аморфным графитом и посторонними примесями в буровато-черный цвет.

Химический состав . Бесцветные разновидности состоят из чистого углерода. Окрашенные и непрозрачные разновидности в несгораемом остатке, достигающем иногда нескольких процентов, обнаруживают SiO 2 , MgO, CaO, FeO,Fe 2 O 3 , A1 2 O 3 , ТiO 2 и др. В виде включений в алмазах нередко наблюдается графит и некоторые другие минералы.

Кристаллическая решетка алмаза. А - изображение центров атомов; В - та же решетка в виде тетраэдров, вершины и центры которых являются центрами атомов углерода

Сингония кубическая. Облик кристаллов октаэдрический, менее обычен додекаэдрический, редко кубический и изредка тетраэдрический. Грани кристаллов часто бывают представлены выпуклыми и неровными, иногда разъеденными поверхностями. Наблюдаются двойники срастания. Размеры отдельных кристаллов варьируют от мельчайших до очень крупных, весящих несколько сот и даже тысяч каратов (метрический карат = 0,2 г). Крупнейшие кристаллы весили (в каратах): "Коллинан" - 3025, "Эксцельзиор" - 969,5, "Виктория" - 457, "Орлов" - 199,6.

Цвет . Бесцветный водяно-прозрачный или окрашенный в голубой, синий, желтый, бурый и черный цвета. Блеск сильный алмазный. Твердость 10. Абсолютная твердость в 1000 раз превышает твердость кварца и в 150 раз - корунда. Хрупок . Спайность средняя. Плотность 3,47-3,56. Электропроводность слабая.

Диагностические признаки . Алмаз является единственным минералом по своей исключительной твердости. Характерны также сильный алмазный блеск и часто кривоплоскостные грани кристаллов. Мелкие зерна в шлихах легко узнаются по люминесценции, резко проявляющейся в ультрафиолетовых лучах. Цвета люминесценции обычно голубовато-синие, иногда зеленые.

Происхождение . Коренные месторождения генетически связаны с ультраосновными глубинными магматическими породами: перидотитами, кимберлитами и др. В этих породах кристаллизация алмаза происходит, очевидно, на больших глубинах в условиях высоких температур и давления. Судя по формам и условиям нахождения, алмаз кристаллизовался в магмах одним из первых. Не ясно, кристаллизовался ли алмаз за счет углерода самой магмы или за счет углерода, усваивавшегося из окружающих пород. В ассоциациях с алмазом наблюдаются: графит, оливин - (Mg, Fe) 2 SiO 4 , хромшпинелиды - (Fe,Mg)(Cr,Al,Fe) 2 O 4 , магнетит - FeFe 2 O 4 , гематит - Fe 2 O 3 и др.

Россыпные месторождения алмаза, устойчивого в экзогенных условиях, образуются за счет разрушения и размыва алмазоносных пород.

Кимберлит (от названия г. Кимберли в Южной Африке), магматическая ультраосновная брекчиевидная горная порода эффузивного облика, выполняющая кимберлитовые трубки взрыва.

Кимберлитовая трубка - вертикальное или близкое к вертикальному геологическое тело, образовавшееся при прорыве газов сквозь земную кору. Кимберлитовая трубка заполнена кимберлитом.

Применение . Совершенно прозрачные алмазы применяются в ювелирном деле как драгоценные камни (бриллианты). Для технических целей употребляются мелкие алмазы, а также борт и карбонадо. Эти разновидности используются в металлообрабатывающей, камнеобрабатывающей, абразивной и других отраслях промышленности.

Графит


Графит - С. Название происходит от греческого слова "графо" - пишу. Разновидности :

Графитит - скрытокристаллическая разность;

Шунгит - аморфная разность, образовавшаяся в результате природного коксования углей.

Химический состав графита редко отличается чистотой. В значительных количествах (до 10-20%) часто присутствует зола, состоящая из различных компонентов (SiO 2 , Аl 2 O 3 , FeO, MgO, СаО, Р 2 О 5 , CuO и др.), иногда вода, битумы и газы (до 2%).

Сингония гексагональная. Кристаллическая структура в сравнении с алмазом приведена на рисунке. Различия физических свойств алмаза и графита обусловлены различием в строении кристаллических решеток этих минералов. Ионы углерода в графите лежат листами, представленными плоскими гексагональными сетками.

Расположение центров атомов в алмазе (А) и в графите (Б)

Облик кристаллов . Хорошо образованные кристаллы встречаются крайне редко. Они имеют вид шестиугольных пластинок или табличек, иногда с треугольными штрихами на грани. Агрегаты часто тонкочешуйчатые. Реже распространены шестоватые или волокнистые массы. Цвет графита железно-черный до стально-серого. Черта черная блестящая. Блеск сильный металловидный; скрытокристаллические агрегаты матовые. В тончайших листочках просвечивает серым цветом. Твердость 1. В тонких листочках гибок. Жирен на ощупь. Мажет бумагу и пальцы. Спайность совершенная. Удельный вес 2,09-2,23 (изменяется в зависимости от степени дисперсности и наличия тончайших пор), у шунгита 1,84-1,98. Прочие свойства . Обладает высокой электропроводностью, что обусловлено очень плотной упаковкой атомов в листах.

Диагностические признаки . Легко узнается по цвету, низкой твердости и жирности на ощупь. От сходного с ним молибденита (MoS 2) отличается более темным железно-черным цветом и более слабым блеском.

П. п. тр. не плавится. При накаливании в струе кислорода сгорает труднее, нежели алмаз. Улетучивается, не плавясь, лишь в пламени вольтовой дуги. В кислотах не растворяется. Порошок в смеси с KNO 3 при нагревании дает вспышку.

Происхождение . В природе графит образуется при восстановительных процессах в условиях высоких температур.

Широко распространены метаморфические месторождения графита, возникшие за счет каменных углей или битуминозных отложений в условиях регионального метаморфизма или под влиянием интрузий магмы.

Встречается иногда среди магматических горных пород разнообразного состава. Источником углерода во многих случаях являются вмещающие углеродсодержащие горные породы.

Известны случаи находок графита в пегматитах. Встречаются месторождения на контактах известняков с изверженными породами в провинциях Онтарио и Квебек в Канаде, а также жильные месторождения крупнолистоватого графита, например на о. Цейлон.

Применение . Графит применяется для самых различных видов производства: для изготовления графитовых тиглей, в литейном деле; производстве карандашей; электродов; для смазки трущихся частей; в красочной промышленности и др.

Группа « полуметаллов»

В эту группу, кроме мышьяка, входят сурьма и висмут, т. е. элементы больших периодов V группы таблицы Менделеева. Все они в природных условиях хотя и редко, но наблюдаются в самородном состоянии, кристаллизуясь в одной (тригональной) сингонии и образуя, однотипные кристаллические решетки. Несмотря на это, элементы группы полуметаллов не встречаются совместно и не дают в природе ни твердых растворов, ни определенных соединений. Исключение составляют мышьяк и сурьма, которые при высоких температурах образуют твердые растворы во всех пропорциях, а при низких температурах - лишь устойчивое интертметаллическое соединение AsSb (аллемонтит).

Интерметаллические соединения - химические соединения металлов друг с другом.

Взаимодействия серы в организме

Сера важна для хорошей проницаемости клеточных мембран, благодаря участию этого элемента в клетку проникают нужные вещества и выводятся продукты обмена. С участием серы стабилизируется уровень глюкозы в крови, обеспечивается выработка энергии для роста и деления клеток (за счет участия в окислительно-восстановительных реакциях), регулируется свертываемость крови (в составе гепарина).

Сера участвует в синтезе некоторых жизненно важных аминокислот – таких как:

  • таурин – входит в состав желчи и отвечает за эмульгирование поступивших с пищей жиров, тонизирует сердечную мышцу и снижает артериальное давление, способствует образованию новых клеток в тканях мозга, связанных с укреплением памяти;
  • метионин – необходим для выработки фосфолипидов (лецитина, холина и др.) и адреналина, снижает уровень холестерина в крови и улучшает работу сердечно-сосудистой системы, предотвращает ожирение печени, обладает противорубцовой активностью;
  • цистин – формирует дисульфидные мостики и поддерживает структуру белков, пептидов. От него зависит биологическая активность инсулина, гормонов окситоцина, вазопрессина, соматостатина. Он нужен для жесткости и стабильности кератина;
  • цистеин – компонент кератинов, которые представляют собой главные структурные белки ногтей, волос и кожного эпидермиса, помогает формировать и упорядочивать коллагеновые волокна, входит в активное ядро некоторых пищеварительных ферментов, считается одним из наиболее сильных антиоксидантов, особенно в присутствии селена и витамина С .

Витамин U (метил-метионин-сульфоний) – витаминное вещество, которое синтезируется из серосодержащей аминокислоты метионина. Его характеризуют как противоязвенный фактор, поскольку оно отвечает за заживление воспаленных слизистых оболочек желудка и кишечника. Кроме того, сера принимает участие в синтезе витаминов группы В в кишечнике, в выработке некоторых гормонов. Этот элемент необходим для связывания аминокислотных цепочек, образующих инсулин. В составе гемоглобина сера способствует связыванию кислорода и доставке его к тканям и органам.

Польза серы для организма

Жизненно важные взаимодействия серы для существования человеческого организма обусловливают и ту пользу, которую несет нам это вещество. Прежде всего, это элемент для защиты от агрессивных свободных радикалов. Благодаря сере организм может замедлить процессы старения, противостоять злокачественным новообразованиям, инфекциям, различным заболеваниям. Польза серы и в том, что она:

  • поддерживает обменные процессы;
  • обеспечивает эластичность суставов и прочность соединительной ткани;
  • уменьшает мышечные и суставные боли за счет воздействия на нервные окончания;
  • снимает судороги и избавляет от повышенного мышечного тонуса;
  • улучшает работу печени, участвуя в синтезировании желчи;
  • способствует связыванию, нейтрализации и выведению токсинов;
  • усиливает активность поступающих в организм витаминов;
  • улучшает текстуру кожи, укрепляет волосы;
  • формирует хрящевую ткань, укрепляет мышечный каркас;
  • усиливает иммунитет;
  • регулирует водно-солевой баланс, предотвращая отеки;
  • активизирует кровообращение и метаболизм в тканях;
  • ускоряет заживление и восстановление тканей различных органов;
  • оказывает противоаллергическое действие.

Сера повышает сопротивляемость организма инфекциям и его устойчивость к радиоизлучению, обладает противовоспалительным действием. Восстановительные и антибактериальные свойства серы активно применяются в лечении дерматологических заболеваний, в терапии ран и ожогов.

Особую роль выполняет ушная сера, которая вырабатывается в слуховом проходе сальными и апокриновыми железами. Она содержит вещества, создающие в ухе, кислую рН-среду, в которой гибнут грибки и бактерии. Если часто использовать моющие средства, скрести слуховой проход ватными палочками, то кислотно-щелочной баланс нарушится, провоцируя развитие инфекций. Активизации воспалений может способствовать избыточная выработка ушной серы, вызванная нарушением обмена веществ. В этом случае серная пробка удерживает воду и отшелушенный эпителий, создавая благоприятную среду для бактерий и грибков.

Роль в возникновении и течении различных заболеваний

Уменьшение содержания серы с возрастом или по другим причинам ослабляет антиоксидантную защиту организма, провоцируя развитие различных патологий, в том числе злокачественных. При острых воспалительных заболеваниях органов дыхания (пневмония, бронхит) недостаток серы может ухудшить течение болезни, тогда как прием серосодержащих препаратов быстро уменьшает проявления интоксикации и ускоряет выздоровление. Дисбаланс серы может стать причиной развития остеохондроза, межпозвоночных грыж. С помощью серы часто удается остановить развивающийся сколиоз, снизить потребность в инсулине при сахарном диабете, уменьшить боли при бурсите и артрите, снять мышечные судороги.

Основные функции в организме


Функции серы в организме человека настолько широки и важны, что это вещество отнесено к категории жизнеобеспечивающих и названо макроэлементом – поскольку в органах и тканях содержится около 2 г серы на каждый килограмм массы тела. С возрастом уровень содержания серы может понизиться из-за замедления обменных процессов в организме. Серу можно обнаружить практически во всех тканях, но основная ее масса откладывается в коже, ногтях и волосах, в нервных волокнах, костях и мышцах. Этот элемент поступает в организм только извне – с продуктами питания, где содержится в виде органических соединений (кислоты, спирты, эфиры) и неорганических солей (сульфаты, сульфиды). Органические соединения расщепляются и всасываются в кишечнике, неорганические – выводятся из организма со стулом без всасывания. Основная часть остатков серы и ее усвоенных соединений выводится почками, и немного – через кожу и легкие.

Одна из самых важных функций серы в человеческом организме – участие в синтезе глутатиона. Это аминокислота-антиоксидант, которая не только защищает клетки от разрушения свободными радикалами, но и отвечает за баланс окислительных и восстановительных процессов внутри каждой клетки.

Еще одна важная функция серы – она помогает формировать дисульфидные связи: это своего рода мостики между структурными элементами в молекуле белка, благодаря которым молекула сохраняет форму. Стабильность белковых молекул важна для обеспечения упругости кожи и волос, прочности и эластичности коллагеновых волокон не только в дермальном слое кожи, но и в сосудистых стенках и мышечной ткани. Соединение серы – хондроитин сульфат – важнейший компонент хрящей и связок, сердечных клапанов. Сера входит в состав меланина, отвечающего за пигментацию кожи и ее защиту от вредного воздействия ультрафиолетовых лучей.

В каких продуктах содержится сера


Сера поступает в наш организм с продуктами, в которых много белка в составе аминокислот, сульфатидов и других органических соединений. Богаты серой некоторые бобовые, довольно много серы в зелени и листовых овощах темно-зеленого цвета, потому что они содержат витамины группы В, в составе которых тоже есть сера.

Наличие серы в некоторых продуктах (в мг на кг веса)

Больше 1000 Рыба (сардины, горбуша, щука, морской окунь, камбала).
Морепродукты (омары, морские раки, устрицы, крабы).
Куриные яйца (желток)
Больше 200 Рыба (минтай, карп, селедка, мойва).
Мясо (курятина, индейка, говядина, свинина, баранина).
Бобовые (горох, соя, фасоль).
Семена мака, кунжута, подсолнечника.
Перепелиные яйца
50-100 Молочные продукты (кефир, сгущенка).
Крупы (пшеничная, ржаная, перловая, гречневая, овсяная).
Орехи (грецкий, миндальный, кешью).
Макароны, хлеб.
Репчатый лук, чеснок
20-50 Молоко, твердый сыр, мороженое, сметана.
Рис.
Овощи (картофель, капуста различных видов, свекла, спаржа).
Бананы, ананасы
Менее 20 Фрукты (яблоко, лимон, груша, слива).
Ягоды (вишня, виноград, земляника, малина, крыжовник).
Овощи (морковь, помидор, свекла, тыква)

Пополнить запасы серы в организме помогут продукты, содержащие эфирные масла, например, репчатый лук, чеснок, хрен, редька, горчица, репа и брюква. Отдельно нужно сказать о капусте. Она содержит фитонциды, как и эфиромасличные овощи, метионин (серосодержащую аминокислоту) и минеральные соли с серой, а поэтому считается одним из лучших продуктов по усвояемости серы и самым доступным пищевым источником этого элемента. Богаты серой брюссельская, цветная, савойская капуста, кольраби и брокколи.

Как сохранить серу в пище

Для того чтобы в процессе кулинарной обработки продуктов сера сохранилась в наибольшем количестве, есть несколько секретов:

  • лук или чеснок измельчить и оставить на 10 минут, прежде чем использовать в приготовлении – сера в них станет более устойчивой к нагреванию;
  • брокколи в слегка пропаренном виде (3-4 минуты) содержит втрое больше серы, чем после термообработки;
  • все виды капусты перед приготовлением нужно порезать на кусочки, разобрать на соцветия или нашинковать, оставить на 10 минут, затем слегка протушить или приготовить на пару – это позволит максимально сохранить в них серу;
  • серосодержащие продукты желательно готовить без продолжительного отваривания или тушения.

Обжаривание при высокой температуре сводит содержание серы до минимума.

Усвояемость минерала

Усвояемость серы ухудшается в присутствии таких элементов как барий (много в морской капусте и морепродуктах), мышьяк (им богат рис). А также молибден (содержится в бобовых и в мясных субпродуктах), селен (грибы, кукуруза, пшеничные отруби), свинец (этот элемент накапливается в грибах, его много в консервах, корнеплодах).

СОВЕТ! Усвояемость серы улучшается в присутствии железа , поэтому полезно включать в меню продукты, богатые обоими этими элементами: например, гречка, горох, курятина и крольчатина, морская рыба, яичный желток, ржаной хлеб

Повысить усвояемость серы помогут блюда, где много фтора : морская рыба и морепродукты (устрицы), крупы (овсянка, гречка). А также ржаные отруби, некоторые овощи (тыква, лук), грейпфруты, грецкие орехи и мед.

Сочетание с другими питательными веществами

Попадая в организм с едой, сера способствует улучшению проницаемости клеточных мембран, благодаря чему питательные вещества могут свободно поступать внутрь клеток. В присутствии серы улучшается усвоение витаминов С и , других питательных веществ, обладающих свойствами антиоксидантов.

Суточные нормы


Достоверных клинических данных о том, как сера влияет на человеческий организм, и в какой дозе мы должны ежедневно ее получать, пока нет. Одни ученые полагают, что ежедневно мы нуждаемся в поступлении 1,2 г серы для нормальной работы организма, другие уверены, что необходимо получать 4-5 г элемента в сутки. В любом случае, здоровый человек будет чувствовать себя хорошо, потребляя каждый день с продуктами 3-4 г серы. Необходимое количество этого вещества легко получить при рационально составленном меню, где включены мясо и рыба, крупы и зелень, фрукты и овощи. Веганам и поклонникам жестких безбелковых диет следует тщательно разрабатывать рацион и, возможно, включать в него пищевые добавки, чтобы организм получал достаточное количество аминокислот и не испытывал дефицита серы.

Увеличить ежедневную норму серы до 3 г в сутки рекомендуют тем, кто интенсивно расходует аминокислоты. Это дети и подростки в период интенсивного роста, спортсмены при наборе мышечной массы и во время активных тренировок, пациенты с переломами или патологиями в опорно-двигательном аппарате, все люди в период повышенных физических нагрузок или нервного перенапряжения. Обычно врачи рекомендуют увеличить в рационе количество белковой пищи, и этого бывает достаточно для соблюдения баланса серы. Но при необходимости назначают биоактивные добавки с тиамином, метионином, биотином и другими серосодержащими компонентами.

Что происходит при дефиците минерала

Роль серы для человеческого организма еще недостаточно изучена, а потому отсутствуют клинические данные о том, как влияет на него недостаток или избыток серы и какие значения этого вещества вообще считать дефицитными либо избыточными для человека.

Однако некоторые экспериментальные данные все же накоплены, и они свидетельствуют о том, что при недостаточном количестве серы происходит:

  • замедление клеточного роста;
  • ухудшение репродуктивных функций;
  • нарушение пигментного обмена;
  • повышение содержания сахара в крови;
  • развитие заболеваний печени (жировой дистрофии);
  • почечные кровоизлияния.

СОВЕТ! При потускневших и ломких волосах, слоящихся ногтях и сухой дряблой коже, возможно, в организме не хватает серы, поэтому рекомендуется ввести в ежедневное меню дополнительные белковые продукты, крупы, листовые зеленые овощи

Какие факторы способствуют развитию дефицита серы, пока не выяснено до конца. Ученые предполагают, что виновником может оказаться дисбактериоз кишечника. Кроме того, дефицит серы может быть спровоцирован избытком селена в организме. Этот элемент способен встраиваться в аминокислоты вместо серы. Следует помнить, что у серы низкая скорость накопления в организме, и понадобится от 1 до 6 месяцев, чтобы восстановить запасы этого макроэлемента до необходимого уровня. Однако и потери депонированной в тканях и органах серы тоже занимают примерно такое же время.

Избыток серы в организме


Избыточное накопление серы стало в последние годы предметом особого внимания ученых, поскольку в продуктах, которые мы ежедневно съедаем, становится все больше пищевых добавок с сульфитами (это Е220 и Е228) – они продлевают сроки хранения, используются как консерванты и антиоксиданты. Много соединений серы мы получаем из минеральных удобрений, которые активно всасываются овощами и бобовыми, попадают через корма в мясо животных и через загрязненную воду – в рыбу. Больше всего серы мы получаем с копчеными продуктами, пивом, подкрашенным вином, картофелем и другими корнеплодами. Избыточное поступление серы с продуктами не вызывает отравлений, однако этот элемент накапливается в организме, и некоторые врачи склонны связывать участившиеся обращения пациентов по поводу бронхиальной астмы именно с увеличение потребления соединений серы.

Избыток серы может возникнуть и как токсическое состояние – если ее оказалось слишком много в организме из-за вдыхания частичек вещества либо употребления продуктов, выросших на почвах с повышенным уровнем сернистых соединений. Это состояние проявляется следующими симптомами:

  • кожа зудит, появляется мелкая сыпь, часто возникают фурункулы;
  • глаза слезятся, появляется ощущение «песка в глазах», светобоязнь, развиваются дефекты роговицы;
  • беспокоит тошнота, головная боль, головокружение и общая слабость;
  • часто развиваются респираторные заболевания;
  • ослабевает слух;
  • нарушается пищеварение, возникают проблемы со стулом;
  • снижается масса тела;
  • становится трудно запоминать и сосредоточиваться, понижаются интеллектуальные способности.

Особую опасность несет вдыхание сернистого газа. Известны случаи, когда вдыхание паров сероводорода приводило к мгновенной смерти из-за судорожного сжатия дыхательных путей и остановки дыхания. Даже оставшись в живых после отравления сернистым газом, человек может получить тяжелые поражения легких и желудочно-кишечного тракта, параличи, психические нарушения, страдания от сильных головных болей.


Самое известное из лечебных применений серы – это бальнеотерапия, когда богатая сероводородом вода из подземных источников применяется для принятия лечебных ванн. Сероводородные ванны могут содержать разные концентрации активных элементов, суть их воздействия заключается в том, что частички сероводорода проникают сквозь кожу в кровь и оказывают раздражающее действие на нервные окончания, стимулируя работу органов. Чаще всего сероводородные ванны рекомендуют при заболеваниях суставов, мышц и костей, расстройствах нервной системы, при некоторых кожных болезнях, нарушенных обменных процессах.

Лечение серосодержащими минеральными водами показано при некоторых заболеваниях пищеварительной системы. В этом случае тоже речь идет о раздражении чувствительных нервных окончаний слизистых оболочек желудочно-кишечного тракта, поджелудочной железы, печени, из-за чего там начинают активнее работать эндокринные и нервные клетки, регулируя моторику и секреторные функции.

Свойство серы связывать и нейтрализовать токсины, учтено в противоаллергических препаратах с этим веществом. Препараты серы рекомендуют при синдроме хронической усталости и при вегетососудистой дистонии.

Препараты, содержащие минерал

Аптечные формы препаратов серы могут содержать разные формы этого элемента – осажденную (для мазей и присыпок), очищенную (для приема внутрь как слабительного и отхаркивающего средства), коллоидную серу (которая способна растворяться в воде). Они выпускаются в виде мазей, растворов для примочек, форм для приема внутрь, растворов для внутривенных и внутримышечных инъекций.

Местные средства с содержанием серы эффективны в борьбе с демодексом, грибковыми инфекциями, при педикулезе. Препараты серы способны не только формировать новые клетки эпидермиса, но и отшелушивать старые за счет кератолитического действия. Это свойство нашло применение в средствах против веснушек и пигментных пятен.

При приеме внутрь препараты серы действуют как слабительное, стимулируя перистальтику, оказывают противоглистное действие (особенно эффективны против остриц).

Внутривенные инъекции препаратов серы могут рекомендоваться в качестве неспецифического раздражителя при хроническом полиартрите и ишиасе, при острых и хронических отравлениях солями тяжелых металлов или синильной кислотой. Внутримышечные инъекции суспензии с 2%-м содержанием серы могут назначаться для повышения температуры тела (пирогенная терапия) при прогрессивном параличе.

Сера как популярный косметический ингредиент


Сера обладает кератолитическими и кератопластическими свойствами. Она входит в состав цистеина, отвечающего за прочность и целостность эпидермиса, но в то же время способна в высокой концентрации разрывать связи между кератиноцитами и вызывать их отшелушивание. Благодаря укреплению эпидермального слоя средства с содержанием серы предотвращают потерю воды кожей и предупреждают ее сухость. В кератиноцитах волос сера укрепляет дисульфидные связи, за счет чего придает им гладкость и блеск, предупреждает обезвоживание и предотвращает ломкость.

Еще одна важная для красоты функция серы – укрепление соединительной ткани, формирование новых волокон коллагена и упорядочивание их расположения, что позволяет добиться упругой и эластичной кожи, значительного снижения ее дряблости и разглаживания мимических морщин, подтягивания овала лица и общего внешнего омоложения. Волокна коллагена входят в состав сосудистых стенок, и их укрепление, повышение эластичности позволяет коже получать больше кислорода и питательных веществ, а значит иметь здоровый цвет и плотную текстуру.

Препараты с соединениями серы традиционно применяются для осветления кожи, уменьшения проявлений веснушек и пигментных пятен. Противовоспалительные и антибактериальные свойства серы нашли применение в препаратах для лечения жирной себореи и угревой болезни. Они регулируют выделение кожного сала, снимают воспаления, обладают рассасывающим действием в отношении глубоких угревых формирований и не застарелых рубцов, в том числе постакне.

Соединения серы сульфиты – частые компоненты косметических средств со стабилизирующим и антибактериальным, противогрибковым действием. Обычно сульфиты включают в состав гигиенических средств, которые не остаются на коже надолго и смываются водой – это шампуни, гели для душа, пенки для умывания. Наиболее хорошо известны лаурилсульфат и лауретсульфат натрия. Они отлично справляются с жиром на коже и волосах и являются сильными консервантами, хотя способны становиться раздражителями для чувствительной кожи.

Антиоксидантные свойства серы в составе косметических средств, особенно если они содержат дополнительно витамин С, позволяют предохранить кожу и волосы от вредного воздействия плохой экологии и солнечной радиации, замедлить процессы старения.

Для чего нужна сера человеческому организму, какие функции выполняет, в каких продуктах содержится, смотрите в видео ниже.

Представляет собой пример хорошо выра­женного энантиотропного полиморфизма. Она известна в трех кристалличе­ских модификациях, входящих в группу серы: α-сера, β-сера (сульфурит), γ-сера (розицкит). Наиболее устойчи­вой модификацией в нормальных условиях является ромбическая (α-сера), к которой относятся естественные кристаллы серы. Вторая, моноклинная модификация (β-сера) наиболее устойчива при высоких температурах. Моноклинная при охлаждении до температуры 95,5° С переходит в ромбиче­скую. В свою очередь, ромбическая при нагревании до этой температуры переходит в моноклинную и при температуре 119° С плавится. Различают кристаллическую и аморфную серу. Кристаллическая сера растворяется в органических соединениях (скипидаре, сероуглероде и керосине), тогда как аморфная сера в сероуглероде не растворяется. Примеси аморфной серы снижают температуру плавления кристаллической серы и затрудняют ее очистку.


Химический состав . Сера часто встречается химически чистой, иногда содержит до 5,2% селена (селенистая сера), а также и . Очень часто сера загрязнена механическими примесями глинистых, а также битуминозных веществ.

Структурная ячейка содержит 128S. Пространственная группа D 242h - Fddd; а 0 = 10,48, b 0 =12,92 с 0 = 24,55; а 0: b 0: с 0 = 0,813: 1,1: 1,903. В основе структуры ромбической серы лежит сложная молекулярная решетка. Элементарная ячейка состоит из 16 электрически нейтральных молекул, объединенных в цепочку замкнутых, зигзагообразных «сморщенных» колец из 8 атомов серы

s - s - 2.12А, s 8 - s 8 = 3,30 А

Агрегаты и габитус . Сера встречается в виде с плова и землистых скоплений, а также друз кристаллов, иногда в виде натечных форм и налетов. Часто встречаются хорошо образованные кристаллы бипирамидального (удлиненно-бипирамидального и срезанно-бипирамидального) и тетраэдрообразного габитуса, размер которых достигает нескольких сантиметров. Главными формами на кристаллах ромбической серы являются бипирамиды {111}, {113}, призмы {011}, {101} и пинакоид {001}.

Менее распространенными, но характерными для некоторых месторождений, являются пинакоидальные кристаллы (таблитчатого и пластинчатого облика). Изредка встречаются двойники срастания серы по (111), иногда по (011) и (100). Довольно часто кристаллы серы образуют параллельные сростки.

Физические свойства . Для серы характерны разные оттенки желтого цвета, реже бурого до черного. Цвет черты желтоватый. Блеск на гранях алмазный, на изломе - жирный. В кристаллах просвечивает. Спайность несовершенная по(001),(110), и (111). Твердость-1-2. Хрупкая. Плотность - 2,05-2,08. Сера - хороший теплоизолятор. Обладает полупроводниковыми свойствами. При трении заряжается отрицательным электричеством.

Оптически положительная; 2V = 69° ; ng - 2,240 - 2,245, nm - 2,038. nр = 1,951 - 1,958, ng - nр = 0,287.

Диагностические признаки . Кристаллические формы, цвет, низкая твердость и плотность, жирный блеск на изломе кристаллов, низкая температура плавления - характерные признаки серы. Главные линии на рентгенограммах: 3,85 ; 3,21 и 3,10. В НСl и H 2 S0 4 нерастворима. NH0 3 и царская водка окисляют серу, превращая ее в H 2 S0 4 . Сера легко растворяется в сероуглероде, скипидаре и керосине. П. п. т. легко плавится и загорается голубым пламенем с выделением S0 2 .

Образование и месторождения . Сера широко распространена в природе, ее месторождения возникают: 1) при вулканических извержениях; 2) при поверхностном разложении сульфосолей и сернистых соединений металлов, 3) при раскислении сернокислых соединений (главным образом гипса), 4) при разрушении органических соединений (преимущественно богатых серой асфальтов и нефти), 5) при разрушении органического организмов и 6) при разложении сероводорода (а также S0 2) на земной поверхности. Независимо от этих процессов сера образуется за счет сероводорода и иногда S0 2 и S0 3 , являющихся промежуточными продуктами при разложении других сернистых образований.

Промышленные месторождения серы представлены тремя типами: 1) вулканические месторождения, 2) месторождения, связанные с окислением сульфидов, и 3) осадочные месторождения. Вулканические месторож­дения серы возникают путем кристаллизации возгонов. Сера в виде хорошо образованных кристаллов выстилает выходные отверстия фумарол и мелкие трещины и пустоты. Вулканические месторождения серы известны в Италии, Японии, Чили и других вулканических районах. В Советском Союзе они имеются на Камчатке и Кавказе. Месторождения серы, связанные с окислением сульфидов, характерны для зоны окисления сульфидных месторождений. Их образование обусловлено неполным окислением сульфидов и происходите первую стадию окисления по такой возможной реакции:

RS + Fe 2 (S0 4 ) 3 = 2FeS0 4 + RS0 4 + S.

Наибольшее значение по запасам имеют месторождения серы, которые возникли при формировании осадочных горных пород. В этих месторождениях исходным веществом для образования серы является . Окисление сероводорода происходит следующим образом:

2HS + 0 2 = 2Н 2 0+2S.

Что касается происхождения самого сероводорода и путей его перехода в серу, большинство ученых рассматривает эти процессы с биохимической точки зрения, связывая их с жизнедеятельностью организмов. В конце XIX столетия был открыт ряд микробов, которым свойственна способность перерабатывать (восстанавливать) сернокислые соли в . Вместе с тем установлено, что образуется при гниении белковых соединений и в результате жизнедеятельности некоторых видов лучистого грибка

Actynomicetes. Среди микробов особенно выделяется род Microspira, который населяет дно стоячих водоемов и морских бассейнов, зараженных сероводо­родом. Эти организмы найдены также в подземных водах и нефти на глубинах до 1000-1500 м. Специфическая связь серы в главнейших месторожде­ниях с гипсом, нефтью и другими битумами (например, асфальтом и озоке­ритом) дает основание считать, что органических соединений является источником энергии и окисляется бактериями за счет кислорода, который они получают из сульфатов (например, гипса). В этом случае весь процесс образования сероводорода имеет такой вид:

Са²⁺+SO²⁻ 4 + 2С +2Н 2 0 = H 2 S+Са(НС0 3 ) 2

Переход сероводорода в серу может происходить или по реакции 2H 2 S+ О 2 = 2Н 2 0 + 2S, или же биохимическим путем под влиянием других бактерий, главнейшими среди которых являются Biggiatoa mirabith Thiospirillит. Эти бактерии, поглощая сероводород, перерабатывают его в серу, которую откладывают внутри своих клеток в виде желтых блестя­щих шариков. Бактерии живут в озерах, прудах и мелких частях моря и, падая на дно вместе с другими отложениями, дают начало месторождениям серы.

Месторождения , в которых сера возникает одновременно с породами, которые ее содержат, носят название сингенетических. Они известны в Сици­лии, в Советском Союзе (в Туркмении, Поволжье, Дагестане, Приднестровье и других местах). Особенностью сингенетических месторождений серы является ее тесная связь с определенным стратиграфическим горизонтом. Когда сера образуется за счет сероводорода, который циркулирует по трещинам горных пород, возникают эпигенетические месторождения. К ним относятся месторождения Техаса и Луизианы в США; в России - Шор-Су в Фергане, а также месторождения в районе Махачкалы, Казбека и Грозного. Для многих из этих месторождений характерны явления пере­кристаллизации, в результате которой возникают крупнокристаллические скопления серы. Например, в Роздольском месторождении первичная сера представлена скрытокристаллической разностью, а вторичная (перекристаллизованная) - крупнокристаллической разностью с отдельными кристаллами до 5 см.

В России месторождения серы развиты в Приднестровье, где сера встречается в гипсово-известняковой толще верхнего тортона в виде скрытокристаллических скоплений в пелитоморфном известняке (Роздоль-ское и Язовское месторождения), а также в виде крупных кристаллов в пустотах в тесной ассоциации с целестином и крупнокристаллическим кальцитом (Роздольское месторождение). В Средней Азии (Гаурдак и Шор-Су) сера наблюдается в трещинах и пустотах разных осадочных пород в ассоциации с битумами, гипсом, целестином, кальцитом и арагонитом. В Каракумах - в виде холмов, покрытых кремнистыми породами в ассоциации с гипсом, квасцами, кварцем, халцедоном и т. д. Осадочные месторождения серы известны в Поволжье. Крупные месторождения серы за гра­ницей известны в Сицилии, а также в США в штатах Техас и Луизиана, где они связаны с соляными куполами.

/ минерал Сера Самородная

Сера самородная - распространенный минерал из класса самородных элементов. Сера представляет собой пример хорошо выраженного энантиоморфного полиморфизма. В природе образует 2 полиморфные модификации: a-сера ромбическая и b-сера моноклинная. При атмосферном давлении и температуре 95,6°С a-сера переходит в b-серу.
Самородная сера обычно представлена a-серой. Сера в отличие от других самородных элементов имеет молекулярную решетку, что определяет ее низкую твердость.

Разновидность: Вулканит (селенистая сера). Оранжево-красного, красно-бурого цвета. Происхождение вулканическое.

Отличительные признаки

Для самородной серы характерны: неметаллический блеск и то, что сера загорается от спички и горит голубым пламенем, выделяя сернистый газ, имеющий резкий удушливый запах. Наиболее характерным цветом для самородной серы является светло-желтый.

Легко растворима в канадском бальзаме, в скипидаре и керосине. Нерастворима в воде, но растворима в CS2. В HCl и H2SO4 нерастворима. HNO3 и царская водка окисляют серу, превращая её в H2SO4.

Сера образуется при вулканических извержениях, при выветривании сульфидов, при разложении гипсоносных осадочных толщ, а также в связи с деятельностью бактерий. Главные типы месторождений самородной серы - вулканогенные и экзогенные (хемогенно-осадочные). Экзогенные месторождения преобладают; они связаны с гипсо-ангидритами, которые под воздействием выделений углеводородов и сероводорода восстанавливаются и замещаются серно-кальцитовыми рудами. Такой инфильтрационно-метасоматический генезис имеют все крупнейшие месторождения. Самородная сера часто образуется (кроме крупных cкоплений) в результате окисления H2S. Геохимические процессы её образования существенно активизируются микроорганизмами (сульфатредуцирующими и тионовыми бактериями). Среди вулканогенных месторождений самородной серы главное значение имеют гидротермально-метасоматические (например, в Японии), образованные сероносными кварцитами и опалитами, и вулканогенно-осадочные сероносные илы кратерных озёр. Образуется также при фумарольной деятельности. Образуясь в условиях земной поверхности, самородная сера является всё же не очень устойчивой и, постепенно окисляясь, даёт начало сульфатам, гл. образом гипсу.

Иногда при вулканических процессах сера изливается в жидком виде. Это бывает тогда, когда сера, ранее осевшая на стенках кратеров, при повышении температуры расплавляется. Отлагается сера также из горячих водных растворов в результате распада сероводорода и сернистых соединений, выделяющихся в одну из поздних фаз вулканической деятельности. Эти явления сейчас наблюдаются около жерл гейзеров Йеллоустонского парка (США) и Исландии. Встречается совместно с гипсом, ангидритом, известняком, доломитом, каменной и калийной солями, глинами, битуминозными отложениями (нефть, озокерит, асфальт) и пиритом. Также встречается на стенках кратеров вулканов, в трещинах лав и туфов, окружающих жерла вулканов как действующих, так и потухших, вблизи серных минеральных источников.

Месторождения

На территории Евразии все промышленные месторождения самородной серы поверхностного происхождения. Некоторые из них находятся в Туркмении, в Поволжье и др. Породы, содержащие серу, тянутся вдоль левого берега Волги от г. Самара полосой, имеющей ширину в несколько километров, до Казани. Вероятно, сера образовалась в лагунах в пермский период в результате биохимических процессов. Месторождения серы находятся в Раздоле (Львовская область, Прикарпатье), Яворовске (Украина) и в Урало-Эмбинском районе. На Урале (Челябинская обл.) встречается сера, образовавшаяся в результате окисления пирита. Сера вулканического происхождения имеется на Камчатке и Курильских островах. Основные запасы серы капиталистических стран находятся в Ираке, США (штаты Луизиана и Юта), Мексике, Чили, Японии и Италии (о. Сицилия).

Биогенно-осадочная сера:

  • Водинское, Самарская область, Россия
  • Техас и Луизиана, США
  • Шор-Су, Узбекистан
  • Гуардак, Каракумы, Туркмения
  • Сицилия, Италия-Тарнобжег, Польша
  • Язовское местрождение, Львов, Украина

Сера вулканического происхождения:

  • Камчатка, Россия
  • Поццуоли, Италия
  • Гавайские острова

Сера в зонах окисления сульфидов:

  • Рио-Тинто, Испания
  • Костайнике, Сербия

Применение

Используется в производстве серной кислоты (около 50% добываемого количества). В 1890 г. Герман Фраш предложил плавить серу под землёй и извлекать на поверхность через скважины, и в настоящее время месторождения серы разрабатывают главным образом путём выплавки самородной серы из пластов под землёй непосредственно в местах её залегания. Сера также в больших количествах содержится в природном газе (в виде сероводорода и сернистого ангидрида), при добыче газа она откладывается на стенках труб, выводя их из строя, поэтому её улавливают из газа как можно быстрее после добычи.

Сера широко применяется в химической, целлюлозно-бумажной (получения сульфат-целлюлозы), кожевенной и резиновой промышленности (вулканизация каучука), в сельском хозяйстве (производство ядохимикатов).

рассказать об ошибке в описании

Свойства Минерала

Цвет Чистая сера - светло-жёлтая, с примесями селена – тёмно-коричневая, мышьяка – ярко-красная, битумов – до тёмно-коричневого и чёрного. Известна молочно-белая и голубая сера.
Цвет черты Соломенно-жёлтый, белый
Происхождение названия Слово «сера», известное в древнерусском языке с XV в., заимствовано из старославянского «сѣра» - «сера, смола», вообще «горючее вещество, жир». Этимология слова не выяснена до настоящих времен, поскольку первоначальное общеславянское название вещества утрачено и слово дошло до современного русского языка в искаженном виде. По предположению Фасмера, «сера» восходит к лат. сera - «воск» или лат. serum - «сыворотка». Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur) предположительно восходит к индоевропейскому корню *swelp - «гореть»
Год открытия известен с древних времён
IMA статус действителен, описан впервые до 1959 (до IMA)
Химическая формула S8
Блеск жирный
смоляной
Прозрачность прозрачный
полупрозрачный
Спайность несовершенная по {001}
несовершенная по {110}
несовершенная по {111}
Излом раковистый
неровный
Твердость 2
Термические свойства Сера имеет низкую точку плавления - 113°С. Легко сгорает на воздухе, горит синим пламенем, выделяя удушливые пары диоксида серы (который при взаимодействии с водой образует серную кислоту, выпададающую в виде осадков на землю).
Типичные примеси Se,Te
Strunz (8-ое издание) 1/0.0-10
Hey"s CIM Ref. 1.51
Dana (7-ое издание) 1.3.4.1
Dana (8-ое издание) 1.3.5.1
Параметры ячейки a = 10.468Å, b = 12.870Å, c = 24.49Å
Отношение a:b:c = 0.813: 1: 1.903
Число формульных единиц (Z) 128
Объем элементарной ячейки V 3,299.37 Å
Двойникование Двойники по {101}, {011}, {110} довольно редки.
Точечная группа mmm (2/m 2/m 2/m) - Dipyramidal
Пространственная группа Fddd (F2/d 2/d 2/d)
Отдельность отдельность по {111}
Плотность (расчетная) 2.076
Плотность (измеренная) 2.07
Плеохроизм видимый
Дисперсия оптических осей относительно слабая r
Показатели преломления nα = 1.958 nβ = 2.038 nγ = 2.245
Максимальное двулучепреломление δ = 0.287
Тип двухосный (+)
угол 2V измеренный: 68° , рассчитанный: 70°
Оптический рельеф очень высокий
Форма выделения Образует усечённо-дипирамидальные, реже дипирамидальные, пинакоидальные или толстопризматические кристаллы, а также плотные скрытокристаллические, сливные, зернистые, реже тонковолокнистые агрегаты. Главные формы на кристаллах: дипирамиды (111) и (113), призмы (011) и (101), пинакоид (001). Также сростки и друзы кристаллов, скелетные кристаллы, псевдосталактиты, порошковатые и землистые массы, налёты и примазки. Для кристаллов характерны множественные параллельные срастания.
Классы по систематике СССР Неметаллы
Классы по IMA Самородные элементы
Сингония ромбическая
Хрупкость Да
горение Да
Литература Арейс В.Ж. Разработка месторождений самородной серы методом подземной выплавки. - М., 1973
Вулканические серные месторождения и некоторые проблемы гидротермального рудообразования. - М., 1971
Геохимия и минералогия серы, М., 1972

Каталог Минералов