Биографии Характеристики Анализ

Найти дифференциалы первого и второго порядков функции. Дифференциалы высших порядков дифференцирование функции, заданной параметрически вектор-функция скалярного аргумента предел и непрерывность вектор-функции скалярного аргумента производная вектор-функ

24.1. Понятие дифференциала функции

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ"(х)+α, где α→0 при ∆х→0, или ∆у=ƒ"(х) ∆х+α ∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ"(х) ∆х и а ∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так кака второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ"(х)· ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ"(х) ∆х. (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у"=х"=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ"(х)dх, (24.2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ"(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

<< Пример 24.1

Найти дифференциал функции ƒ(х)=3x 2 -sin(l+2x).

Решение: По формуле dy=ƒ"(х) dx находим

dy=(3х 2 -sin(l+2x))"dx=(6х-2cos(l+2х))dx.

<< Пример 24.2

Найти дифференциал функции

Вычислить dy при х=0, dx=0,1.

Решение:

Подставив х=0 и dx=0.1, получим

24.2. Геометрический смысл дифференциала функции

Выясним геометрический смысл дифференциала.

Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ½ =∆х, |AM 1 |=∆у. Из прямоугольного треугольника МАВ имеем:

Но, согласно геометрическому смыслу производной, tga=ƒ"(х). Поэтому АВ=ƒ"(х) ∆х.

Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.

В этом и состоит геометрический смысл дифференциала.

24.3 Основные теоремы о дифференциалах

Основные теоремы о дифференциалах легко получить, используя связь дифференциала и производной функции (dy=f"(x)dx) и соответствующие теоремы о производных.

Например, так как производная функции у=с равна нулю, то дифференциал постоянной величины равен нулю: dy=с"dx=0 dx=0.

Теорема 24.1. Дифференциал суммы, произведения и частного двух дифференцируемых функций определяются следующими формулами:

Докажем, например, вторую формулу. По определению дифференциала имеем:

d(uv)=(uv)" dx=(uv" +vu" )dx=vu" dx+uv" dx=udv+vdu

Теорема 24.2. Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.

Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать

у" х =у" u u" x .

Умножив обе части этого равенства на dx, поучаем у" х dx=у" u u" х dx. Но у" х dx=dy и u" х dx=du. Следовательно, последнее равенство можно переписать так:

dy=у" u du.

Сравнивая формулы dy=у" х dx и dy=у" u du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.

Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.

Формула dy=у" х dx по внешнему виду совпадает с формулой dy=у" u du, но между ними есть принципиальное отличие: в первой формуле х - независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.

С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.

Например: d(cosu)=(cosu)" u du=-sinudu

24.4. Таблица дифференциалов

24.5. Применение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ"(х) ∆х+α ∆х, где α→0 при ∆х→0, или ∆у=dy+α ∆х. Отбрасывая бесконечно малую α ∆х более высокого порядка, чем ∆х, получаем приближенное равенство

∆у≈dy, (24.3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

<< Пример 24.3

Найти приближенное значение приращения функции у=х 3 -2х+1 при х=2 и ∆х=0,001.

Решение: Применяем формулу (24.3): ∆у≈dy=(х 3 -2х+1)" ∆х=(3х 2 -2) ∆х.

Итак, ∆у» 0,01.

Посмотрим, какую погрешность допустили, вычислив дифференциал функции вместо ее приращения. Для этого найдем ∆у:

∆у=((х+∆х) 3 -2(х+∆х)+1)-(х 3 -2х+1)=х 3 +3х 2 ∆х+3х (∆х) 2 +(∆х) 3 -2х-2 ∆х+1-х 3 +2х-1=∆х(3х 2 +3х ∆х+(∆х) 2 -2);

Абсолютная погрешность приближения равна

|∆у-dy|=|0,010006-0,011=0,000006.

Подставляя в равенство (24.3) значения ∆у и dy, получим

ƒ(х+∆х)-ƒ(х)≈ƒ"(х)∆х

ƒ(х+∆х)≈ƒ(х)+ƒ"(х) ∆х. (24.4)

Формула (24.4) используется для вычислений приближенных значений функций.

<< Пример 24.4

Вычислить приближенно arctg(1,05).

Решение: Рассмотрим функцию ƒ(х)=arctgx. По формуле (24.4) имеем:

arctg(x+∆х)≈arctgx+(arctgx)" ∆х,

т. е.

Так как х+∆х=1,05, то при х=1 и ∆х=0,05 получаем:

Можно показать, что абсолютная погрешность формулы (24.4) не превышает величины М (∆х) 2 , где М - наибольшее значение |ƒ"(х)| на сегменте [х;х+∆х].

<< Пример 24.5

Какой путь пройдет тело при свободном падении на Луне за 10,04 с от начала падения. Уравнение свободного падения тела

H=g л t 2 /2, g л =1,6 м/с 2 .

Решение: Требуется найти H(10,04). Воспользуемся приближенной формулой (ΔH≈dH)

H(t+∆t)≈H(t)+H"(t) ∆t. При t=10 с и ∆t=dt=0,04 с, H"(t)=g л t, находим

Задача (для самостоятельного решения). Тело массой m=20 кг движется со скоростью ν=10,02 м/с. Вычислить приближенно кинетическую энергию тела

24.6. Дифференциалы высших порядков

Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х - независимая переменная. Тогда ее первый дифференциал dy=ƒ"(х)dx есть также функция х; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d 2 y или d 2 ƒ(х).

Итак, по определению d 2 y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х).

Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным:

d 2 y=d(dy)=d(f"(x)dx)=(ƒ"(х)dx)" dx=f"(x)dx dx=f"(x)(dx) 2 т. е.

d 2 y=ƒ"(х)dх 2 . (24.5)

Здесь dx 2 обозначает (dx) 2 .

Аналогично определяется и находится дифференциал третьего порядка

d 3 y=d(d 2 y)=d(ƒ"(х)dx 2)≈f"(x)(dx) 3 .

И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: d n y=d(d n-l y)=f (n) (x)(dx) n .

Отсюда находим, что, В частности, при n=1,2,3

соответственно получаем:

т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

Отметим, что все приведенные выше формулы справедливы только, если х - независимая переменная. Если же функцию у=ƒ(х), где х - функция от кαкой-mo другой независимой переменной , то дифференциалы второго и выше порядков не обладают свойством инвариантности формы и вычисляются по другим формулам. Покажем это на примере дифференциала второго порядка.

Используя формулу дифференциала произведения (d(uv)=vdu+udv), получаем:

d 2 y=d(f"(x)dx)=d(ƒ"(х))dx+ƒ"(х) d(dx)=ƒ"(х)dx dx+ƒ"(х) d 2 x, т. е.

d 2 y=ƒ"(х)dx 2 +ƒ"(х) d 2 x. (24.6)

Сравнивая формулы (24.5) и (24.6), убеждаемся, что в случае сложной функции формула дифференциала второго порядка изменяется: появляется второе слагаемое ƒ"(х) d 2 х.

Ясно, что если х - независимая переменная, то

d 2 x=d(dx)=d(l dx)=dx d(l)=dx 0=0

и формула (24.6) переходит в формулу (24.5).

<< Пример 24.6

Найти d 2 y, если у=е 3х и х - независимая переменная.

Решение: Так как у"=3е 3х, у"=9e 3х, то по формуле (24.5) имеем d 2 y=9e 3x dx 2 .

<< Пример 24.7

Найти d 2 y, если у=х 2 и х=t 3 +1и t- независимая переменная.

Решение: Используем формулу (24.6): так как

у"=2х, у"=2, dx=3t 2 dt, d 2 x=6tdt 2 ,

то d 2 y=2dx 2 +2x 6tdt 2 =2(3t 2 dt) 2 +2(t 3 +1)6tdt 2 =18t 4 dt 2 +12t 4 dt 2 +12tdt 2 =(30t 4 +12t)dt 2

Другое решение: у=х 2 , х=t 3 +1. Следовательно, у=(t 3 +1) 2 . Тогда по формуле (24.5)

d 2 у=у ¢¢ dt 2 ,

d 2 y=(30t 4 +12t)dt 2 .

Дифференциалы высших порядков.

Пусть функция у= ¦(х) определена в некотором промежутке Х (например, интервале) и имеет в каждой внутренней точке производные всех порядков. Тогда ее дифференциал dу=у 1 dх. Будем называть ее дифференциалом первого порядка.

В каждой конкретной точке дифференциал функции есть число. На промежутке он есть функция от х. Поэтому можно говорить о дифференциале от первого дифференциала.

Определение : Дифференциал от дифференциала первого порядка функции у= ¦(х) называют дифференциалом второго порядка этой функции и символически записывают d(dу)=d 2 у.

Вообще : дифференциалом n-го порядка функции у= ¦(х) называют дифференциал от дифференциала (n-1) порядка функции d n у= d(d n-1 у).

Применимы и обозначения d¦(х) , d 2 ¦(х) , d n ¦(х)

Дифференциалы порядка выше первого называются дифференциалами высших порядков.

При вычислении дифференциалов высших порядков нужно учитывать, что dх есть произвольное, но не зависящее от х число и при дифференцировании по х нужно считать постоянным множителем.

Поэтому dу=у 1 dх, d 2 у= d(dу)= d(у 1 dх)= dх d(у 1)= dх(у 11 dх)=у 11 (dх) 2 . Принято записывать степень дифференциала без скобок (dх) 2 = dх 2 .

Таким образом, d 2 у=у’’dх 2 , но это нельзя путать с d(х 2)= 2хdх

Аналогично : d 3 у= d (у 11 dх 2)= dх 2 d (у 11)= dх 2 (у 111 dх)= у 111 dх 3 ; d 3 у =у 111 dх 3 .

Здесь снова dх 3 = dх dх dх, а не d(х 3)=3х 2 dх

d n у= у n dх n

Здесь dх n = (dх) n по прежнему.

Из общей формулы дифференциала n-го порядка в частности следует формула производной n-го порядка.

У (n) = d n у/dх n , т.е. производная n-го порядка есть частное n-го дифференциала функции и n-ой степени диф. независим. перемен.

Мы видели, что форма первого дифференциала dу=у 1 dх не зависит от того, является ли х независимым переменным или х является сама функцией от некоторой переменной t.

Форма дифференциала порядка n=2 уже не сохраняется в этом случае, она не обладает инвариантностью.

В случае независимой переменной х d 2 у=у 11 dх 2 –дифференциал второго порядка. Пусть теперь х= , dу 1 =у 1 dх. Но теперь dх уже не есть произвольная постоянная, dх= dt, т.е. dх- есть функция от t и поэтому при нахождении d 2 у мы dх не можем выносить за знак дифференциала.

d 2 у= d (у 1 dх) = d (у 1)dх+ у 1 d (dх)= у 11 dх 2 + у 1 d 2 х, т.е.

d 2 у= у 11 dх 2 + у 1 d 2 х – форма дифференциала изменилась, добавилось слагаемое у 1 d 2 х. Тем более не сохраняется форма d n у. Значит, в случае, когда х не есть независимая переменная обозначение у (п) = d п у/ dх п следует понимать, как единый символ, а не как отношение дифференциалов.

Частные производные функции двух переменных.
Понятие и примеры решений

На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции . Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.

Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы .

Быстренько повторим понятие функции двух переменных , я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: – функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

С геометрической точки зрения функция двух переменных чаще всего представляет собой поверхность трехмерного пространства (плоскость, цилиндр, шар, параболоид, гиперболоид и т. д.). Но, собственно, это уже больше аналитическая геометрия, а у нас на повестке дня математический анализ, который никогда не давал списывать мой вузовский преподаватель является моим «коньком».

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной .

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций . Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас:

…да, кстати, для этой темы я таки создал маленькую pdf-книжку , которая позволит «набить руку» буквально за пару часов. Но, пользуясь сайтом, вы, безусловно, тоже получите результат – только может чуть медленнее:

Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения :
или – частная производная по «икс»
или – частная производная по «игрек»

Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом) .

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования , . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3) Используем табличные производные и .

(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.

Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом) .

(1) Используем те же правила дифференцирования , . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа.

(2) Используем таблицу производным элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для (да и вообще почти для любой буквы) . В частности, используемые нами формулы выглядят так: и .

В чём смысл частных производных?

По своей сути частные производные 1-го порядка напоминают «обычную» производную :

– это функции , которые характеризуют скорость изменения функции в направлении осей и соответственно. Так, например, функция характеризует крутизну «подъёмов» и «склонов» поверхности в направлении оси абсцисс, а функция сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

! Примечание : здесь подразумеваются направления, которые параллельны координатным осям .

В целях лучшего понимания рассмотрим конкретную точку плоскости и вычислим в ней значение функции («высоту»):
– а теперь представьте, что вы здесь находитесь (НА САМОЙ поверхности).

Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции в точке по направлению оси абсцисс. Иными словами, если мы сделаем маленький-маленький (бесконечно малый) шажок в сторону острия оси (параллельно данной оси) , то спустимся вниз по склону поверхности.

Теперь узнаем характер «местности» по направлению оси ординат:

Производная по «игрек» положительна, следовательно, в точке по направлению оси функция возрастает . Если совсем просто, то здесь нас поджидает подъём в гору.

Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.

Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности по возможности в каждой точке области определения данной функции по всем доступным путям. Об этом и других интересных вещах я расскажу на одном из следующих уроков, ну а пока что вернёмся к технической стороне вопроса.

Систематизируем элементарные прикладные правила:

1) Когда мы дифференцируем по , то переменная считается константой.

2) Когда же дифференцирование осуществляется по , то константой считается .

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения :
или – вторая производная по «икс»
или – вторая производная по «игрек»
или – смешанная производная «икс по игрек»
или – смешанная производная «игрек по икс»

Со второй производной нет никаких проблем. Говоря простым языком, вторая производная – это производная от первой производной .

Для удобства я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

В практических примерах можно ориентироваться на следующее равенство :

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».
Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для их проверки не существует.

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания экстремумов функции двух переменных . Но всему своё время:

Пример 2

Вычислить частные производные первого порядка функции в точке . Найти производные второго порядка.

Это пример для самостоятельного решения (ответы в конце урока). Если возникли трудности с дифференцированием корней, вернитесь к уроку Как найти производную? А вообще, довольно скоро вы научитесь находить подобные производные «с лёту».

Набиваем руку на более сложных примерах:

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

И по неоднократным просьбам читателей, полный дифференциал второго порядка .

Он выглядит так:

ВНИМАТЕЛЬНО найдём «однобуквенные» производные 2-го порядка:

и запишем «монстра», аккуратно «прикрепив» квадраты , произведение и не забыв удвоить смешанную производную:

Ничего страшного, если что-то показалось трудным, к производным всегда можно вернуться позже, после того, как поднимите технику дифференцирования:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Рассмотрим серию примеров со сложными функциями:

Пример 5

Найти частные производные первого порядка функции .

Решение:

Пример 6

Найти частные производные первого порядка функции .
Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Знаете, всегда приятно, когда дробь удается превратить в ноль). Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс» , а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки:

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

Кто понял анекдот, тот освоил производные, минимум, на «тройку»).

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.

Пусть у =f (х ) дифференцируемая функция, а её аргументх- независимая переменная. Тогда её первый дифференциалdy = f ′ (x )dx есть также функция отх ; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у =f (х ) называется еёвторым дифференциалом (илидифференциалом второго порядка ) и обозначаетсяd 2 y илиd 2 f (x ):

d 2 y = f′′ (x) dx2

Здесь dx 2 обозначает (dx )2 .

Аналогично определяется и находится дифференциал третьего порядка: d 3 y = d (d2 y) = d (f′′ (x) dx2) = f′′′ (x) dx3 .

Вообще, дифференциал n- го порядка есть дифференциал от дифференциала (n- 1)- го порядка:d n y = d (d n - 1 y ) =f (n ) (x ) (dx )n .

Отсюда находим, что f (n ) (x ) = d n y . В частности, приn = 1, 2, 3 соответственно получаем:dx n

f ′ (x) =

f ′′ (x) =

d 2 y

f ′′′(x ) =

d 3 y

Т.е. производную функции можно рассматривать как

отношение её дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

Отметим, что все приведённые выше формулы справедливы только, если х – независимая переменная.

Пример. Найти d 2 y , еслиy = e 3 x их – независимая переменная.Решение : так какy ′ = 3e 3 x ,y ′′ = 9e 3 x , то имеемd 2 y = 9e 3 x dx 2 .

Правила Лопиталя

Правила Лопиталя применяются для раскрытия неопределённостей вида 0 0 и∞ ∞ , которые называются основными.

Теорема 3. (Правило Лопиталя раскрытия неопределённостей вида0 0 ).

Пусть функции f (x ) иg (x ) непрерывны и дифференцируемы в окрестности точких 0 и

обращаются в нуль в этой точке: f (x 0 ) =g (x 0 ) = 0. Пустьg ′ (x )≠ 0 в окрестности точкиx 0 . Если

существует предел

f ′ (x)

L , то

f (x)

f ′ (x)

g(x)

g′ (x)

x→ x0

x→ x0

x→ x0

Пример. Найти lim1 − cos6 x .

x→ 0

2x 2

Решение: lim

1− cos 6x

п. Л.

6sin 6x

п. Л.

36 cos 6x

x→ 0

x→ 0

x→ 0

Теорема 4. (Правило Лопиталя раскрытия неопределённостей вида∞ ∞ ).

Пусть функции f (x ) иg (x ) непрерывны и дифференцируемы в окрестности точких 0 (кроме,

может быть, точки х 0 ), в этой окрестности limf (x ) = limg (x ) = ∞ ,g ′ (x )≠ 0. Если существует

f ′ (x)

f (x)

f ′ (x)

x→ x0

x→ x0

предел lim

g′ (x)

g(x)

x→ x0

x→ x0

x→ x0

g′ (x)

tg 3 x

Пример. Найти lim tg 5 x

x→ π 2

lim tg 3 x =

∞ =

Lim 3cos

п. Л.

п. Л.

x→

tg 5 x

x→

x→

cos2 5x

lim − 10 cos 5 x sin 5 x

Lim sin10 x

lim 10cos10 x

5 x →

− 6 cos 3x sin 3x

x→

sin6x

x→

6cos6x

Неопределённости вида , [∞ − ∞ ], , [∞ 0 ], сводятся к двум основным путём тождественных преобразований.

Пусть f (x )→ 0, иg (x )→ 0 прих → х 0 . Тогда очевидны следующие преобразования:

lim(f (x ) g (x )) =[ 0 ∞] = lim

f (x)

f (x)

∞ ).

x→ x

x→ x

x→ x

g(x)

g(x)

Найти lim tg

π x

(2 − x ).

x→ 2

2 − x

0 =lim

−1

limtg π x (2− x ) = [ ∞ 0] = lim

п. Л.

x→ 2

x→ 2

π x

ctg 4

x→ 2

2 π x

Пусть f (x )→ ∞ , иg (x )→ ∞ прих → х 0 . Тогда можно поступить так:

lim (f (x ) −g (x )) =[ ∞ − ∞] =lim

g(x)

f (x)

x→ x0

x→ x0

x→ x0

f (x)

g(x)

g(x)

f (x)

Пусть f (x )→ 1, иg (x )→ ∞ , илиf (x )→ ∞ , иg (x )→ 0, илиf (x )→ 0, иg (x )→ 0 прих → х 0 .

Для нахождения предела вида lim f (x ) g (x ) вспомним свойство логарифма

x→ x0

e lnf (x ) g (x ) = f (x ) g (x ).

Пример. Найти lim x → 0 (cos2 x ) x 2 .