Биографии Характеристики Анализ

О математических моделях земли. Гранит и камень

Общие сведения о форме и размерах Земли

Физическая поверхность Земли имеет сложную форму, суша занимает 29%, моря и океаны - 71% всей поверхности. Чтобы изобразить земную поверхность на плане, надо знать фигуру Земли. Это позволит выбрать такой метод проектирования изображения земной поверхности, которая бы позволила спроектировать неправильную форму Земли в виде математической модели.

Прежде всего, дадим понятие «уровенной поверхности». Уровенная поверхность (рис.1.1) - поверхность, перпендикулярная в каждой точке к направлению силы тяжести (отвесной линии).

Уровенных поверхностей можно провести сколько угодно, т.к. Земля неоднородна и состоит из слоев, плотность которых различна. За фигуру Земли принимается уровенная поверхность, совпадающая с поверхностью океанов и морей при спокойном состоянии водных масс и мысленно продолженная под материками. Такая уровенная поверхность называется геоидом.

Рис. 1.1 Понятие уровенной поверхности

Математические модели поверхности Земли, применяемые в геодезии

2. Если бы Земля была бы однородной, неподвижной и подвержена только действию внутренних сил тяготения, она имела бы форму шара (рис.1.2).

Рис. 1.2. Шар

3. Под действием центробежной силы, вызванной вращением вокруг оси с постоянной скоростью, Земля приобрела форму сфероида или эллипсоида вращения (рис.1.3).

Рис. 1.3 Эллипсоид вращения

4. На самом деле, из-за неравномерного распределения масс внутри Земли, эллипсоидальная фигура Земли сдеформирована и имеет форму геоида (рис.1.4). Наибольшие отступления геоида от эллипсоида не превышают 100 - 150 м.

Т.о. специальными инструментами с физической поверхности Земли геодезические измерения проектируют на геоид, фигура которого не изучена. Фигуру геоида заменяют правильной математической фигурой, к которой можно применять математические законы. Размеры земного эллипсоида составляют:

большая полуось а = 6378245 м,

малая полуось b = 6356863 м,

полярное сжатие = 1: 298,3.

Рис. 1.4 Геоид

5. Для того, чтобы земной эллипсоид ближе подходил к геоиду, его располагают в теле Земли, ориентируя определенным образом. Такой эллипсоид с определенными параметрами и определенным образом ориентированный в теле Земли, называется референц-эллипсоидом (рис.1.5).

Рис. 1.5 Референц-эллипсоид

6. Геоид не может быть строго изучен из-за незнания распределения плотности масс внутри Земли. Было предложено вместо геоида принять фигуру квазигеоида (рис.1.6), которая может быть определена точно на основании астрономо-геодезических и гравиметрических измерений на поверхности Земли без учета внутреннего строения и плотности масс внутри Земли. Поверхность квазигеоида отклоняется от поверхности геоида максимально 2 м в горных районах, на океанах и морях их поверхности совпадают.

Около Александрийской библиотеки во время положения Солнца над Сиеной в зените, сумел измерить длину земного меридиана и вычислить радиус Земли. То, что форма Земли должна отличаться от шара впервые показал Ньютон.

Известно, что планета сформировалась под действием двух сил — силы взаимного притяжения её частиц и центробежной силы, возникающей из-за вращения планеты вокруг своей оси. Сила тяжести представляет собой равнодействующую этих двух сил. Степень сжатия зависит от угловой скорости вращения: чем быстрее вращается тело, тем больше оно сплющивается у полюсов.

Рис. 2.1. Вращение Земли

Понятие фигуры Земли может трактоваться по-разному в зависимости от того, какие требования предъявляются к точности решения тех или иных задач. В одних случаях Землю можно принять за плоскость, в других - за шар, в третьих - за двухосный эллипсоид вращения с малым полярным сжатием, в четвертых - трехосный эллипсоид.




Рис. 2.2. Физическая поверхность Земли (вид из космоса)

Суша составляет приблизительно одну треть от всей поверхности Земли. Она возвышается над уровнем моря в среднем на 900 - 950 м. По сравнению с радиусом Земли (R = 6371 км) это весьма малая величина. Поскольку большую часть поверхности Земли занимают моря и океаны, то за форму Земли можно принять уровенную поверхность, совпадающую с невозмущенной поверхностью Мирового океана и мысленно продолженную под материками.По предложению немецкого ученого Листинга данную фигуру назвали геоидом .
Фигура, ограниченная уровенной поверхностью, совпадающей с поверхностью воды Мирового океана в спокойном состоянии, мысленно продолженная под материками, называется геоидом.
Под Мировым океаном понимают поверхности морей и океанов, связанные между собой.
Поверхность геоида во всех точках перпендикулярна отвесной линии.
Фигура геоида зависит от распределения масс и плотностей в теле Земли. Она не имеет точного математического выражения и является практически неопределимой, в связи с чем в геодезических измерениях вместо геоида используется его приближение - квазигеоид. Квазигеоид , в отличие от геоида, однозначно определяется по результатам измерений, совпадает с геоидом на территории Мирового океана и очень близок к геоиду на суше, отклоняясь лишь на несколько сантиметров на равнинной местности и не более чем на 2 метра в высоких горах.
Для изучения фигуры нашей планеты сначала определяют форму и размеры некоторой модели, поверхность которой является сравнительно хорошо изученной в геометрическом отношении и наиболее полно характеризует форму и размеры Земли. Затем, принимая эту условную фигуру за исходную, определяют относительно нее высоты точек. Для решения многих задач геодезии за модель Земли принят эллипсоид вращения (сфероид).

Направление отвесной линии и направление нормали (перпендикуляра) к поверхности эллипсоида в точках земной поверхности не совпадают и образуют угол ε , называемый уклонением отвесной линии . Данное явление связано с тем, что плотность масс в теле Земли неодинакова и отвесная линия отклоняется в сторону более плотных масс. В среднем его величина составляет 3 - 4", а в местах аномалий достигает десятков секунд. Реальный уровень моря в разных регионах Земли отклонятся более чем на 100 метров от идеального эллипсоида.

Рис. 2.3. Соотношение поверхностей геоида и земного эллипсоида.
1) мировой океан; 2) земной эллипсоид; 3) отвесные линии; 4) тело Земли; 5) геоид

Для определения размеров земного эллипсоида на суше проводились специальные градусные измерения (определялось расстояние по дуге меридиана в 1º). На протяжении полутора веков (с 1800 по 1940 гг.) были получены различные размеры земного эллипсоида (эллипсоиды Деламбера (д"Аламбера), Бесселя, Хейфорда, Кларка, Красовского и др.).
Эллипсоид Деламбера имеет только историческое значение как основа для установления метрической системы мер (на поверхности эллипсоида Деламбера расстояние в 1 метр равно одной десятимиллионной расстояния от полюса до экватора).
Эллипсоид Кларка используется в США, странах Латинской Америки, Центральной Америки и других странах. В Европе используется эллипсоид Хейфорда. Он же был рекомендован в качестве международного, однако параметры указанного эллипсоида получены по измерениям, выполненным только на территории США, и, кроме того, содержат большие ошибки.
До 1942 г. в нашей стране применялся эллипсоид Бесселя. В 1946 г. размеры земного эллипсоида Красовского были утверждены для геодезических работ на территории Советского Союза и действуют до настоящего времени на территории Украины.
Эллипсоид, который используется данным государством, либо обособленной группой государств, для производства геодезических работ и проектирования на его поверхность точек физической поверхности Земли, называют референц-эллипсоидом. Референц-эллипсоид служит вспомогательной математической поверхностью, к которой приводят результаты геодезических измерений на земной поверхности. Наиболее удачная математическая модель Земли для нашей территории в виде референц-эллипсоида была предложена проф. Ф. Н. Красовским. На этом эллипсоиде основана геодезическая система координат Пулково-1942 (СК-42), которая использовалась в Украине для создания топографических карт с 1946 по 2007 год.

Размеры земного эллипсоида по Красовскому


Малая полуось (полярный радиус)

Большая полуось (экваториальный радиус)

Средний радиус Земли, принимаемой за шар

Полярное сжатие (отношение разницы полуосей к большой полуоси)

Площадь поверхности Земли

510083058 км²

Длина меридиана

Длина экватора

Длина дуги 1° по меридиану на широте 0°

Длина дуги 1° по меридиану на широте 45°

Длина дуги 1° по меридиану на широте 90°

При вводе Пулковской системы координат и Балтийской системы высот Совет Министров СССР возложил на Генеральный Штаб вооруженных сил СССР и Главное управление геодезии и картографии при Совете Министров СССР перевычисление в единую систему координат и высот триангуляционной и нивелирной сети, выполненной до 1946 года, и обязал их закончить эту работу в 5-летний срок. Контроль за переизданием топографических карт был возложен на Генеральный Штаб вооруженных сил СССР, а морских карт на Главный Штаб военно-морских сил.
1 января 2007 года на территории Украины введена УСК-2000 - Украинская система координат взамен СК-42. Практической ценностью новой системы координат является возможность эффективного использования глобальных навигационных спутниковых систем в топографо-геодезическом производстве, которые имеют целый ряд преимуществ в сравнении с традиционными методами.
Сведений о том, что в Украине произведено перевычисление координат СК-42 в УСК-2000 и изданы новые топографические карты автор этого учебного пособия не имеет. На учебных топографических картах, изданных в 2010 году Государственным научно-производственным предприятием «Картография», в левом верхнем углу по-прежнему осталась надпись «Система координат 1942 г.».
Система координат 1963 года (СК-63) являлась производной от предыдущей государственной системы координат 1942 года и имела определенные параметры связи с ней. Для обеспечения секретности в СК-63 были искусственно искажены реальные данные. С появлением мощной вычислительной техники для высокоточного определения параметров связи между различными координатными системами эта система координат утратила свой смысл в начале 80-х годов. Следует заметить, что СК-63 была отменена решением Совета Министров СССР в марте 1989 года. Но впоследствии, учитывая большие объемы накопленных геопространственных данных и картографических материалов (включая результаты выполнения землеустроительных работ времен СССР), срок ее использования был продлен до тех пор, пока все данные не будут переведены в действующую государственную систему координат.
Для спутниковой навигации используется трёхмерная система координат WGS 84 (англ. World Geodetic System 1984). В отличие от локальных систем, является единой системой для всей планеты. WGS 84 определяет координаты относительно центра масс Земли, погрешность составляет менее 2 см. В WGS 84 нулевым меридианом считается IERS Reference Meridian. Он расположен в 5,31″ к востоку от Гринвичского меридиана. За основу взят сфероид с большим радиусом - 6 378 137 м (экваториальный) и меньшим - 6 356 752,3142 м (полярный). Отличается от геоида менее чем на 200 м.
Особенности строения фигуры Земли полностью учитываются при математической обработке высокоточных геодезических измерений и создании государственных геодезических опорных сетей. Ввиду малости сжатия (отношение разности большой, экваториальной полуоси (а ) земного эллипсоида и малой полярной полуоси (b ) к большой полуоси [a - b ]/b ) ≈ 1:300) при решении многих задач за фигуру Земли с достаточной для практических целей точностью можно принять сферу , равновеликую по объему земному эллипсоиду . Радиус такой сферы для эллипсоида Красовского R = 6371,11 км.

2.2. ОСНОВНЫЕ ЛИНИИ И ПЛОСКОСТИ ЗЕМНОГО ЭЛЛИПСОИДА

При определении положения точек на поверхности Земли и на поверхности земного эллипсоида пользуются некоторыми линиями и плоскостями.
Известно, что точки пересечения оси вращения земного эллипсоида с его поверхностью являются полюсами, один из которых называется Северным Рс , а другой - Южным Рю (рис. 2.4).


Рис. 2.4. Основные линии и плоскости земного эллипсоида

Сечения земного эллипсоида плоскостями, перпендикулярными к малой его оси, образуют след в виде окружностей, которые называются параллелями. Параллели имеют различные по величине радиусы. Чем ближе расположены параллели к центру эллипсоида, тем больше их радиусы. Параллель с наибольшим радиусом, равным большой полуоси земного эллипсоида, называется экватором . Плоскость экватора проходит через центр земного эллипсоида и делит его на две равные части: Северное и Южное полушария.
Кривизна поверхности эллипсоида является важной характеристикой. Она характеризуется радиусами кривизны меридианного сечения и сечения первого вертикала, которые называются главными сечениями
Сечения поверхности земного эллипсоида плоскостями, проходящими через его малую ось (ось вращения), образуют след в виде эллипсов, которые называются меридианными сечениями .
На рис. 2.4 прямая СО" , перпендикулярная к касательной плоскости КК" в точке ее касания С , называется нормалью к поверхности эллипсоида в этой точке. Каждая нормаль к поверхности эллипсоида всегда лежит в плоскости меридиана, а следовательно, пересекает ось вращения эллипсоида. Нормали к точкам, лежащим на одной параллели, пересекают малую ось (ось вращения) в одной и той же точке. Нормали к точкам, расположенным на разных параллелях, пересекаются с осью вращения в различных точках. Нормаль к точке, расположенной на экваторе, лежит в плоскости экватора, а нормаль в точке полюса совпадает с осью вращения эллипсоида.
Плоскость, проходящая через нормаль, называется нормальной плоскостью , а след от сечения этой плоскостью эллипсоида - нормальным сечением . Через любую точку на поверхности эллипсоида можно провести бесчисленное множество нормальных сечений. Меридиан и экватор являются частными случаями нормальных сечений в данной точке эллипсоида.
Нормальная плоскость, перпендикулярная к плоскости меридиана в данной точке С , называется плоскостью первого вертикала , а след, по которой она пересекает поверхность эллипсоида, - сечением первого вертикала (рис. 2.4).
Взаимное положение меридиана и любого нормального сечения, проходящего через точку С (рис. 2.5) на данном меридиане, определяется на поверхности эллипсоида углом А , образованным меридианом данной точки С и нормальным сечением.


Рис. 2.5. Нормальное сечение

Этот угол называется геодезическим азимутом нормального сечения. Он отсчитывается от северного направления меридиана по ходу часовой стрелки от 0 до 360°.
Если принять Землю за шар, то нормаль к любой точке поверхности шара пройдет через центр шара, а любая нормальная плоскость образует на поверхности шара след в виде окружности, которая называется большим кругом.

2.3. МЕТОДЫ ОПРЕДЕЛЕНИЯ ФИГУРЫ И РАЗМЕРОВ ЗЕМЛИ

При определении фигуры и размеров Земли использовались следующие методы:

Астрономо - геодезический метод

Определение фигуры и размеров Земли основано на использовании градусных измерений, суть которых сводится к определению линейной величины одного градуса дуги меридиана и параллели на разных широтах. Однако непосредственные линейные измерения значительной протяженности на земной поверхности затруднены, ее неровности существенно снижают точность работ.
Метод триангуляции. Высокая точность измерения значительных по протяженности расстояний обеспечивается применением метода триангуляции, разработанного в XVII в. голландским ученым В. Снеллиусом (1580 - 1626).
Триангуляционные работы для определения дуг меридианов и параллелей проводились учеными разных стран. Еще в XVIII в. было установлено, что один градус дуги меридиана у полюса длиннее, чем у экватора. Такие параметры характерны для эллипсоида, сжатого у полюсов. Этим подтверждалась гипотеза И. Ньютона о том, что Земля в соответствии с законами гидродинамики должна иметь форму эллипсоида вращения, сплюснутого у полюсов.

Геофизический (гравиметрический ) метод

Он основан на измерении величин, характеризующих земное поле силы тяжести, и их распределении на поверхности Земли. Преимущество этого метода в том, что его можно применять на акваториях морей и океанов, т. е. там, где возможности астрономо-геодезического способа ограничены. Данные измерений потенциала силы тяжести, выполненные на поверхности планеты, позволяют вычислить сжатие Земли с большей точностью, чем астрономо-геодезическим методом.
Начало гравиметрическим наблюдениям было положено в 1743 г. французским ученым А. Клеро (1713 - 1765). Он предположил, что поверхность Земли имеет вид сфероида, т. е. фигуры, которую приняла бы Земля, находясь в состоянии гидростатического равновесия под влиянием только сил взаимного тяготения ее частиц и центробежной силы вращения около неизменной оси. А. Клеро предположил также, что тело Земли состоит из сфероидальных слоев с общим центром, плотность которых возрастает к центру.


Космический метод

Развитие космического метода и изучения Земли связано с освоением космического пространства, которое началось с момента запуска советского искусственного спутника Земли (ИСЗ) в октябре 1957 г. Перед геодезией были поставлены новые задачи, связанные с бурным развитием космонавтики. В их числе - наблюдение за ИСЗ на орбите и определение их пространственных координат в заданный момент времени. Выявленные отклонения реальных орбит ИСЗ от предвычисленных, вызванные неравномерным распределением масс в земной коре, позволяют уточнить представление о гравитационном поле Земли и в конечном результате о ее фигуре.

Вопросы и задания для самоконтроля

    Для каких целей используются данные о форме и размерах Земли?

    По каким признакам в древности определили, что Земля имеет шарообразную форму?

    Какую фигуру называют геоидом?

    Какую фигуру называют эллипсоидом?

    Какую фигуру называют референц-эллипсоидом?

    Каковы элементы и размеры эллипсоида Красовского?

    Назовите основные линии и плоскости земного эллипсоида.

    Какие методы используются для определения фигуры и размеров Земли?

    Дайте краткую характеристику каждому методу.

Страница 2 из 50

1.2. Общие сведения о форме и размерах Земли

Физическая поверхность Земли имеет сложную форму, суша занимает 29%, моря и океаны – 71% всей поверхности. Чтобы изобразить земную поверхность на плане, надо знать фигуру Земли. Это позволит выбрать такой метод проектирования изображения земной поверхности, которая бы позволила спроектировать неправильную форму Земли в виде математической модели.

Прежде всего, дадим понятие «уровенной поверхности». Уровенная поверхность (рис.1.1) – поверхность, перпендикулярная в каждой точке к направлению силы тяжести (отвесной линии).

Уровенных поверхностей можно провести сколько угодно, т.к. Земля неоднородна и состоит из слоев, плотность которых различна. За фигуру Земли принимается уровенная поверхность, совпадающая с поверхностью океанов и морей при спокойном состоянии водных масс и мысленно продолженная под материками. Такая уровенная поверхность называется геоидом .

Рис. 1.1. Понятие уровенной поверхности

1.3. Математические модели поверхности Земли, применяемые в геодезии

1. Если бы Земля была бы однородной, неподвижной и подвержена только действию внутренних сил тяготения, она имела бы форму шара (рис.1.2).

Рис. 1.3. Эллипсоид вращения

3. На самом деле, из-за неравномерного распределения масс внутри Земли, эллипсоидальная фигура Земли сдеформирована и имеет форму геоида (рис.1.4). Наибольшие отступления геоида от эллипсоида не превышают 100 – 150 м.

Т.о. специальными инструментами с физической поверхности Земли геодезические измерения проектируют на геоид, фигура которого не изучена. Фигуру геоида заменяют правильной математической фигурой, к которой можно применять математические законы. Размеры земного эллипсоида составляют:

большая полуось а = 6378245 м,

малая полуось b = 6356863 м,

полярное сжатие a = 1: 298,3.

Рис. 1.4. Геоид

4. Для того, чтобы земной эллипсоид ближе подходил к геоиду, его располагают в теле Земли, ориентируя определенным образом. Такой эллипсоид с определенными параметрами и определенным образом ориентированный в теле Земли, называется референц-эллипсоидом (рис.1.5).

Рис. 1.6. Квазигеоид


В геодезии для обозначения формы земной поверхности используют термин – фигура Земли. Знания фигуры Земли необходимы для определения объектов на земной поверхности и точного их отображения в виде планов и фактов. Физическая поверхность Земли: 70.8%-подводная, 29.2%-надводная.Рельеф, как и надводный так и подводный, примерно одинаков и состоит из гор, вулканов, каньонов, впадин.Физическая поверхность Земли представляет собой по форме напоминает «груши» с несколькими вмятинами. На космических снимках земной поверхности - показана в виде сферы. Т.к. подводная часть покрыта морями и океанами, поэтому из-за волнений океанов через любую точку на поверхности можно провести N-ное количество уровенных поверхностей. В 1873г была предложена уровенная поверхность, которая совпадает с уровнем морей и океанов в спокойной состоянии – основная уровенная поверхность. На уровенной поверхности имеется т.А, на которую действуют 2 силы. 1) Гравитационная сила притяжения, которая направлена к центру масс Земли. 2) Центробежная сила вращения Земли, которая перпендикулярна оси вращения Земли. Равнодействующая 2ух этих сил – сила тяжести, в которой каждая точка отвесна. Если через т.А провести выпуклую, замкнутую, уровенную поверхность, то через т.А можно будет провести N-ное количество урвоенных поверхностей. Такая математическая модель – уровенная (горизонтальная), т.к. отвесная линия имеет прямой угол с т.А. Такая модель имеет условие неопределенности, на ней можно решать только частные задачи. 1873г немецкий астролог Листингом Иоганн предложил математическую модель «геойдом» (землеподобным). Геойд – выпуклая, замкнутая, уровенная поверхность, которая совпадает с поверхностью морей и океанов в свободном состоянии и мысленном продолжении под материками, при этом сила тяжести в любой точке отвесна. Очень сложная математическая модель. Для решения 1ого геойда используется 300 сферических коэффициентов. Для последнего – 60000. Если для решения взять первые 2- 3 коэффициента, то получим сферу (шар) . Уровенная поверхность, которого будет отличаться от поверхностого уровня геойда на 22км. Если добавить еще несколько, то получим вращающееся колесо. А ошибка составит 100-150км. Эллипсоидное вращение – образованная вращением эллипса вокруг своей оси. Для составления топографических карт и планов в основном применяется референц-эллипсоидное вращение. Данный эллипсоид ориентирован, так чтобы его поверхность совпадала с геойдом на территории страны или соседних стран. США-Эллипсоид Кларка(1866). Франция – Эллипсоид Бесселя, который применялся в России до 1946г. С 1946г. в России применяется референц-эллипсои с параметрами: большая полуось 6378245м и сжатием α= 298.3 . Малая полуось «б» вычисляется (b=a(1+α)). Для технических и картографических расчетов используется радиус шара . Радиус Земли 6378.11км.

4.Системы координат: географические, прямоугольные, полярные. Высота. Когда высота называется отметкой?

Для определения положения точки на земной поверхности применяется географическая система координат (угловая система т.к. результат измерений показывается в градусах) . Координатными осями в географической системе координат является начальный меридиан и экватор. Впервые начальный меридиан был узаконен в 15 веке и проходил через остров Фетро. До1884г каждая страна имела свой начальный меридиан. В России проходил через Пулково, во Англии через Гринвич. С 1884г для всех стран установили единый начальный меридиан, который называется Гринвичский (или нулевой меридиан) 0 0 . Меридиан точки – дуга большого круга, проходящего через северный и южный дуга малого круга проходящего через точку и параллельно экватору. Для определения географических координат применялись значения широты и долготы. Широта – угол образованный отвесной линией совпадающей с радиусом Земли проходящую через т.Б и плоскостью экватора. Широта отсчитывается от экватора к северному полюсу от 0 0 до 90 0 и к южному от 0 0 до 90 0 и называется серенной или южной высотой. Долгота – двугранный угол образованный плоскостью начального меридиана и плоскостью меридиана проходящего через т.С. Долгота отсчитывается от начального меридиана к востоку от 0 – 180 и называется восточной долготою, а также к западному от 0 – 180 и называется западным меридианом. Прямоугольная система координат(линейная) строится и определяется на плоскости. Координатные оси состоят из 2ух взаимно перпендикулярных прямых. Вертикальная ось – X. Горизонтальная ось – Y. Точка пересечения – начало координат. В геодезии в основном применяется левая часть системы координат. Каждая ось имеет свой знак. Для ориентирования имеется градусная система. Полярная система координат (линейноугловая). Система плоских координат образованных прямыми лучами, который называется полярной осью. т.О – полюс. Измеряемое расстояния до определяемого. т.А – радиус вектора (полярное расстояние). По OX изменяется горизонтально. Данная система координат используется при топографической съемки местности, а также при составлении топографических планов. Выше перечисленные координаты являются плановыми координатами. Для создания топографического плана или карты необходима координат, которая называется – высота. Высота(H) – расстояние по отвесной линии от уровенной поверхности заданной Государственной геодезической сетью, которая является исходной(нулевой) до точки на земной поверхности.1)Ортометрическая высота – расстояние по отвесной линии от уровенной поверхности геоида, до точки на земной поверхности (абсолютная). 2)Геодезическая высота – расстояние по нормали от уровенной поверхности референц -эллипсоид а до точки на земной поверхности. 3)Нормальная система высот –расстояние по отвесной линии от уровенной поверхности квазигеоида до точки на земной поверхности. В России все высоты показаны в нормальной системе высот. Квазигеоид(почти геоид)- выпуклая, замкнутая поверхность, уровенные поверхности которого совпадают с поверхностью геоида в морях и океанах, и отличаются от неё на суше и в равнинных районах на 1- 2 см, а в горных на 2 см. 4) Условная высота – расстояние по отвесной линии по заданной уровенной поверхности до определяемой точки. Разность высот между точками на местности – превышение (h). Высота и превышение имеют свой знак (+/-). В России применяется Балтийская система высот, то есть уровенная поверхность Балтийского моря совпадает с уровенной поверхностью геоида. Отсчет ведется 0ого штриха кронштадтского футшток а. Если высота показана числом, то такая высота – отметка.

ФОРМА ЗЕМЛИ И ЕЕ МОДЕЛИ

РАЗДЕЛ 1

ОСНОВНЫЕ ПОНЯТИЯ НАВИГАЦИИ

Глава 1

ОРИЕНТИРОВАНИЕ НА МОРСКОЙ ПОВЕРХНОСТИ ЗЕМЛИ

ФОРМА ЗЕМЛИ И ЕЕ МОДЕЛИ

Навигация (от лат. navigation – мореплавание) – это математическая наука о способах определения оптимального пути судна на водной поверхности Земли и о способах прокладки этого пути на морской навигационной карте (от лат. optimus – наилучший).

Морская навигационная карта (сокращенно МНК) – это плоское изображение выпуклой поверхности морей и океанов с прилегающими участками суши в виде береговой полосы.

Перенос выпуклой поверхности Земли на плоскость производится путем математических вычислений.

Прокладка пути судна производится путем решения геометрических задач на водной поверхности Земли и на карте.

Математические вычисления по переносу выпуклой поверхности Земли на карту и решение геометрических задач по прокладке пути судна на водной поверхности Земли и на карте возможны только в том случае, если планета Земля является геометрическим телом.

Геометрическое тело

В качестве примера можно привести геометрическую фигуру шар , который имеет наиболее простую форму, т.к. все точки поверхности шара одинаково удалены от его центра. Поэтому форму и размер шара определяет один параметр – радиус шара (от греч. parametron – отмеривающий).

К размерам шара относится площадь поверхности шара (F ш) и объем шара (V ш), которые вычисляются с помощью известных формул:

В математике площадь объемной фигуры называют поверхностью. Например, площадь шара – это поверхность шара.

Планета Земля, созданная 4.7 миллиардов лет назад из газово-пылевого космического вещества, имеет очень сложную форму, которая не поддается математическому описанию. Поэтому возникает необходимость аппроксимации (замены) планеты Земля геометрическим телом, которое называется геометрической (математической) моделью Земли.

Аппроксимацию планеты Земля (от лат. approximo – приближаюсь) производят путем последовательного приближения внешнего контура Земли к форме геометрического тела:

­ сначала создают физическую модель Земли, которой является фигура планеты Земля, более простой формы. Поэтому эта модель получила название геоид, что в переводе с греческого языка – вид Земли (от греч. слов ge – Земля и iodos – вид);

­ на базе геоида создают геометрическую модель Земли – эллипсоид, форма и размеры которого наиболее близки форме и размерам геоида. Поэтому этот эллипсоид называется земным эллипсоидом или референц-эллипсоидом (от лат. referens – сообщающий – часть сложного слова, которая определяет, что референц-эллипсоид является носителем информации о форме и размерах Земли);

­ на базе земного эллипсоида создают геометрическую модель Земли – шар, размеры которого наиболее близки размерам земного эллипсоида. Поэтому этот шар называется земным шаром .

Принцип создания геоида основан на «сглаживании» физической поверхности планеты Земля с целью получения фигуры более простой формы.

Физическая поверхность Земли (от греч. physika – природа) – это наружная оболочка планеты Земля, которая состоит из двух сфер (рисунок 1.1):

1. Гидросфера (от греч. hydor – вода) – это наружная водная оболочка Мирового океана (8-11), которая окружает материки и острова (1-7) и занимает около 71% земной поверхности.

2. Литосфера (от греч. lithos – камень) – это твердая часть поверхности Земли, которая состоит из материковой и океанической земной коры и верхней мантии (мантия Земли – это оболочка, расположенная между земной корой и ядром Земли).

«Сглаживание» физической поверхности планеты Земля производят путем удаления с этой поверхности той части литосферы, которая возвышается над уровнем Мирового океана в виде материков и островов.

Таким образом, геоид – это фигура планеты Земля, ограниченная гидросферой, над которой не возвышается литосфера Земли. На рисунке 1.1 «б» фигура геоида показана в разрезе с помощью двойной овальной кривой.

Однако сглаженная поверхность геоида тем не менее имеет сложную форму. Поэтому геоид не является геометрической фигурой. Наиболее близкой по форме к геоиду является геометрическая фигура эллипсоид, поверхность которого имеет наибольшее совмещение с поверхностью геоида (рисунок 1.2).

Эллипсоид – это геометрическая объемная фигура, которая образована вращением плоской фигуры под названием эллипс.

Эллипс – это овальная кривая, которая образована сжатием окружности, в результате чего эллипс имеет вытянутую большую ось ЕQ и укороченную малую ось Р 1 Р 2 (рисунок 1.3).

Форму и размер эллипса определяют следующие параметры (рисунок 1.3):

­ длина большой полуоси эллипса «a »;

­ длина малой полуоси эллипса «b »;

­ коэффициент сжатия эллипса и сжатие эллипса ;

­ эксцентриситет эллипса ε;

­ отстояние фокусов эллипса F 1 и F 2 от центра этого эллипса, которое обозначено буквой «с ».

Эксцентриситет эллипса (ε) – это число, равное отношению расстояния между фокусами эллипса к длине большой оси эллипса. Поскольку расстояние между фокусами равно , а длина большой оси равна , то .

Фокусы эллипса – это точки F 1 и F 2 на большой оси эллипса, сумма расстояний от которых до любой точки эллипса равна длине большей оси этого эллипса:

где - расстояние любой точки эллипса до фокусов, которые называются фокальными радиусами точки эллипса.

Эллипсоид, образуемый вращением эллипса вокруг большой оси EQ, называется вытянутым эллипсоидом .

Эллипсоид, образуемый вращением эллипса вокруг малой оси Р 1 Р 2 , называется сжатым эллипсоидом или сфероидом .

В качестве математической модели Земли применяют сжатый эллипсоид и поэтому земной эллипсоид имеет еще один синонимичный термин – земной сфероид (от греч. synonymos – одноименный).

Земной эллипсоид (земной сфероид или референц-эллипсоид) имеет следующие параметры, которые определяют его форму и размеры:

Длина большой полуоси эллипсоида «a »;

Длина малой полуоси эллипсоида «b »;

Полярное сжатие эллипсоида ;

Величина первого эксцентриситета эллипсоида , которая равна величине эксцентриситета эллипса, вращением которого получен данный эллипсоид.

Принцип создания земного эллипсоида основан на вычислении таких значений параметров a , b , и е , при которых эллипсоид приобретает форму и размеры, близкие форме и размерам геоида. Основным признаком близости земного эллипсоида и геоида по форме и размерам является наибольшее совпадение поверхностей этих фигур (рисунок 1.2).



Форма и размеры земного эллипсоида наиболее близки форме и размерам геоида при соблюдении следующих условий (рисунок 1.2):

1. Объем земного эллипсоида должен быть равен объему геоида.

2. Малая ось земного эллипсоида должна совпадать с осью вращения Земли.

3. Плоскость экватора земного эллипсоида должна совпадать с плоскостью экватора геоида.

4. Алгебраическая сумма квадратов геодезической высоты всех точек геоида должна быть наименьшей.

– это плоскость сечения, которая проходит через центр этого эллипсоида под углом 90º к оси вращения Земли.

Если совместить 2 фигуры – геоид и земной эллипсоид, то поверхность геоида на каком-либо участке может совпадать с поверхностью земного эллипсоида, либо возвышаться над поверхностью земного эллипсоида, либо находиться ниже. На рисунке 1.2 поверхности обеих фигур совмещены в точке А, а точка В геоида находится над поверхностью земного эллипсоида и точка С расположена ниже поверхности земного эллипсоида.

Геодезическая высота точки геоида (h) – это высота какой-либо точки поверхности геоида относительно поверхности земного эллипсоида, которая может иметь следующие значения (рисунок 1.2):

Нулевая геодезическая высота точки А (h A =0) – когда точка А является точкой соприкосновения геоида и земного эллипсоида;

Положительная геодезическая высота точки В (+h B) – когда точка В находится над поверхностью земного эллипсоида;

Отрицательная геодезическая высота точки С (-h C) – когда точка С находится под поверхностью земного эллипсоида.

Чтобы обеспечить наибольшее совпадение поверхностей геоида и земного эллипсоида – алгебраическая сумма геодезических высот всех точек геоида, возведенных в квадрат, должна быть наименьшей, т.е. стремиться к нулю:

Таким образом, земной эллипсоид (земной сфероид, референц-эллипсоид) – это геометрическая объемная фигура эллипсоид, форма и размеры которой наиболее близки к форме и размерам геоида. Поэтому земной эллипсоид является геометрической (математической) моделью Земли, которую применяют в качестве математической основы для решения следующих задач:

1. Математическое построение морской навигационной карты (МНК).

2. Определение местоположения судна на водной поверхности Земли.

3. Определение направления движения судна и пройденного судном расстояния и для решения других навигационных задач.

Начиная с 1830 года, было создано множество земных эллипсоидов, параметры которых вычисляли какие астрономы и геодезисты, как Эри (Англия), Бессель (Германия), Кларк (Англия), Хейфорд (США), Красовский (СССР) и многие другие (таблица 1.1).

Таблица 1.1

Анализ таблицы 1.1 показывает, что земные эллипсоиды разных авторов имеют разную форму и размеры, т.к. значения параметров этих эллипсоидов отличаются на величину до одного километра. Это объясняется тем, что каждый земной эллипсоид имеет свою точку привязки к геоиду, которая является исходной точкой для вычисления параметров этого эллипсоида.

Точкой взаимной привязки геоида и земного эллипсоида является точка соприкосновения поверхностей этих фигур, в окрестностях которой поверхности земного эллипсоида и геоида совпадают наиболее точно. Поэтому каждая страна использует для создания карт тот земной эллипсоид, который имеет наилучшее приближение к поверхности геоида на территории этой страны.

Таким образом, эллипсоид, который применяют в качестве математической основы при составлении карт территории какой-либо страны принято называть национальным геодезической системой (National Geodetic System NGS). Так, например, до 1946 года национальной геодезической системой России и Украины был земной эллипсоид Бесселя. В 1942 году под руководством профессора Московского научно-исследовательского института геодезии Красовского Феодосия Николаевича был создан земной эллипсоид, поверхность которого имеет лучшее приближение к геоиду на территории России и Украины, нежели поверхность эллипсоида Бесселя, т.к. точкой взаимной привязки эллипсоида Красовского и геоида является центр круглого зала Пулковской астрономической обсерватории вблизи Санкт-Петербурга (Геодезия – от греч. слов ge – Земля и daio – разделяю: наука о форме и размерах Земли. Астрономия – от греч. слов astron – звезда и nomos – закон. Обсерватория – от лат. observatio – наблюдение). Поэтому в настоящее время в России и в Украине для составления морских навигационных карт используют национальную геодезическую систему «Пулково-42», которая является эллипсоидом Красовского.

Расчет параметров орбиты навигационных спутников Земли (от лат. orbita – колея, путь) производят на базе Всемирных геодезических систем, к которым относятся следующие земные эллипсоиды:

Всемирная геодезическая система 1984 года (Word Geodetic System of 1984 year WGS-84) – земной эллипсоид, который является математической основой для расчета параметров орбиты искусственных спутников Земли американской спутниковой радионавигационной системы (СРНС) «НАВСТАР» - Navigation Satellite providing Time And Rane – навигационная спутниковая система, обеспечивающая измерение времени и местоположения, более известная под названием – GPS – Global Positioning System – глобальная система позицирования.

Параметры Земли 1990 года – ПЗ-90 (Parameter of Earth of 1990 year – PE-90) или Советская геодезическая система 1990 года (Soviet Geodetic Systemof 1990 year – SGS-90) – земной эллипсоид, который является математической основой для расчета параметров орбиты искусственных спутников Земли российской спутниковой радионавигационной системы (СРНС) «ГЛОНАСС» (Глобальная Навигационная Спутниковая Система).

Если сравнить длину большой и малой полуосей любого земного эллипсоида в таблице 1.1, то малая полуось (b ) окажется короче большой полуоси (а) в среднем на 21 км, что составляет 0,3% длины большой полуоси. Для наглядности можно изобразить земной эллипсоид в уменьшенном виде так, чтобы его большая полуось равнялась одному метру (а = 1 м), то малая полуось будет короче на 3 миллиметра (b = 0,997 м). При такой незначительной разнице большой и малой осей – земной эллипсоид по форме очень близок шару. Поэтому для решения практических задач навигации, которые не требуют повышенной точности, вполне допустимо применять более простую по форме геометрическую (математическую) модель Земли – шар, размеры которого наиболее близки размерам земного эллипсоида.

Таким образом, земной шар

Принцип создания земного шара основан на вычислении такого радиуса шара, при котором размеры этого шара будут наиболее близки размерам земного эллипсоида. В зависимости от способа вычисления радиуса шара – созданы следующие модификации земного шара:

1. Земной шар, объем которого равен объему земного эллипсоида.

В этом случае радиус шара определяют из равенства объемов земного шара и земного эллипсоида:

2. Земной шар, поверхность которого наиболее близка поверхности земного эллипсоида. В этом случае радиус земного шара определяют из равенства площадей земного шара и земного эллипсоида:

3. Земной шар, радиус которого равен длине большой полуоси земного эллипсоида: R ЗШ = а .

ВЫВОДЫ

1. Навигация – это математическая наука о способах определения оптимального пути судна на водной поверхности Земли и о способах прокладки этого пути на морской навигационной карте.

2. Морская навигационная карта (МНК) – это плоское изображение выпуклой поверхности морей и океанов с прилегающими участками суши.

3. Перенос выпуклой поверхности Земли на плоскость карты, прокладка пути судна на водной поверхности Земли и на карте производятся путем математических вычислений, основой для которых является планета Земля в виде геометрического (математического) тела.

4. Геометрическое (математическое) тело – это объемная фигура простой формы, которая поддается математическому описанию, когда форму и размеры этого тела можно выразить с помощью простых математических формул.

5. Поскольку планета Земля имеет сложную форму, которая не поддается математическому описанию - возникает необходимость аппроксимации (замены) нашей планеты геометрическим (математическим) телом.

6. Аппроксимацию планеты Земля производят в следующей последовательности:

6.1 На базе планеты Земля создают физическую модель Земли – геоид.

6.2 На базе геоида создают геометрическую (математическую) модель Земли – земной эллипсоид.

6.3 На базе земного эллипсоида создают геометрическую (математическую) модель Земли – земной шар.

7. Геоид – это фигура планеты Земля, ограниченная гидросферой, над которой не возвышается литосфера Земли. При этом:

7.1 Гидросфера Земли – это наружная водная оболочка Мирового океана, которая окружает материки и острова и занимает около 71% земной поверхности.

7.2 Литосфера Земли – это твердая часть поверхности планеты Земля, которая состоит из земной коры и верхней мантии Земли.

8. Геоид не является геометрическим телом, т.к. сглаженная поверхность планеты Земля без материков и островов имеет сложную форму.

9. Земной эллипсоид или земной сфероид или референц-эллипсоид – это геометрическая фигура эллипсоид (сфероид), форма и размеры которой наиболее близки к форме и размерам геоида. При этом:

9.1 Эллипсоид – это объемная фигура, поверхность которой образована вращением эллипса вокруг большой или малой оси:

9.1.1 Эллипсоид, образуемый вращением эллипса вокруг большой оси, называется вытянутым эллипсоидом .

9.1.2 Эллипсоид, образуемый вращением эллипса вокруг малой оси, называется сжатым эллипсоидом .

9.2 Эллипс – это плоская овальная кривая, которая образована путем сжатия окружности.

9.3 Окружность – это замкнутая плоская кривая, все точки которой одинаково удалены от ее центра.

9.4 Сфероид – это сжатый эллипсоид.

9.5 Плоская кривая – это кривая, лежащая в плоскости.

10. Форму и размеры земного эллипсоида определяют следующие параметры:

10.1 Длина большой полуоси эллипсоида «a »;

10.2 Длина малой полуоси эллипсоида «b »;

10.3 Степень полярного сжатия эллипсоида ;

10.4 Величина первого эксцентриситета эллипсоида . При этом:

10.4.1 Первый эксцентриситет эллипсоида – это эксцентриситет эллипса, вращением которого образован этот эллипсоид.

10.4.2 Эксцентриситет эллипса – это число, равное отношению расстояния между фокусами эллипса к длине большой оси эллипса.

10.4.3 Фокусы эллипса – это 2 точки на большой оси эллипса, сумма расстояний от которых до любой точки эллипса равна длине большей оси этого эллипса.

11. Земной эллипсоид должен соответствовать следующим условиям:

11.1 Объем земного эллипсоида должен быть равен объему геоида.

11.2 Малая ось земного эллипсоида должна совпадать с осью вращения Земли.

11.3 Плоскость экватора земного эллипсоида должна совпадать с плоскостью земного экватора геоида.

11.4 Алгебраическая сумма квадратов геодезической высоты всех точек геоида должна быть наименьшей.

12. Плоскость экватора земного эллипсоида – это плоскость сечения, которая проходит через центр этого эллипсоида под углом 90º к малой оси.

13. Плоскость экватора геоида – это плоскость сечения, которая проходит через центр геоида под углом 90º к оси вращения Земли.

14. Геодезическая высота точки (h) – это высота какой-либо точки поверхности геоида относительно поверхности земного эллипсоида, которая может иметь следующие значения:

14.1 Нулевая геодезическая высота точки (h=0), когда эта точка является точкой соприкосновения поверхностей геоида и земного эллипсоида.

14.2 Положительная геодезическая высота точки (+h), когда эта точка находится над поверхностью земного эллипсоида.

14.3 Отрицательная геодезическая высота точки (-h), когда эта точка находится под поверхностью земного эллипсоида.

15. Земной шар – это шар, размеры которого наиболее близки размерам земного эллипсоида.

16. Принцип создания земного шара основан на вычислении такого радиуса шара, при котором размеры этого шара будут наиболее близки размерам земного эллипсоида. В зависимости от способа вычисления радиуса шара – созданы следующие модификации земного шара:

16.1 Земной шар, объем которого равен объему земного эллипсоида:

16.2 Земной шар, поверхность которого равна поверхности земного эллипсоида:

16.3 Земной шар, радиус которого равен длине большой полуоси земного эллипсоида: R ЗШ = а .

17. Земной эллипсоид является математической основой для создания морских навигационных карт (МНК) и для решения навигационных математических задач.

18. Земной шар является математической основой для решения практических навигационных задач в том случае, если это решение не требует повышенной точности.