Биографии Характеристики Анализ

Определение вязкости жидкости методом стокса лабораторная работа. Определение коэффициента вязкости жидкостей методом стокса

Рассмотрим свободное падение шарика в вязкой жидкости. На шарик действуют три силы: сила тяжести, выталкивающая (Архимедова) и сила сопротивления, зависящая от скорости.

Найдем уравнение движения шарика в жидкости. По второму закону Ньютона

где V – объем шарика,r – его плотность, r ж – плотность жидкости, q– ускорение силы тяжести.

Интегрируя получим

или после потенцирования

(8)

Как видно из полученного выражения скорость шарика вначале увеличивается по экспоненциальному закону до предельного значения V пред = . Экспонента очень сильно зависит от своего показателя. Практически после того, как показатель достиг значения –1, она быстро обращается в нуль. Поэтому можно считать, что скорость достигает предельного значения в течение времени t, за которое показатель экспоненты в (8) становится равным –1,т.е. это значение может быть найдено из условия , откуда

В вязких жидкостях тела с небольшой плотностью могут достигать критических скоростей очень быстро.

Измеряя на опыте установившуюся скорость падения шариков можно определить коэффициент внутреннего трения жидкости по формуле

Эта формула справедлива для шарика, падающего в безгранично простирающейся жидкости. Поэтому в формулу для h вводится поправочный множитель

, (9)’

где R – радиус центра, h – высота жидкости в нем (учитывая влияние стенок и дна цилиндра на падение шарика.

Заметим, что коэффициент внутреннего трения жидкости зависит от температуры

где Т – температура жидкости, W – энергия активации, K – постоянная Больцмана. Следовательно, с ростом температуры, особенно в области низких температур, вязкость жидкостей быстро уменьшается в то время, как для газов растет.

Лабораторная работа 5

Определение динамической вязкости жидкости по методу Стокса

Приборы и принадлежности

    Цилиндр с исследуемой жидкостью; набор шариков; микрометр; секундомер.

Цель работы

Освоить метод определения коэффициента внутреннего трения (динамической вязкости) жидкости и определить его по методу Стокса.

Краткая теория

Вязкость – это свойство жидкостей (и газов) оказывать сопротивление перемещению одной части жидкости относительно другой или перемещению твердого тела в этой жидкости. Из-за вязкости происходит превращение кинетической энергии жидкости в .

При течении реальной жидкости между слоями, имеющими разные скорости, возникают силы трения. Их называют силами внутреннего трения.

В жидкостях силы внутреннего трения обусловлены молекулярным взаимодействием. Перемещение одних слоев жидкости относительно других сопровождается разрывом связей между молекулами соприкасающихся слоев. Движение слоев, имеющих большую скорость, замедляется. Слои, обладающие меньшей скоростью, ускоряются.

Известно, что силы взаимодействия между молекулами ослабевают при повышении температуры жидкости, следовательно, силы внутреннего трения должны убывать с возрастанием температуры.

Вязкость жидкости зависит также от природы вещества и от примесей в ней. При механическом смешивании различных жидкостей вязкость смеси может значительно изменяться. Если при смешивании образуется новое химическое соединение, то вязкость смеси может изменяться в широком диапазоне.


В газах расстояния между молекулами значительно больше радиуса действия межмолекулярных сил, поэтому их внутреннее трение много меньше внутреннего трения в жидкостях.

Для оценки внутреннего трения в жидкости используют динамическую и вязкости.

Динамическая вязкость характеризует когезионные свойства жидкости (когезия – сцепление друг с другом частей одного и того же тела, жидкого или твердого. Обусловлено химической связью и молекулярным взаимодействием). Она важна для оценки текучести жидкости при выборе, например, дозирующих устройств (форсунок, жиклеров и т. п.).

Кинематическая вязкость характеризует адгезионные свойства жидкости (адгезия – сцепление поверхностей разнородных тел. Благодаря адгезии возможны нанесение покрытий, склеивание, сварка и др., а также образование поверхностных пленок).

Эта характеристика важна при подборе смазочных материалов для различных машин и механизмов с целью уменьшения силы трения между частями данных устройств.

Динамическая и кинематическая вязкости связаны между собой соотношением:

где η - динамическая вязкость;

τ - кинематическая вязкость;

ρ - плотность жидкости.

В системе СГС

η измеряется в г/см⋅с = П (пуаз);

    - в см2/с = Ст (Стокс);

ρ - в г/см3.

В системе СИ

    измеряется в Па⋅с;
    - в м2/с;

ρ - в кг/м3.

Поскольку, практически определить динамическую вязкость проще, чем кинематическую, обычно и определяют эту характеристику, например, по способу Стокса (метод падающего шарика).

Сущность метода заключается в следующем. Если в сосуд с жидкостью опустить шарик, плотность материала которого больше плотности жидкости, то он начинает падать. При этом на шарик будут действовать три силы: сила тяжести – F, сила Архимеда – FA и сила сопротивления движению– FC (рис. 1).

Рис. 1. Силы, действующие на шарик при его падении в жидкости

В общем случае сила сопротивления движению или сила внутреннего трения определяется по закону Ньютона для жидкостей:

, (2)

где - динамическая вязкость;

Градиент скорости, характеризующий изменение скорости от слоя к слою (рис. 2);

ΔS - площадь соприкасающихся слоев;

знак «–» указывает на то, что сила трения и скорость шарика направлены в противопложные стороны.

Рис. 2. Ламинарное течение жидкости

Из формулы (2) следует, что динамическая вязкость численно равна силе внутреннего трения, действующей на единицу поверхности соприкасающихся слоев при градиенте скорости, равном единице. Полагая в формуле (2) ΔS = 1 м2 , dυ/dz=-1 c-1, получим

Следствием закона Ньютона (2) является формула Стокса для тел шарообразной формы, движущихся в жидкости:

, (3)

где - скорость шарика;

Радиус шарика.

Поскольку возрастает с увеличением скорости движения тела, а силы и постоянны, то через некоторое время после начала движения противоположно направленные силы компенсируют друг друга, т. е.

С этого момента движение шарика будет равномерным.


Учитывая, что

, а (5)

, (6)

где и - соответственно плотности материала шарика и жидкости, соотношение (4) можно записать в виде:

(7)

Из выражения (7) находят динамическую вязкость .

- расчетная формула (8)

В системе СГС = 981 см/с2.

В формуле (8) соотношение является величиной постоянной для данной плотности материала шарика и плотности жидкости, поэтому при обработке результатов измерений можно один раз вычислить эту постоянную, затем умножают ее на r2 и делят на скорость падения шарика υ.

Следует иметь в виду, что (3) справедлива при ламинарном (безвихревом) течении жидкости. Такое движение реализуется в случае небольшой скорости падения шарика, что возможно, если плотность материала шарика незначительно превышает плотность жидкости.

Описание прибора

Прибор представляет собой стеклянный цилиндр, в котором находится исследуемая жидкость. На цилиндре имеются две горизонтальные кольцевые метки a и b, расположенные на некотором расстоянии друг от друга (рис. 1). Верхняя метка находится ниже уровня жидкости в цилиндре на 5 - 8 см для того, чтобы к моменту прохождения шариком верхней метки, геометрическая сумма сил, действующих на шарик, равнялась нулю.

1. Измеряют микрометром диаметр шарика в миллиметрах, переводят миллиметры в сантиметры и находят радиус шарика. Опускают шарик в исследуемую жидкость как можно ближе к оси цилиндра.

2. В момент прохождения шариком верхней метки включают секундомер. При прохождении шариком нижней метки секундомер отключают.

3. Измерения повторить не менее 5 раз. Результаты заносят в таблицу 1.

Таблица 1

Необходимые результаты для нахождения коэффициента вязкости жидкости


Обработка результатов измерений

1. Вычисляют скорость движения шарика для каждого опыта по

формуле , где l – расстояние между верхней и нижней метками.

2. Рассчитывают значение по формуле (8).

3. Вычисляют средние арифметические значения коэффициента вязкости и абсолютной погрешности измерений и заносят их в таблицу 1.

4. Определяют относительную погрешность измерений по формуле:

.

5. Результаты измерений записывают в виде:

, г/см⋅с.

6. Вычисляют кинематическую вязкость по формуле:

.

Вопросы для подготовки к отчету по работе

Вариант № 1


Какую жидкость называют идеальной? Какое течение называют ламинарным? Что такое градиент скорости? Сформулируйте закон Стокса. Почему скорость течения в центре реки больше, чем у берегов? Когда движение тела, падающего в жидкости, становится равномерным? Сформулируйте закон всемирного тяготения. Почему для определения вязкости жидкости используют тело шарообразной формы? Какой физический смысл коэффициента вязкости?

10.Единица измерения коэффициента вязкости.

Вариант № 2


Что называется вязкостью жидкости? От чего зависит коэффициент вязкости? Сформулируйте закон Архимеда. Действует ли выталкивающая сила в данный момент на Вас? Чему равна выталкивающая сила, действующая на шарик, падающий в жидкости? (Формула). Куда направлен вектор силы внутреннего трения и к чему она приложена? Два слоя жидкости, имеющие скорости 2 и 3 см/сек, расстояние между которыми 0,06 м, движутся относительно друг друга. Определите градиент скорости. Как можно уменьшить вязкость жидкости? Зависит ли коэффициент внутреннего трения от высоты цилиндра?

10. Когда движение жидкости становится турбулентным?

Вариант № 3


Сформулируйте закон Ньютона для внутреннего трения. Река, шириной 50 м, имеет скорость течения в центре 90 см/сек, а у берегов – 10 см/сек. Определите градиент скорости течения. Сравните полученный Вами результат определения коэффициента вязкости жидкости с табличным. Объясните разницу в данных. Переведите коэффициента вязкости в систему СИ. От чего зависит погрешность измерений в данной работе? Почему сила трения в газах меньше, чем в жидкостях? Как зависит коэффициент вязкости жидкости от диаметра цилиндра? Какие силы действуют на шарик, падающий в жидкости? Как движется шарик в жидкости: равномерно, равнозамедленно, равноускоренно?

2. Грабовский физики. 6-е издание.- СПб.: Издательство «Лань», 2002г., стр. 186-191.

3. Кузнецов физика. Издательский отдел ПГТУ, 2003 г. 314 с.


1. Метод Стокса (Дж. Стокс (1819-1903) - английский физик и математик). Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести ( - плотность шарика), сила Архимеда ( - плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: где - радиус шарика, v - его скорость. При равномерном движении шарика

Измерив скорость равномерного движения шарика, можно определить вязкость жидкости (газа).

2. Метод Пуазейля (Ж. Пуазейль (1799-1868) - французскии физиолог и физик). Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной . В жидкости мысленно выделим цилиндрический слой радиусом и толщиной dr (рис. 54).

Сила внутреннего трения (см. (31.1)), действующая на боковую поверхность этого слоя,

где dS - боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получим

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы (см. также рис.53).

За время t из трубы вытечет жидкость, объем которой

откуда вязкость

В ЖИДКОСТЯХ

Методические указания к лабораторной работе № 9

по дисциплине «Общая физика»

раздел «Механика. Молекулярная физика»

Минск 2011 г.

Указание по мерам безопасности

При выполнении лабораторной работы

Внутри используемых в работе электроизмерительных приборов имеется переменное сетевое напряжение 220 В, 50 Гц, представляющее опасность для жизни.

Наиболее опасными местами являются сетевой выключатель, гнезда предохранителей, шнур сетевого питания приборов, соединительные провода, находящиеся под напряжением.

К выполнению лабораторных работ в учебной лаборатории допускаются обучающиеся прошедшие обучение по мерам безопасности при проведении лабораторных работ с обязательным оформлением в журнале протоколов проверки знаний по мерам безопасности при проведении лабораторных работ.

Перед выполнением лабораторной работы обучающимся
необходимо:

Усвоить методику выполнения лабораторной работы, правила ее безопасного выполнения;

Ознакомиться с экспериментальной установкой; знать безопасные методы и приемы обращения с приборами и оборудованием при выполнении данной лабораторной работы;

Проверить качество сетевых шнуров; убедиться, что все токоведущие части приборов закрыты и недоступны для прикосновения;

Проверить надежность соединения клемм на корпусе прибора с шиной заземления;

В случае обнаружения неисправности немедленно доложить преподавателю или инженеру;

Получить у преподавателя допуск к ее выполнению, подтверждая этим усвоение теоретического материала. Обучающийся не получивший допуск к выполнению лабораторной работы не допускается.

Включение приборов производит преподаватель или инженер. Только после того, как он убедится в исправности приборов и правильности их сборки можно приступать к выполнению лабораторной работы.

При выполнении лабораторной работы обучающиеся должны:

Не оставлять без присмотра включенные приборы;

Не наклоняться к ним близко, не передавать через них какие-либо предметы и не опираться на них;

При работе с грузиками надежно закреплять их крепежными винтами на осях.

замену любого элемента установки, присоединение или разъединение разъемных соединений производить только при отключенном электропитании под четким наблюдением преподавателя или инженера.

Обо всех недостатках, обнаруженных во время выполнения лабораторной работы, сообщить преподавателю или инженеру

По окончании работы отключение аппаратуры и приборов от электросети производит преподаватель или инженер.

ИЗУЧЕНИЕ ЯВЛЕНИЯ ВНУТРЕННЕГО ТРЕНИЯ

В ЖИДКОСТЯХ

Цель и задачи работы

1. Изучить явление внутреннего трения в жидкостях.

2. Изучить закономерности течения реальной жидкости в цилиндрической трубе и движения тел в жидкости.

3. Определить коэффициент вязкости жидкости методом Стокса.

4. Измерить объемы жидкости, вытекающие из цилиндрической трубы за единицу времени при различных разностях давлений на концах трубы, определить момент перехода от ламинарного течения жидкости к турбулентному и рассчитать соответствующее переходу число Рейнольдса.

Основные положения теории внутреннего трения в жидкостях

Основные определения

Жидкостями называются вещества, имеющие определённый объем, но не обладающие упругостью формы (то есть, не обладающие модулем сдвига). В отличие от твердых тел в жидкостях наблюдается ближний порядок (упорядоченное расположение соседних атомов или молекул на расстояниях порядка их нескольких межмолекулярных расстояний); дальний же порядок, присущий твердым телам (кристаллическая решетка) и вовсе отсутствует.

Временем “оседлой жизни” называется время, в течение которого молекулы жидкости сохраняют свое местоположение. По истечении данного времени, молекулы жидкости перемещаются на расстояния порядка 10 -8 см. Молекулы жидкости, подобно молекулам твердых тел, совершают тепловые колебания около положений равновесия.

Текучесть – это способность молекул жидкости менять свое положение относительно других молекул. Вместе с тем, силы межмолекулярного взаимодействия достаточно велики и средние расстояния между молекулами остаются неизменными. По этой причине жидкости сохраняют свой объем.

Явление внутреннего трения (вязкости) состоит во взаимодействии соседних слоев реальной жидкости, движущихся с разными скоростями, которое приводит к появлению сил вязкости (внутреннего трения), касательных поверхности слоев. При этом, молекулы более быстрого слоя стремятся увлечь за собой молекулы более медленного, и наоборот, молекулы более медленного слоя тормозят движение более быстрого. Следовательно, силы вязкости направлены вдоль поверхности соприкасающихся слоев в сторону, противоположную их относительной скорости подобно силам трения скольжения (внешнего трения) при движении одного тела по поверхности другого. По своей природе силы трения в жидкости являются силами межмолекулярного взаимодействия, то есть, электромагнитными силами, как и силы трения между твердыми телами. Явление вязкости, таким образом, связано с передачей импульса из слоя в слой, т.е. относится к явлениям переноса. Так как молекулы жидкости основную часть времени находятся около положения равновесия, то движущаяся масса жидкости увлекает соседние слои в основном за счет сцепления (межмолекулярного взаимодействия). С ростом температуры текучесть жидкости возрастает, а вязкость падает. Это связано с тем, что при нагревании жидкость “разрыхляется” (т.е. незначительно увеличивается ее объем) и силы межмолекулярного взаимодействия ослабевают. Механизм вязкости в газе является иным, так как осуществляется из-за перехода молекул из слоя в слой. Поэтому с возрастанием температуры вязкость газов, возрастает, в отличие от жидкостей.

Ламинарным называется такое течение, когда жидкие частицы движутся вдоль устойчивых траекторий. Жидкость движется параллельными слоями. Скорости всех частиц жидкости параллельны течению. Если в ламинарный поток ввести подкрашенную струйку, то она сохраняется, не размываясь по всему потоку.

Турбулентным течение становится при больших скоростях – это неустойчивое, хаотичное (вихреобразное) движение частиц жидкости.

Установившимся или стационарным называется течение, если величины и направления скоростей частиц в каждой точке движущейся жидкости не изменяются со временем.

2.2. Закономерности движения реальной жидкости в цилиндрической трубе

Пусть имеется жидкость, различные слои которой движутся с различными скоростями (рисунок 1), причем скорости слоев, отстоящих на расстоянии Δy , отличаются на величину Δv . Тогда отношение Δv/ Δy показывает, насколько быстро меняется скорость жидкости от одного слоя к другому. Для двух бесконечно близких слоев (Δy ®0) эта величина записывается в виде dv/dy и представляет собой градиент скорости grad (v ) в направлении перпендикулярном скорости движения слоев.

Рис.1. Схематическое изображение слоев.

Ньютон впервые предположил, что сила вязкости или сила внутреннего трения dF в между двумя слоями жидкости прямо пропорциональна площади их соприкосновения dS τ , а также градиенту скорости:

. (1)

Коэффициент пропорциональности зависящий от природы жидкости и ее температуры, называется коэффициентом вязкости или просто вязкостью . Коэффициент вязкости h измеряется в Па·с (кг /(м с)).

Рассмотрим более подробно ламинарное течение жидкости по трубе круглого сечения радиуса R длиной l . Если разность давлений ΔP = P 1 – P 2 (P 1 > P 2) на концах трубы поддерживается постоянной, то установится стационарный режим течения, при котором за равные промежутки времени t через любое поперечное сечение трубы S будут протекать равные объемы жидкости V . Особенность течения вязкой жидкости по цилиндрической трубе состоит в том, что внешний слой жидкости, примыкающий к внутренней поверхности трубы, прилипает к ней и остается неподвижным, а скорость каждого из последующих слоев увеличивается по мере приближения к центру трубы. Течение жидкости можно представить в виде движения цилиндрических слоев, параллельных оси трубы. Мысленно выделим произвольную цилиндрическую область жидкости радиуса r и длины l (рисунок 2).

Рис.2. Схематическое изображение цилиндрической области жидкости.

На ее боковую поверхность S t =2prl со стороны внешнего слоя, текущего с другой скоростью, действует, согласно (1), сила вязкости:

Кроме того, на основания цилиндра действует сила, связанная с разностью давлений:

. (3)

При стационарном течении жидкости скорость движения жидкости постоянна, поэтому силы, действующие на цилиндрический слой, должны быть равны и противоположны по направлению F B =F P , следовательно

Выразим из этого уравнения dv и проинтегрируем получившееся выражение для того, чтобы найти скорость:

Пределы определенного интеграла выбраны из условия, что на стенке трубы (т.е. при r = R ), скорость v должна обращаться в нуль. В результате получим

. (5)

Таким образом, скорость частиц движущейся жидкости изменяется от максимального значения (на оси трубы) до нуля (на стенках трубы) по параболическому закону (рисунок 3).

Рис.3. Распределение скоростей слоев жидкости в трубе.

Подсчитаем объем жидкости, протекающей через поперечное сечение трубы за время t . Для этого рассмотрим тонкий цилиндрический слой радиуса r , толщиной dr , текущий с постоянной скоростью v . За время t через кольцевую площадку площадью dS = 2πrdr , которая представляет собой поперечное сечение этого тонкого слоя, протечет объем жидкости: dV =dS vt = 2πrdr vt или, используя формулу (5),

(6)

Объем жидкости V , протекающей за время t через все поперечное сечение трубы S , находится путем интегрирования выражения (6) по r от 0 до R .

Разделив данное выражение на время t , получим объем жидкости, вытекающий из трубы за единицу времени или расход жидкости Q=V/t , а формула (7) будет иметь вид:

(8)

Формула (8) является количественным выражением закона Пуазейля . Из нее, в частности, следует, что расход жидкости обратно пропорционален длине трубы l , и прямо пропорционален разности давлений ∆P на концах трубы и четвертой степени ее радиуса, то есть, чрезвычайно сильно возрастает с увеличением радиуса трубы.

Если предположить, что все частицы жидкости движутся не с различными скоростями, а с некоторой средней скоростью v ср, то расход жидкости Q , то

Эксперименты показали, что закон Пуазейля оказывается справедливым лишь при относительно небольших скоростях движения жидкости. Осборн Ре΄йнольдс впервые заметил, что при достижении некоторой критической скорости движение жидкости теряет ламинарной характер и становится турбулентным (вихревым), то есть, струйка подкрашенной жидкости быстро расходится по всему сечению трубы в виде вихревых образований. Кроме того, было замечено, что значение критической скорости зависит также от размеров трубки и свойств самой жидкости. Так, например, если одна и та же жидкость течет по трубам различного диаметра, то в более широкой трубе переход от ламинарного течения к турбулентному будет происходить при меньших скоростях движения, чем в узкой. Таким образом, узкая труба оказывает более сильное, упорядочивающее влияние на характер движения жидкости. С другой стороны оказалось, что более вязкая жидкость сохраняет ламинарность течения при относительно более высоких скоростях движения.

Рейнольдс предложил характеризовать течение жидкости безразмерной величиной, названной числом Рейнольдса :

Здесь - плотность и вязкость жидкости, v ср - средняя скорость ее течения, R – радиус трубы.

Экспериментальные исследования показали, что ламинарный режим наблюдается при течениях, которым соответствуют значения чисел Рейнольдса не более ~1000. Переход от ламинарного к турбулентному течению происходит в области значений от 1000 до 2000, а при значениях Re > 2000 течение становится турбулентным.

Движение тел в жидкостях

Силы вязкости проявляются и при движении различных тел в жидкости, которые действуют на боковую поверхность тела в направлении, противоположном скорости тела относительно жидкости. Силы вязкости пропорциональны первой степени скорости, коэффициенту вязкости h и линейным размерам тела l :

, (11)

где k 1 – коэффициент пропорциональности.

Если в жидкости движется шарик небольшого радиуса r с малой скоростью v , то сила сопротивления равна:

Эта формула впервые была получена Стоксом и носит его имя.

Кроме того на тело, движущееся в жидкости, действуют силы лобового сопротивления. Действительно, тела, находящиеся в жидкости, действуют на частицы жидкости, изменяют характер потока, перераспределяют в нем скорости и давления до и после движущихся тел. Однако, эти же тела, согласно третьему закону Ньютона, испытывают такие же по величине, но противоположно направленные силы. Результирующая этих сил отлична от нуля и направлена в сторону, противоположную скорости тела относительно жидкости. Расчет показывает, что силы лобового сопротивления пропорциональны плотности жидкости ρ , площади поперечного сечения тела S и квадрату скорости v :

где k 2 – коэффициент, зависящий от формы тела, состояния его поверхности и от вязкости жидкости.

Таким образом, и силы лобового сопротивления, и силы вязкости препятствуют движению тела в жидкости. При малых скоростях преобладают силы вязкости, пропорциональные первой степени скорости; при больших скоростях – силы лобового сопротивления, изменяющиеся по параболическому закону (рисунок 4).

Рис.4. Зависимость сил лобового сопротивления и вязкости от скорости движения тела в жидкости.

Число Рейнольдса Re при движении тел в жидкости, как видно из формул (11) и (13), прямо пропорционально отношению F Л /F B и показывает, какой вид сопротивления преобладает. При Re≤1 преобладают силы вязкости, при Re>1 – силы лобового сопротивления. При создании моделей тел, движущихся в жидкости, число Рейнольдса является критерием подобия. Характер движения модели будет такой же, как и моделируемого тела при условии совпадения их чисел Рейнольдса.

Методика выполнения работы

3.1. Определение вязкости жидкости методом Стокса

Этот метод основан на исследовании условий движения шарика в вязкой жидкости. Размеры и плотность шарика выбираются такими, чтобы скорость его движения была невелика. В этом случае сила сопротивления определяется практически только вязкостью. Кроме силы вязкости f , на шарик, падающий в жидкости, действуют сила тяжести F T и сила Архимеда или выталкивающая сила F A (рисунок 5).

Рис.5. Схематическое изображение шарика в жидкости

В начале движения F T > F A +f и шарик движется ускоренно. При этом сила f , пропорциональная скорости шарика, увеличивается, пока равнодействующая всех этих сил не становится равной нулю и, далее, шарик движется в жидкости с постоянной скоростью v . Для этого случая запишем равенство F T = F A +f . Перепишем его, используя формулу Стокса

где m ш – масса шарика; m ж – масса жидкости, вытесненной шариком; r – радиус шарика. Записав массу шарика и массу вытесненной им жидкости через плотности и объем, получим:

3.2. Определение числа Рейнольдса, соответствующего переходу от ламинарного течения жидкости к турбулентному

Зависимость расхода жидкости от разности давлений ΔP = P 1 – P 2 на концах трубы вначале выражается линейной функцией в соответствии с формулой Пуазейля (пунктирная прямая на рисунке 6). При значениях ΔP , соответствующих числу Рейнольдса Re ~ 1000, происходит переход от ламинарного течения к турбулентному и отклонение зависимости Q = f P ) от закона Пуазейля (точка “a” на кривой рисунка 6). При дальнейшем увеличении разности давлений наблюдается чисто турбулентный режим течения жидкости (отрезок “ab” на кривой рисунка 6).

Рис.6. Зависимость объема жидкости, вытекающей из трубы в единицу времени и числа Рейнольдса от разности давлений на концах трубы.

3.3. Описание лабораторной установки

Определение вязкости жидкости методом Стокса

Для определения вязкости жидкости используется цилиндрический сосуд C , наполненный исследуемой жидкостью (рисунок 7).

Рис.7. Лабораторная установка для определения вязкости жидкости методом Стокса.

Шарик бросают в отверстие крышки сосуда. Первоначально шарик падает в жидкости с некоторым ускорением, и когда сумма силы вязкости и выталкивающей силы становится равной по величине силе тяжести шарика, он начинает двигаться равномерно с постоянной скоростью v . Определяется время прохождения шарика между двумя метками и рассчитывается скорость движения шарика по формуле v=l/t , где l – расстояние между метками на сосуде C . Подставив значение скорости в формулу (16), получим:

Время t падения шарика между метками на сосуде определяется с помощью прибора для измерения времени Ч , диаметр шарика (и, соответственно, радиус r ) – с помощью микроскопа M с известной ценой деления шкалы окуляра.


Введем обозначения:

На движущийся в жидкости шарик действует сила внутреннего трения, тормозящая его движение. При условии, что стенки сосуда находятся далеко от шарика, эта сила по закону Стокса определяется формулой (3). Если шарик свободно падает в вязкой жидкости, то на него будут действовать также сила тяжести и выталкивающая сила Архимеда .

На основании 2-го закона динамики Ньютона имеем:

(4).

Решением полученного уравнения является закон изменения скорости шарика с течением времени при его падении в жидкости:

(5).

Поскольку с течением времени величина очень быстро убывает, то скорость шарика вначале возрастает (рис.2). Но через малый промежуток времени становится величиной постоянной, равной:
(6), где .

Скорость шарика можно определить, зная расстояние между метками на сосуде и время t , за которое шарик проходит это расстояние: .

Подставив эти равенства в (6), выразим из него коэффициент вязкости:

(7) - эта формула справедлива для шарика, падающего в безгранично простирающейся жидкости. В данном случае необходимо ввести поправочный множитель , учитывающий влияние стенок и дна цилиндра на падение шарика.

Получаем окончательно рабочую расчетную формулу для экспериментального определения коэффициента вязкости жидкости методом Стокса:

(8)

Вопросы к допуску.

1. Какие силы действуют на падающий в жидкости шарик? Каковы характер и динамика его движения?

2. Записать формулу закона Стокса и пояснить входящие в нее обозначения?

3. Каковы условия применимости закона Стокса? Как они учтены в работе?

4. Записать расчетную формулу для вязкости жидкости? Пояснить каким образом находятся значения входящих в нее величин в данной работе.

5. Чем обусловлено положение верхней метки на цилиндрическом сосуде по отношению к краю жидкости в нем?

6. Пояснить характер зависимости скорости шарика [формула (5)] по рис.2.

7. От чего зависит получаемое значение вязкости? Каковы источники возможных погрешностей результата?

Задание 1. Вычисление расстояния релаксации.

1) Выбрать шарик наибольшего радиуса и измерить его диаметр, массу, вычислить объем и среднюю плотность.

2) Измерить линейкой расстояние d от поверхности масла в цилиндрическом сосуде до верхней отметки.

3) По справочной таблице найти значение плотности и коэффициента вязкости касторового масла, записать в тетрадь.

5) На основе формулы (5) найти минимальное время , соответствующее значению скорости, найденному в предыдущем пункте.

6) Интегрированием формулы (5) в пределах от t=0 до t=t р вычислить путь S , проходимый шариком при его неравномерном движении в жидкости.

7) Сравнить полученное значение S с расстоянием d от поверхности жидкости в сосуде до верхней метки. Сделать соответствующий вывод о применимости расчетной формулы.

Задание 2. Экспериментальное определение вязкости касторового масла .

1) Взять 3 металлических шарика (стальные или свинцовые) и микрометром произвести несколько измерений их диаметров. Вычислить средние значения радиусов данных шариков. Занести эти и последующие результаты в таблицу.

2) Свободно отпустить шарик в исследуемую жидкость и засечь время прохождения им расстояния между метками. Проделать это для каждого из взятых шариков, i =1, 2, 3.

3) Измерить расстояние между метками и записать какова абсолютная погрешность этого значения .

4) Определить температуру исследуемой жидкости (температуру воздуха в помещении).

5) Для каждого опыта вычислить по расчетной формуле полученное значение вязкости. Найти его среднее значение и сравнить с табличным.

6) Сделать вывод о правильности проведенного эксперимента и пояснить возможные причины расхождения теоретического и экспериментального значений коэффициента вязкости касторового масла.

7) Оценить погрешность результат проделанного измерения как косвенного многократного измерения. Записать ответ в форме , (степень доверия Р=...).

Задание 3. Исследование зависимости скорости падения шарика в вязкой жидкости .

1) Подставьте полученные в ходе выполнения эксперимента числовые значения соответствующих величин в формулу (5) и запишите ее вид после проведения соответствующих вычислений (возьмите данные, соответствующие падению одного из шариков).

2) Постройте на миллиметровой бумаге график зависимости скорости падения шарика от времени падения с указанием выбранных масштабов. Точный график можно построить в системе Mathcad на компьютере.

3) Сравните значение скорости равномерного движения шарика, полученное из графика с тем, что было посчитано в ходе опыта.

4) По графику определить время , через которое скорость шарика перестанет меняться. Посчитать площадь фигуры под графиком на участке от начала движения до . Сравнить эту величину с расстоянием d от поверхности жидкости в сосуде по верхней метки.

5) Сделайте необходимый вывод.

Вопросы к отчету :

1. Поясните сущность явления вязкого трения. Какова природа сил внутреннего трения жидкости?

2. Сформулируйте закон Ньютона и поясните входящие в него величины.

3. Что такое коэффициент вязкости?

4. Запишите формулу Стокса и укажите условия ее применимости. Докажите справедливость формулы (3) методом размерностей.

5. Какое движение жидкости называют ламинарным? Запишите условие ламинарности.

6. Выведите формулу зависимости скорости падения шарика от времени из динамического уравнения его движения в вязкой жидкости.

7. Сформулируйте утверждения, отражающие основные результаты данного эксперимента.

8. Перечислить основные источники погрешностей измерений, проводимых в данной работе. Как они были вами учтены при оценке точности результата?

Лабораторная работа № 1.4.

Определение модуля Юнга металлической проволоки.

Цель работы: познакомиться с числовыми характеристиками и законами упругой продольной деформации твердых тел; исследовать упругие свойства металла, в частности на практике изучить деформацию растяжения на примере металлической проволоки; познакомиться с методом экспериментального нахождения модуля Юнга.

Приборы и принадлежности: нихромовая или стальная проволока, закрепленная с одного конца, грузы и подвесная опора для них, два микроскопа с окулярными шкалами, микрометр, масштабная линейка.