Биографии Характеристики Анализ

Примеры вычисления работы работы силы тяжести. Формула работы

30.2.1. Работа силы тяжести на

конечном перемещении точки её приложения

Пусть материальная точка
перемещается из положения
в положение
по произволь-ной траектории- см. рис.3.

Рисунок 30.3

.

Принято называть: - геодезическая высота начального положения точки;- геодезическая высота конечного положения точки;
- разность геодезических высот. Таким образом:

- работа, совершаемая силой тяжести, не зависит от формы траектории точки её приложения и равна произведению модуля силы тяжести на разность геодезических высот начального и конечного положений этой точки.

30.2.2. Работа упругой силы на конечном перемещении точки её приложения

На рис.30.4:
- тело, к которому приложена упругая сила ; - положение тела, соответствующее недеформированному состоянию пружины;

- координ

К выводу формулы для вычис-ления работы упругой силы

ата, определяющая некоторое текущее положение тела
.

В
соответствии с законом Гука
, где - жёсткость пружины, - величина её деформации. Изображённый на рис.30.4 треугольник называют эпюрой упругой силы.

Работу упругой силы при перемещении тела из некоторого деформированного состояния, определяемого координатой , в недеформи-рованное (
), называют полной работой упругой силы.

Рисунок 30.4

полная работа упругой силы (при переведении упругого элемента в недеформированное его состояние) определяется формулой

.

Неполная работа упругой силы (допустимо сокращение: «работа упругой силы») – это работа, совершаемая упругим элементом при переходе из одного своего деформированного состояния в другое. Ясно, что:

работа упругой силы равна площади той части треугольной своей эпюры, которая расположена между координатами, отличающими одно деформированное состояние упругого элемента от другого.

30.2.3. Работа гравитационной силы

Н

К выводу формулы для вычисления работы гравитационной силы


а рис.30.5:
- притягивающий центр (Земля, Солнце и т.д.); - притягиваемая масса; - сила притяжения, определяется по закону Ньютона:
. Ось начинается в
, - некоторое конечное значение координаты .

Полная работа гравитационной силы (
) – это работа, которую она совершит при перемещении притягиваемой массы из бесконечности в положение, определяемое расстоянием . Выведем формулу для её

Рисунок 30.5

вычисления:

полная работа гравитационной силы (совершаемая ею при перемещении притягиваемой массы из бесконечности в положение, определяемое расстоянием от притягивающего центра) определяется формулой
.

Самостоятельно получите результат:

работа гравитационной силы, затрачиваемая на перемещение притягиваемой массы из положения в определяется формулой

.

30.3. Формулы для вычислений суммарных мощностей сил, действующих на твёрдые тела

30.3.1. Случай поступательного движения

Мощности, развиваемые отдельными силами:

Т.к. тело движется поступательно, то

просто .

Поэтому суммарная мощность:

суммарная мощность сил, приложенных к поступательно движущемуся телу, определяется как мощность отдельной силы, равной главному вектору действующих на это тело сил и точка приложения которой перемещается со скоростью тела.

8.3.2. Случай сферического движения

суммарная мощность сил, приложенных к сферически движущемуся телу, определяется как мощность отдельной, приложенной к этому телу, пары сил, момент которой равен главному моменту действующих на тело внешних сил.

30.3.3. Случай вращательного движения

Вращательное движение – частный случай сферического.

Пусть осью вращения является . Тогда

суммарная мощность сил, приложенных к вращательно движущемуся телу, определяется как произведение главного момента внешних сил относительно оси вращения на проекцию угловой скорости на ту же ось.

При решении конкретных задач часто приходится иметь дело с постоянными моментами сил и, при этом, определять их работу на конечных перемещениях. Применительно к такому случаю имеем:

(после интегрирования)
, т.е.:

суммарная работа сил на конечном повороте тела определяется как произведение главного момента внешних сил относительно оси вращения на произошедшее приращение угловой координаты.

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа - это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример - это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A - работа,
F - сила,
s - пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы - 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример - это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.

В данной лекции рассматриваются следующие вопросы:

1. Работа силы.

2. Консервативные силы.

2. Мощность.

3. Примеры вычисления работы.

4. Потенциальная энергия

5. Кинетическая энергия

6. Теорема об изменении кинетической энергии точки.

7. Теорема моментов.

Изучение данных вопросов необходимо для динамики движения центра масс механической системы, динамики вращательного движения твердого тела, кинетического момента механической системы, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Работа силы. Мощность.

Для характеристики действия, оказываемого силой на тело при некотором его перемещении,вводится понятие о работе силы.

Рис.1

При этом работа характеризует то действие силы, которым определяется изменение модуля скорости движущейся точки.

Введём сначала понятие об элементарной работе силы на бесконечно малом перемещении ds . Элементарной работой силы (рис.1) называется скалярная величина:

,

где - проекция силы на касательную к траектории, направленную в сторону перемещения точки, а ds - бесконечно малое перемещение точки, направленное вдоль этой касательной.

Данное определение соответствует понятию о работе, как о ха­рактеристике того действия силы, которое приводит к изменению модуля скорости точки. В самом деле, если разложить силу на составляющие и , то изменять модуль скорости точки будет только составляющая , сообщающая точке касательное ускорение. Составляющая же или изменяет направление вектора скорости v (сообщает точке нормальное ускорение), или, при несвободном дви­жение изменяет давление на связь. На модуль скорости составляю­щая влиять не будет,т.е., как говорят, сила «не будет про­изводить работу».

Замечая, что , получаем:

.(1)

Таким образом, элементарная работа силы равна проекции силы на направление перемещения точки, умноженной на элементар­ное перемещение ds или элементарная работа силы равна произведению модуля силы на элементарное перемещение ds и на косинус угла между направлением силы и направлением перемещения.

Если угол острый, то работа положительна. В частности, при элементарная работа dA = Fds .

Если угол тупой, то работа отрицательна. В частности, при элементарная работа dA =- Fds .

Если угол , т.е. если сила направлена перпендикулярно перемещению, то элементарная работа силы равна нулю.

Положительную силу F (α > 90 ° ) называют движущей , а отрицательную (α > 90 ° ) – силой сопротивления .

Найдем аналитическое выражение элементарной работы. Для этого разложим силу на составляющие по направлениям координатных осей (рис.2; сама сила на чертеже не показана).

Рис.2

Элементарное перемещение слагается из перемещений dx , dy , dz вдоль координатных осей, где x, y, z - координаты точки М . Тогда работу силы на перемещении ds можно вычислить как сумму работ её составляющих на перемещениях dx , dy , dz .

Но на перемещении dx совершает работу только составляющая , причем её работа равна F x dx . Работа на перемещениях dy и dz вычисляется аналогично.

Окончательно находим: dA = F x dx + F y dy + F z dz .

Формула дает аналитическое выражение элементарной работы силы.

Работа силы на любом конечном перемещении М 0 М 1 вычисляется как интегральная сумма соответствующих элементарных работ и будет равна:

Следовательно, работа силы на любом перемещении М 0 М 1 равна взятому вдоль этого перемещения интегралу от элементарной работы. Пределы интеграла соответствуют значениям пере­менных интегрирования в точках М 0 и М 1 . Графически площадь под всей кривой М 0 и М 1 и будет искомой работой.

Рис.3

Если величина постоянна (, то и обозначая перемеще­ние М 0 М 1 через получим: .

Такой случай может иметь место,когда действующая силапостоянна по модулю и направлению (F = const ), а точка, к ко­торой приложена сила, движется прямолинейно (рис.3). В этом случае и работа силы .

Единицей измерения работы в системе СИ является джоуль (1 дж = 1 Н ∙ м ). 1 Дж – работа, совершаемая силой 1 Н на 1 м пути.

Консервативные силы .

Силы, действующие на тело, могут быть консервативными и неконсервативными. Сила называется консервативной или потенциальной , если работа, совершаемая этой силой при перемещении материальной точки из одного положения в другое, не зависит от вида траектории (формы пути) и определяется только начальным и конечным положениями тела (рис.3.1): А 1В2 = А 1С2 = А 12 .

Рис.3.1

В случае, если тело движется в обратном направлении А 12 = –А 21 , т.е. изменение направления движения по траектории на противоположное вызывает изменение знака работы. Следовательно, при движении материальной точки по замкнутой траектории работа консервативной силы равна нулю (например, поднятие и опускание груза):

Консервативными силами являются силы гравитационного взаимодействия, силы упругости, электростатические силы. Силы, не удовлетворяющие условию (1), называются неконсервативными . К неконсервативным силам относят силы трения и сопротивления. Поле, в котором действуют консервативные силы, называется потенциальным.

Мощность.

Мощностью называется величина, определяющая работу, совершаемую силой в единицу времени. Если работа совершается равномерно, то мощность

где t - время, в течение которого произведена работа A . В общем случае

Следовательно, мощность равна произведению касательной состав­ляющей силы на скорость движения.

Единицей измерения мощности в системе СИ является ватт (1 вт = 1 дж /сек). В технике за единицу мощности часто принимается 1 лошадиная сила, равная 75 кГм /сек или 736 вт.

Работу, произведенную машиной, можно измерять произведением ее мощности на время работы. Отсюда возникла употребительная в технике единица измерения работы киловатт-час (1 квт-ч = 3,6 ∙ 10 6 дж ≈ 367100 кГм ).

Из равенства видно, что у двигателя, имеющего дан­ную мощность W , сила тяги будет тем больше, чем меньше ско­рость движения V . Поэтому, например, на подъеме или на плохом участке дороги у автомобиля включают низшие передачи, позволяю­щие при полной мощности двигаться с меньшей скоростью и раз­вивать большую силу тяги.

Примеры вычисления работы.

Рассмотренные ниже при­меры дают результаты, которыми можно непосредственно пользо­ваться при решении задач.

1) Работа силы тяжести. Пусть точка М, на которую действует сила тяжести , перемещается из положения М ­0 ( x ­ 0 , у 0 , z 0 ) в положение M 1 (х 1 , у 1 , z 1 ). Выберем оси координат так, чтобы ось Oz была направлена вертикально вверх (рис.4).

Рис.4

Тогда Р x =0, Р y =0, P z = -Р . Подставляя эти значения и учитывая перемен­ную интегрирования z :

Если точка M 0 выше М 1 , то , где h -величина вер­тикального перемещения точки;

Е сли же точка M 0 ниже точки M 1 то .

Окончательно получаем: .

Следовательно, работа силы тяжести равна взятому со зна­ком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной , и отрицательна, если начальная точка ниже конечной. Из полученного результата следует, что работа силы тяжести не зависит от вида той траектории, по которой перемещается точка ее приложения.

Силы, обла­дающие таким свойством, назы­ваются потенциальными.

2) Работа силы упругости . Рассмотрим груз М , лежащий на горизонтальной плоскости и прикрепленный к свободному концу некоторой пружины (рис.5,а). Отметим на плоскости точкой О поло­жение, занимаемое концом пружины, когда она не напряже­на (- длина ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз от равновесного положения О , удлинив пружину до величины l , то на груз будет действовать сила упругости пружины F , направленная к точке О .

Рис.5

По закону Гука величина этой силы пропорциональна удлинению пружины . Так как в нашем случае , то по модулю

Коэффициент с называется коэффициентом жесткости пружины. В технике обычно измеряют величину с в H/см, полагая коэф­фициент с численно равным силе, которую надо приложить к пру­жине, чтобы растянуть ее на 1 см .

Найдем работу, совершаемую силой упругости при перемещении груза из положения в положение Так как в данном случае F x =- F =- cx , F y = F z =0, то получим:

(Этот же результат можно получить по графику зависимости F от х (рис.20, б), вычисляя площадь заштрихованной на чертеже тра­пеции и учитывая знак работы.) В полученной формуле представ­ляет собою начальное удлинение пружины , а конечное удлинение пружины . Следовательно,

т.е. работа силы упругости равна половине произведения коэффи­циента жесткости на разность квадратов начального и конеч­ного удлинений (или сжатий) пружины.

Работа будет положительной, когда , т. е. когда конец пружины перемещается к равновесному положению, и отрица­тельной, когда , т.е. конец пружины удаляется от равновесия положения. Можно доказать, что формула ос­тается справедливой и в случае, когда пе­ремещение точки М не является прямо­линейным.

Таким образом, оказывается, что работа силы F зависит только от значе­ний и и не зависит от вида траектории точки М . Следовательно, сила упругоститакже является потенциальной.

Рис.6

3) Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой поверхности (рис.6) или кривой. Действующая на точку сила трения равна по модулю fN , где f - коэффициент трения, а - нормальная реакция поверхности. Направлена сила трения противоположно перемещению точки. Следовательно, F тр =- fN и по формуле

Если величина силы трения постоянна, то , где s -длина дуги кривой М 0 М 1 по которой перемещается точка.

Таким образом, работа силы трения при скольжении всегда отрицательна . Величина этой работы зависит от длины дуги М 0 М 1 . Следовательно, сила трения является силой непотенциальной .

4) Работа силы, приложенной к телу, вращающемуся вокруг неподвижной оси.

В этом случае (рис.7) точка приложения силы движется по окружности радиуса r . Элементарная работа, по (1), , где .

Рис.7

Поэтому .

Но .

Это нетрудно установить, разложив силу на три составляющие (рис. 7). (Моменты сил и равны нулю). Значит,

(2)

В частности, если момент силы относительно оси , работа силы при повороте тела на угол равна

.(3)

Знак работы определяется знаками момента силы и угла поворота. Если они одинаковы, работа положительная.

Из формулы (3) следует и правило определения работы пары сил. Если пара с моментом m расположена в плоскости перпендикулярной оси вращения тела, то ее работа при повороте тела на угол

.(4)

Если же пара сил действует в плоскости не перпендикулярной оси вращения, то ее надо заменить двумя парами. Одну расположить в плоскости перпендикулярной оси, другую – в плоскости параллельной оси. Моменты их определяются разложением вектора момента по соответствующим направлениям: . Конечно работу будет совершать только первая пара с моментом , где – угол между вектором и осью вращения z ,

.(5)

Энергия .

Мерой поступательного движения является импульс тела, но эта характеристика не универсальная. Универсальной количественной мерой движения и взаимодействия всех видов материи является энергия . Формы энергии: механическая, тепловая, электрическая, ядерная, внутренняя и др. Энергия из одной формы может переходить в другую. Энергия механической системы количественно характеризует ее с точки зрения возможных количественных и качественных превращений движения. Эти превращения обусловлены взаимодействием тел системы между собой и с внешними телами. Таким образом, движение и энергия неразрывно связаны между собой, а т.к. движение является неотъемлемой частью материи, то всякое тело обладает какой-либо энергией.

Кинетической энергией тела называют энергию, являющуюся мерой его механического движения и определяемую работой, которую надо совершить, чтобы вызвать это движение.

Если под действием силы тело из состояния покоя приходит в движение со скоростью , то будет совершаться работа, и энергия тела возрастает на величину затраченной работы:

где - перемещение; dA элементарная работа.

С учетом скалярной записи второго закона Ньютона:

Получим

А так как совершаемая работа равна приращению энергии, то

Полная энергия находится путем интегрирования, при изменении скорости от 0 до некоторого значения V :

Кинетическая энергия всегда положительна . Кинетическая энергия системы материальных точек равна алгебраической сумме кинетических энергий всех материальных точек системы.

Кинетическая энергия системы есть функция состояния ее движения.

Кинетическая энергия зависит от выбора системы отсчета, т.к. в различных инерциальных системах отсчета скорость неодинакова.

Потенциальная энергия – часть общей механической энергии системы, определяемая взаимным расположением тел, действующих друг на друга.

Часть пространства, в которой на помещенную туда материальную точку действует сила, зависящая от места положения точки, называется силовым полем.

Причем, эта сила определяетсяспомощью силовой функции u = u (x , y , z ). Если она не зависит от времени, то такое поле называется стационарным. Если во всех точках она одинакова, то поле – однородное.

Если же проекции силы на декартовы оси есть частные производные от силовой функции по соответствующим координатам

то такое поле называется потенциальным.

Если работа зависит от траектории, то силы называются диссипативными (сила трения).

Вычислим работу силы потенциального поля при перемещении точки из положения М 1 в положение М 2. (рис. 8).

Рис.8

Элементарная работа,

Это есть полный дифференциал силовой функции.

Работа на конечном перемещении

где u 2 и u 1 – значения силовой функции в точках М 2 и М 1 .

Следовательно, работа силы потенциального поля не зависит от траектории движения точки, а определяется лишь значениями силовой функции в начальном и конечном положениях точки.

Естественно, если точка вернется в начальное положение, работа силы будет равна нулю. Работа окажется равнойнулю и при переходе в другую точку М 3 , если там значение силовой функции будет такое же, как и в начальном положении.

Нетрудно догадаться, что точки с одинаковыми значениями силовой функции будут образовывать целую поверхность. И что силовое поле – это слоеное пространство, состоящее из таких поверхностей (рис. 8). Эти поверхности называются поверхностями уровня или эквипотенциальными поверхностями . Уравнения их: u ( x , y , z )= C (C – постоянная, равная значению u в точках этой поверхности). А силовую функцию называют, соответственно, потенциалом поля .

Конечно, эквипотенциальные поверхности не пересекаются. Иначе существовали бы точки поля с неопределенным потенциалом.

Поскольку, при перемещении точки по эквипотенциальной поверхности работа силы равна нулю, то вектор силы перпендикулярен поверхности.

Выберем среди этих поверхностей какую-нибудь одну и назовем ее нулевой поверхностью (положим у нее u = u 0 ).

Работа, которую совершит сила при переходе точки из определенного места М на нулевую поверхность, называют потенциальной энергией точки в этом определенном месте М:

Если тело находится в потенциальном поле сил, то оно будет обладать потенциальной энергией. Потенциальную энергию тела, связанного с нулевым уровнем системы отсчета, принимают нулевой, а энергию других положений отсчитывают относительно нулевого уровня.

По (8) силовая функция . Поэтому проекции силы на декартовы оси, по (6), так как ,

и вектор силы .

Рассмотрим несколько потенциальных полей.

1) Поле силы тяжести.

Вблизи поверхности Земли сила тяжести во всех точках одинакова , равна весу тела. Значит, это силовое поле однородное. Так как при перемещении точки в горизонтальной плоскости работа силы равна нулю, то эквипотенциальными поверхностями будут горизонтальные плоскости (рис. 9), а уравнения их: u = z = C .

Рис.9

Если нулевой поверхностью назначить плоскость xOy , то потенциальная энергия точки в положении М будет равна работе силы тяжести:

W П = A = Ph = mgh .

это энергия тела, поднятого над Землей на высоту h .

Так как начало отсчета выбирается произвольно, то W П может в общем случае принимать и отрицательные значения (например, W П на дне шахты).

2) Поле упругой силы.

При деформации упругого тела, например пружины, появляется сила. То есть около этого тела возникает силовое поле, силы которого пропорциональны деформации тела и направлены в сторону недеформированного состояния. У пружины – в точку М 0 , где находится конец недеформированной пружины (рис. 10).

Рис.10

Если перемещать конец пружины так, чтобы длина ее не изменялась, то работа упругой силы будет равна нулю. Значит эквипотенциальными поверхностями являются сферические поверхности с центром в точке О .

Назначим нулевой поверхностью сферу, проходящую через точку М 0 , через конец недеформированной пружины. Тогда потенциальная энергия пружины в положении М : W П = A = 0,5 kx 2 .

При таком выборе нулевой поверхности потенциальная энергия всегда будет положительной (W П >0), и в растянутом, и в сжатом состоянии.

Полная механическая энергия системы равна энергии механического движения и энергия взаимодействия:

Полная механическая энергия тела при его перемещении вдоль любой траектории в потенциальном поле остается постоянной.

Пример 1. Автомобиль массы M движется прямолинейно по горизонтальной дороге со скоростью v . Коэффициент трения качения между колесами автомобиля и дорогой равен f k , радиус колес – r , сила аэродинамического сопротивления воздуха пропорциональна квадрату скорости: , где μ – коэффициент, зависящий от формы автомобиля. Определить мощность двигателя, передаваемую на оси ведущих колес, в установившемся режиме.

Решение.

В соответствии с теоремой об изменении кинетической энергии будем иметь

где - элементарная работа движущей силы, - элементарная работа сил сопротивления движению. В установившемся режиме скорость v автомобиля постоянна и, следовательно, его кинетическая энергия не изменяется, т.е. dT =0. Это означает, что . Раскроем правую часть полученного равенства:

Здесь dS – элементарное перемещение автомобиля. Тогда мощность, передаваемая двигателем на оси ведущих колес, будет равна

Таким образом, при движении с постоянной скоростью по горизонтальной дороге двигатель автомобиля развивает постоянную мощность; соответственно, топливо в баке расходуется равномерно.

Пример 2. Стальной шарик сброшен с высоты H = 15 м без начальной скорости. Найти скорость шарика V в момент его удара о землю. Сопротивлением воздуха пренебречь.

Решение.

На шарик действует только сила тяжести, которая является потенциальной и ее потенциал явно от времени не зависит. Следовательно, в соответствии с (10), полная механическая энергия шарика при его движении будет постоянной

Так как в начальный момент времени шарик покоился и обладал только потенциальной энергией, то в момент удара о землю вся его начальная потенциальная энергия переходит в кинетическую энергию

Отсюда следует, что Результат решения этой задачи дает нам право утверждать, что скорость свободного падения тел не зависит от их массы.

Пример 3 . Рассмотрим свободное падение камня массой m , брошенного в поле гравитации Земли из точки 1 в точку 2 (рис. 11).

Рис.11

Элементарная работа, совершаемая силой тяжести при перемещении камня, равна:

Полная работа на участке 1–2 находится как

где F гр = mg – сила тяжести; тогда получаем:

Из последнего выражения видно, что работа определяется только положением начальной и конечной точек траектории тела.

Пример 4 . Найдем потенциальную энергию упруго деформированного тела (пружины). Известно, что сила упругости пропорциональна деформации x :

где k – коэффициент упругости; x – значение деформации; знак (–) указывает, что F упр направлена в сторону, противоположную деформации.

Для преодоления силы упругости необходимо приложить силу:

Элементарная работа – работа, совершаемая при бесконечно малой деформации:

Полная работа найдется как

Работа в данном примере идет на увеличение потенциальной энергии пружины. Если при x = 0 W on = 0, то с = 0. Потенциальная энергия упругодеформированного тела равна

Пример 5 . Материальная точка массой m движется по оси О х в потенциальном силовом поле с энергией, зависящей от координаты x по закону: W р = - α x 4 , где α - положительная постоянная. Найти зависимость ускорения точки от координаты x .

Решение. Используя связь между силой и потенциальной энергией:

найдем зависимость силы от координаты x :

По второму закону Ньютона получим выражение для ускорения:

Если аналитически или графически задана зависимость потенциальной энергии от угла поворота при вращательном движении, то, применяя соотношение , можно выразить момент силы, а также найти угловое ускорение

Пример 6 . Вагон массой m = 20 т, двигаясь равнозамедленно с начальной скоростью v 0 = 54 км/ч, под действием силы трения F mp = 6 кН через некоторое время останавливается. Найти работу A сил трения и расстояние S , которое вагон пройдет до остановки.

Решение.

1) Работа А , совершаемая результирующей силой, может быть определена как мера изменения кинетической энергии материальной точки:

где W k = mv 2 /2=0.

Отсюда A =- W k 0 ;

A =-2,25 МДж

2) Расстояние

Ответ: Работа сил трения равна -2,25 МДж , расстояние которое вагон пройдет до остановки 375 м.

Пример 7 . На рисунке изображена зависимость проекции F x силы, действующей на материальную точку, от координаты х. Определить работу, совершенную при перемещении точки на расстояние 5 м.

Рис.12

Решение. Согласно условию сила зависит от координаты x . Работа переменной силы на участке от x 1 до x 2 равна

Геометрически интеграл можно интерпретировать как площадь фигуры, ограниченной соответствующим участком графика, отрезком оси x и перпендикулярами, опущенными из конечных точек графика на ось абсцисс. На первом участке графика проекция силы F x отрицательна и работа тоже отрицательна. Численно она равна площади треугольника. На втором и третьем участках F x > 0, работы на этих участках положительны и вычисляются как соответствующие площади прямоугольника и треугольника. В результате имеем:

А = -(1 2)/2 + 1 2 + (1 1) 2 = 1,5 Дж.

Если задана зависимость момента силы от угловой координаты φ , то расчет работы производится по аналогичной формуле либо аналитически, либо графически.

Пример 8 . К ободу диска массой m = 5 кг приложена касательная сила F = 19,6 Н. Какую кинетическую энергию W к будет иметь диск через время t = 5 c после начала действия силы?

Решение.

1) - кинетическая энергия диска;

2) ω = ε t - угловая скорость;

3)

4) Момент инерции для диска ;

6)Подставив данные, получим:

Ответ: Кинетическая энергия, через 5 с. после начала действия силы будет равна 1,9 кДж.

Теорема об изменении кинетической энергии точки.

Рассмотрим точку с массой т, перемещающуюся под действием при­ложенных к ней сил из положения M 0 , где она имеет скорость , в положение М 1 , где ее скорость равна .

Для получения искомой зависимости обратимся к уравнению выражающему основной закон динамики. Проектируя обе части этого равенства на касательную к траектории точ­ки М, направленную в сторону движения, получим:

Стоящую слева величину касательного ускорения можно пред­ставить в виде

В результате будем иметь:

Умножив обе части этого равенства на ds , внесем т под знак дифференциала. Тогда, замечая, что где - эле­ментарная работа силы F k получим выражение теоремы об изме­нении кинетической энергии в дифференциальной форме:

Проинтегрировав теперь обе части этого равенства в пределах, соответствующих значениям переменных в точках M 0 и M 1 , найдем окончательно:

Уравнение выражает теорему об изменении кине­тической энергии точки в конечном виде: изменение кинетической энергии точки при некотором ее перемещении равно алгебраической сумме работ всех действующих на точку сил на том же перемещении.

Пример 9 . По графику зависимости скорости от времени v (t ) определить, является ли работа силы, действующей на материальную точку в интервале времени от 0 до τ положительной, отрицательной, равной нулю (рис.13). Учесть, что АО = ОВ.

Рис.13

Решение. Работа силы, действующей на частицу, равна приращению кинетической энергии частицы.

Кинетическая энергия материальной точки связана со скоростью соотношением Поскольку скорости частицы в моменты времени t =0 и t = τ согласно условию задачи равны по величине (на графике АО = ОВ), то и кинетические энергии в этих состояниях одинаковы, т.е. Следовательно, работа приложенной силы за указанный промежуток времени равна нулю.

Пример 10 . Точка движется по оси Ox под действием силы, направленной вдоль оси x (рис.14). Сравните значения кинетической энергии точки в начальном и конечном состояниях для случаев, когда проекция силы на ось координат изменяется согласно графикам “а” и “б” ?

Рис.14

Решение. Согласно теореме приращение кинетической энергии частицы равно работе силы, действующей на частицу.

Работа переменной силы определяется соотношением Учитывая геометрический смысл интеграла (площадь криволинейной трапеции), нетрудно видеть, что в случае “а” работа равна нулю и кинетические энергии начального и конечного состояний совпадают. В случае “б” работа положительна и кинетическая энергия конечного состояния больше, чем начального.

Пример 11 . Два диска с равными массами, на разных размеров (R A = 2 R B ) раскручивают до одинаковых угловых скоростей. Найти отношения произведенных работ.

Решение. Работа по раскручиванию диска равна приращению кинетической энергии, т.е. A = W k . Начальная кинетическая энергия каждого диска равна нулю, конечная связана с угловой скоростью формулой

Учитывая, что момент инерции сплошного однородного диска равен z , в чем можно убедиться, проектируя обе части равенства на эту ось. Ма­тематическое выражение теоремы моментов относительно оси дается формулой .

Вопросы для самопроверки

- Каковы две меры механического движения и соответствующие им измерители действия силы?

- Какие силы называют движущими?

- Какие силы называют силами сопротивления?

- Запишите формулы для определения работы при поступательном и вращательном движениях?

- Какую силу называют окружной? Что такое вращающий момент?

- Сформулируйте теорему о работе равнодействующей.

- Как определяется работа постоянной по модулю и направлению силы на прямолинейном перемещении?

- Чему равна работа силы трения скольжения, если эта сила постоянна по модулю и направлению?

- Каким простым способом можно вычислить работу постоянной по модулю и направлению силы на криволинейном перемещении?

- Чему равна работа равнодействующей силы.

- Как выразить элементарную работу силы через элементарный путь точки приложения силы и как – через приращение дуговой координаты этой точки?

- Каково векторное выражение элементарной работы?

- Каково выражение элементарной работы силы через проекции силы на оси координат?

- Напишите различные виды криволинейного интеграла, определяющего работу переменной силы на конечном криволинейном перемещении.

- В чем состоит графический способ определения работы переменной силы на криволинейном перемещении?

- Как вычисляются работа силы тяжести и работа силы упругости?

- На каких перемещениях работа силы тяжести: а) положительна, б) отрицательна, в) равна нулю.

- В каком случае работа силы упругости положительна и в каком – отрицательна?

- Какая сила называется: а) консервативной; б) неконсервативной; в) диссипативной?

- Что называется потенциалом консервативных сил?

- Какое поле называется потенциальным?

- Что называется силовой функцией?

- Что называется силовым полем? Приведите примеры силовых полей.

- Какими математическими зависимостями связаны потенциал поля и силовая функция?

- Как определить элементарную работу сил потенциального поля и работу этих сил на конечном перемещении системы, если известна силовая функция поля?

- Какова работа сил, действующих на точки системы в потенциальном поле, на замкнутом перемещении?

- Чему равна потенциальная энергия системы в любом ее положении?

- Чему равно изменение потенциальной энергии механической системы при перемещении ее из одного положения в другое?

- Какая зависимость существует между силовой функцией потенциального поля и потенциальной энергией системы, находящейся в этом поле?

- Вычислите изменение кинетической энергии точки массой 20 кг, если ее скорость увеличилась с 10 до 20 м/с?

- Как определяются проекции на координатные оси силы, действующей в потенциальном поле на любую точку системы?

- Какие поверхности называются эквипотенциальными и каковы их уравнения?

- Как направлена сила, действующая на материальную точку в потенциальном поле, по отношению к эквипотенциальной поверхности, проходящей через эту точку?

- Чему равна потенциальная энергия материальной точки и механической системы, находящихся под действием сил тяжести?

- Какой вид имеют эквипотенциальные поверхности поля силы тяжести и ньютоновой силы тяготения?

- В чем заключается закон сохранения и превращения механической энергии?

- Почему под действием центральной силы материальная точка описывает плоскую кривую?

- Что называют секторной скоростью и как выразить ее модуль в полярных координатах?

- В чем заключается закон площадей?

- Какой вид имеет дифференциальное уравнение в форме Бине , определяющее траекторию точки, движущейся под действием центральной силы?

- По какой формуле определяется модуль ньютоновой силы тяготения?

- Каков канонический вид уравнения конического сечения и при каких значениях эксцентриситета траектория тела, движущегося в поле ньютоновой силы тяготения, представляет собой окружность, эллипс, параболу, гиперболу?

- Сформулируйте законы движения планет, открытые Кеплером.

- При каких начальных условиях тело становится спутником Земли и при каких оно способно преодолеть земное притяжение?

- Каковы первая и вторая космические скорости?

- Запишите формулы для расчета работы при поступательном и вращательном движениях?

- Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести?

- Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях?

- Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин?

- Чему равна работа силы, приложенной к прямолинейно движущемуся телу массой 100 кг, если скорость тела увеличилась с 5 до 25 м/с?

- Определите общий КПД механизма, если при мощности двигателя 12,5 кВт и общей силе сопротивления движению 2 кН скорость движения 5 м/с.

- Если автомобиль въезжает на гору при неизменной мощности двигателя, то он уменьшает скорость движения. Почему?

- Работа постоянной силы при прямолинейном перемещении W =10 Дж . Какой угол составляет направление силы с направлением перемещения?

1) острый угол;

2) прямой угол;

3) тупой угол.

- Как изменится кинетическая энергия прямолинейно движущейся точки, если ее скорость увеличится в два раза?

1) увеличится в два раза;

2) увеличится в четыре раза.

- Чему равна работа силы тяжести при горизонтальном перемещении тела?

1) произведению силы тяжести на перемещение;

2) работа силы тяжести равна нулю.

- Закон сохранения механической энергии выполняется, если

1) сумма всех внутренних сил равна нулю;

2) сумма всех скоростей рана нулю;

3) сумма всех внешних сил;

4) сумма всех моментов внешних сил рана нулю;

5) при действии консервативных сил .

- Работа в механике равна

1)

1 ) силы, работы которых не зависят от формы пути;

2 ) силы, работы которых зависят от формы пути;

3 ) силы трения;

4 ) силы тяготения;

5 ) электростатические силы.

- Чему равна работа равнодействующей силы:

1 ) изменению кинетической энергии тела ;

2 ) кинетической энергии

Механическая работа. Единицы работы.

В обыденной жизни под понятием "работа" мы понимаем всё.

В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа .

Рассмотрим примеры механической работы.

Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу - перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

Итак, механическая работа совершается, только когда на тело действует сила, и оно движется .

Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути .

Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

работа = сила × путь

где А - работа, F - сила и s - пройденный путь.

За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

Единица работы - джоуль (Дж ) названа в честь английского ученого Джоуля. Таким образом,

1 Дж = 1Н · м.

Используется также килоджоули (кДж ) .

1 кДж = 1000 Дж.

Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.

Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом - работа.

Пример . Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м 3 .

Дано :

ρ = 2500 кг/м 3

Решение :

где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

Ответ : А =245 кДж.

Рычаги.Мощность.Энергия

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех - часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный - много лемехов), эту работу выполнит на 40-50 мин.

Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор - быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

Мощность равна отношению работы ко времени, за которое она была совершена.

Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время.

где N - мощность, A - работа, t - время выполненной работы.

Мощность - величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:

N ср = A/t . За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.

Эта единица называется ваттом (Вт ) в честь еще одного английского ученого Уатта.

1 ватт = 1 джоуль/ 1 секунда , или 1 Вт = 1 Дж/с.

Ватт (джоуль в секунду) - Вт (1 Дж/с).

В технике широко используется более крупные единицы мощности - киловатт (кВт ), мегаватт (МВт ) .

1 МВт = 1 000 000 Вт

1 кВт = 1000 Вт

1 мВт = 0,001 Вт

1 Вт = 0,000001 МВт

1 Вт = 0,001 кВт

1 Вт = 1000 мВт

Пример . Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее - 120 м3 в минуту.

Дано :

ρ = 1000 кг/м3

Решение :

Масса падающей воды: m = ρV ,

m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).

Сила тяжести, действующая на воду:

F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)

Работа, совершаемая потоком в минуту:

А - 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).

Мощность потока: N = A/t,

N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.

Ответ : N = 0.5 МВт.

Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).

Таблица 5.

Мощность некоторых двигателей, кВт.

На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

Из формулы N = A/t следует, что

Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

Запишем условие задачи и решим ее.

Дано :

Решение :

A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

Ответ A = 21 кДж.

Простые механизмы.

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки - рычага.

На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

Приспособления, служащие для преобразования силы, называются механизмами .

К простым механизмам относятся: рычаги и его разновидности - блок, ворот; наклонная плоскость и ее разновидности - клин, винт . В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.

Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

Рычаг. Равновесие сил на рычаге.

Рассмотрим самый простой и распространенный механизм - рычаг.

Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B , во втором - приподнимает конец B .

Рабочему нужно преодолеть вес груза P - силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома - точку его опоры О . Сила F , с которой рабочий действует на рычаг, меньше силы P , таким образом, рабочий получает выигрыш в силе . При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В . На другом рисунке показана схема этого рычага. Обе силы F 1 и F 2, действующие на рычаг, направлены в одну сторону.

Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА - плечо силы F 1; ОВ - плечо силы F 2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F 1 вращает рычаг по ходу часовой стрелки, а сила F 2 вращает его против часовой стрелки.

Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н . При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

На основании таких опытов было установлено условие (правило) равновесия рычага.

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Это правило можно записать в виде формулы:

F 1/F 2 = l2/ l1 ,

где F 1 и F2 - силы, действующие на рычаг, l 1 и l2 , - плечи этих сил (см. рис.).

Правило равновесия рычага было установлено Архимедом около 287 - 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово "установлено"?)

Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

Пример . С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

Запишем условие задачи, и решим ее.

Дано :

Решение :

По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р - вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

Ответ : F1 = 600 Н.

В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l 1 : l2 = 2,4 м: 0,6 м = 4).

Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

Момент силы.

Вам уже известно правило равновесия рычага:

F 1 / F2 = l 2 / l1 ,

Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

F 1l 1 = F2 l2 .

В левой части равенства стоит произведение силы F 1 на ее плечо l 1, а в правой - произведение силы F 2 на ее плечо l 2 .

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы ; он обозначается буквой М. Значит,

Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Это правило, называемое правилом моментов , можно записать в виде формулы:

М1 = М2

Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.

Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

Эта единица называется ньютон-метр (Н · м ).

Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

Рычаги в технике, быту и природе.

Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

Выигрыш в силе мы имеем при работе с ножницами. Ножницы - это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F 1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F 2 - сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино - все это примеры рычагов, используемых в данных машинах и инструментах.

Примеры применения рычагов - это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

На принципе рычага основано действие и рычажных весов (рис.). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг . В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

Применение закона равновесия рычага к блоку.

Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r . Такой блок не дает выигрыша в силе. (F 1 = F 2), но позволяет менять направление действие силы. Подвижный блок - это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О - точка опоры рычага, ОА - плечо силы Р и ОВ - плечо силы F . Так как плечо ОВ в 2 раза больше плеча ОА , то сила F в 2 раза меньше силы Р :

F = P/2 .

Таким образом, подвижный блок дает выигрыш в силе в 2 раза .

Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р , а, значит, сама сила F в 2 раза меньше силы Р .

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

Равенство работ при использовании простых механизмов. "Золотое правило" механики.

Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

Уравновесив на рычаге две какие-нибудь разные по модулю силы F 1 и F 2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F 2 проходит больший путь s 2 , а точка приложения большей силы F 1 - меньший путь s 1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

s 1 / s 2 = F 2 / F 1.

Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

F 1 s 1 = F 2 s 2, т. е. А 1 = А 2.

Итак, при использовании рычага выигрыша в работе не получится.

Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: "Дайте мне точку опоры, и я переверну Землю!".

Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F , одинаковы, одинаковы и силы, а значит, одинаковы и работы.

Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали "золотым правилом" механики.

Коэффициент полезного действия механизма.

Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной ), равна полезной работе по подъему грузов или преодоления какого - либо сопротивления.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

Ап < Аз или Ап / Аз < 1.

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

Сокращенно коэффициент полезного действия обозначается КПД.

КПД = Ап / Аз.

КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как "эта":

η = Ап / Аз · 100%.

Пример : На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h1 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h2 = 0,4 м. Найти КПД рычага.

Запишем условие задачи и решим ее.

Дано :

Решение :

η = Ап / Аз · 100%.

Полная (затраченная) работа Аз = Fh2.

Полезная работа Ап = Рh1

Р = 9,8 · 100 кг ≈ 1000 Н.

Ап = 1000 Н · 0,08 = 80 Дж.

Аз = 250 Н · 0,4 м = 100 Дж.

η = 80 Дж/100 Дж · 100% = 80%.

Ответ : η = 80%.

Но "золотое правило" выполняется и в этом случае. Часть полезной работы - 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

Энергия.

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия - физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях .

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция - возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Е п, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

А = Fh ,

где F - сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g - ускорение свободного падения, m - масса тела, h - высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема - движение) энергией.

Кинетическая энергия тела обозначается буквой Е к.

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух - ветер.

От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т. е. совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.

За счет скорости большой кинетической энергией обладает летящая пуля.

Кинетическая энергия тела зависит и от его массы. Еще раз проделаем наш опыт, но будем скатывать с наклонной плоскости другой шарик - большей массы. Брусок В передвинется дальше, т. е. будет совершена бóльшая работа. Значит, и кинетическая энергия второго шарика, больше, чем первого.

Чем больше масса тела и скорость, с которой он движется, тем больше его кинетическая энергия.

Для того чтобы определить кинетическую энергию тела, применяется формула:

Ек = mv^2 /2,

где m - масса тела, v - скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Превращение одного вида механической энергии в другой.

Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождается превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Рассмотренные ниже примеры дают результаты, которыми можно непосредственно пользоваться при решении задач.

1. Работа силы тяжести. Пусть точка М, на которую действует сила тяжести Р, перемещается из положения в положение Выберем координатные оси так, чтобы ось была направлена вертикально вверх (рис. 231). Тогда . Подставляя эти значения в формулу (44), получим, учитывая, что переменным интегрирования является :

Если точка выше , то , где h - вертикальное перемещение точки; если же точка ниже точки то .

Окончательно получаем

Следовательно, работа силы тяжести равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной.

Из полученного результата следует, что работа силы тяжести не зависит от вида той траектории, по которой перемещается точка ее приложения. Силы, обладающие таким свойством, называются потенциальными (см. § 126).

2. Работа силы упругости. Рассмотрим груз М, лежащий на горизонтальной плоскости и прикрепленный к свободному концу некоторой пружины (рис. 232, а). На плоскости отметим точкой О положение, занимаемое концом пружины, когда она не напряжена - длина ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз от равновесного положения О, растянув пружину до величины I, то пружина получит удлинение и на груз будет действовать сила упругости F, направленная к точке О. Так как в нашем случае то по формуле (6) из § 76

Последнее равенство справедливо и при (груз левее точки О); тогда сила F направлена вправо и получится, как и должно быть,

Найдем работу, совершаемую силой упругости при перемещении груза из положения в положение

Так как в данном случае то, подставляя эти значения в формулу (44), найдем

(Этот же результат можно получить по графику зависимости F от (рис. 232, б), вычисляя площадь а заштрихованной на чертеже трапеции и учитывая знак работы.) В полученной формуле представляет собой начальное удлинение пружины - конечное удлинение пружины Следовательно,

т. е. работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины.

Работа будет положительной, когда т. е. когда конец пружины перемещается к равновесному положению, и отрицательной, когда т. е. когда конец пружины удаляется от равновесного положения.

Можно доказать, что формула (48) остается справедливой и в случае, когда перемещение точки М не является прямолинейным. Таким образом, оказывается, что работа силы F зависит только от значений и и не зависит от вида траектории точки М. Следовательно, сила упругости также является потенциальной.

3. Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой поверхности (рис. 233) или кривой. Действующая на точку сила трения равна по модулю где f - коэффициент трения, а N - нормальная реакция поверхности. Направлена сила трения противоположно перемещению точки. Следовательно, и по формуле (44)

Если численно сила трения постоянна, то где s - длина дуги кривой , по которой перемещается точка.

Таким образом, работа силы трения при скольжении всегда отрицательна. Так как эта работа зависит от длины дуги то, следовательно, сила трения является силой непотенциальной.

4. Работа силы тяготения Если Землю (планету) рассматривать как однородный шар (или шар, состоящий из однородных концентрических слоев), то на точку М с массой , находящуюся вне шара на расстоянии от его центра О (или находящуюся на поверхности шара), будет действовать сила тяготения F, направленная к центру О (рис. 234), значение которой определяется формулой (5) из § 76. Представим эту формулу в виде

н определим коэффициент k из того условия, что, когда точка находится на поверхности Земли (r = R, где R - радиус Земли), сила притяжеиия равна mg, где g - ускорение силы тяжести (точнее силы тяютения) на земной поверхности. Тогда должно быть