Биографии Характеристики Анализ

Системы уравнения примеры и решения. Решение с помощью алгебраического сложения

Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:

{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2

Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 - некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Существует несколько способов решения системы линейных уравнений. Рассмотрим один из способов решения системы линейных уравнений, а именно способ сложения.

Алгоритм решения способом сложения

Алгоритм решения системы линейных уравнений с двумя неизвестными способом сложения.

1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.

2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным

3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.

4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.

5. Сделать проверку решения.

Пример решения способом сложения

Для большей наглядности решим способом сложения следующую систему линейных уравнений с двумя неизвестными:

{3*x + 2*y = 10;
{5*x + 3*y = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у. Для этого умножим первое уравнение на три, а второе уравнение на два.

{3*x+2*y=10 |*3
{5*x + 3*y = 12 |*2

Получим следующую систему уравнений:

{9*x+6*y = 30;
{10*x+6*y=24;

Теперь из второго уравнения вычитаем первое. Приводим подобные слагаемые и решаем полученное линейное уравнение.

10*x+6*y - (9*x+6*y) = 24-30; x=-6;

Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение.

{3*(-6) + 2*y =10;
{2*y=28; y =14;

Получилась пара чисел x=6 и y=14. Проводим проверку. Делаем подстановку.

{3*x + 2*y = 10;
{5*x + 3*y = 12;

{3*(-6) + 2*(14) = 10;
{5*(-6) + 3*(14) = 12;

{10 = 10;
{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение.

Урок и презентация на тему: "Системы уравнений. Метод подстановки, метод сложения, метод введения новой переменной"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Тренажер к учебникам Атанасяна Л.С. Тренажер к учебникам Погорелова А.В.

Способы решения систем неравенств

Ребята, мы с вами изучили системы уравнений и научились решать их с помощью графиков. Теперь давайте посмотрим, какие еще существуют способы решения систем?
Практически все способы их решения не отличаются от тех, что мы изучали в 7 классе. Сейчас нам нужно внести некоторые корректировки согласно тем уравнениям, что мы научились решать.
Суть всех методов, описанных в данном уроке, это замена системы равносильной системой с более простым видом и способом решения. Ребята, вспомните, что такое равносильная система.

Метод подстановки

Первый способ решения систем уравнений с двумя переменными нам хорошо известен - это метод подстановки. С помощью этого метода мы решали линейные уравнения. Теперь давайте посмотрим, как решать уравнения в общем случае?

Как же нужно действовать при решении?
1. Выразить одну из переменных через другую. Чаще всего в уравнениях используют переменные x и y. В одном из уравнений выражаем одну переменную через другую. Совет: внимательно посмотрите на оба уравнения, прежде чем начать решать, и выберете то, где будет легче выразить переменную.
2. Полученное выражение подставить во второе уравнение, вместо той переменной, которую выражали.
3. Решить уравнение, которое у нас получилось.
4. Подставить получившееся решение во второе уравнение. Если решений несколько, то подставлять надо последовательно, чтобы не потерять пару решений.
5. В результате вы получите пару чисел $(x;y)$, которые надо записать в ответ.

Пример.
Решить систему с двумя переменными методом подстановки: $\begin{cases}x+y=5, \\xy=6\end{cases}$.

Решение.
Внимательно посмотрим на наши уравнения. Очевидно, что выразить y через x в первом уравнении гораздо проще.
$\begin{cases}y=5-x, \\xy=6\end{cases}$.
Подставим первое выражение во второе уравнение $\begin{cases}y=5-x, \\x(5-2x)=6\end{cases}$.
Решим второе уравнение отдельно:
$x(5-x)=6$.
$-x^2+5x-6=0$.
$x^2-5x+6=0$.
$(x-2)(x-3)=0$.
Получили два решения второго уравнения $x_1=2$ и $x_2=3$.
Последовательно подставим во второе уравнение.
Если $x=2$, то $y=3$. Если $x=3$, то $y=2$.
Ответом будет две пары чисел.
Ответ: $(2;3)$ и $(3;2)$.

Метод алгебраического сложения

Этот метод мы также изучали в 7 классе.
Известно, что рациональное уравнение от двух переменных мы можем умножить на любое число, не забывая умножить обе части уравнения. Мы умножали одно из уравнений на некое число так, чтобы при сложении получившегося уравнения со вторым уравнением системы, одна из переменных уничтожалась. Потом решали уравнение относительно оставшейся переменной.
Этот метод работает и сейчас, правда не всегда возможно уничтожить одну из переменных. Но позволяет значительно упростить вид одного из уравнений.

Пример.
Решить систему: $\begin{cases}2x+xy-1=0, \\4y+2xy+6=0\end{cases}$.

Решение.
Умножим первое уравнение на 2.
$\begin{cases}4x+2xy-2=0, \\4y+2xy+6=0\end{cases}$.
Вычтем из первого уравнения второе.
$4x+2xy-2-4y-2xy-6=4x-4y-8$.
Как видим, вид получившегося уравнения гораздо проще исходного. Теперь мы можем воспользоваться методом подстановки.
$\begin{cases}4x-4y-8=0, \\4y+2xy+6=0\end{cases}$.
Выразим x через y в получившемся уравнении.
$\begin{cases}4x=4y+8, \\4y+2xy+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2(y+2)y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2y^2+4y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\2y^2+8y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\y^2+4y+3=0\end{cases}$.
$\begin{cases}x=y+2, \\(y+3)(y+1)=0\end{cases}$.
Получили $y=-1$ и $y=-3$.
Подставим эти значения последовательно в первое уравнение. Получим две пары чисел: $(1;-1)$ и $(-1;-3)$.
Ответ: $(1;-1)$ и $(-1;-3)$.

Метод введения новой переменной

Этот метод мы также изучали, но давайте посмотрим на него еще раз.

Пример.
Решить систему: $\begin{cases}\frac{x}{y}+\frac{2y}{x}=3, \\2x^2-y^2=1\end{cases}$.

Решение.
Введем замену $t=\frac{x}{y}$.
Перепишем первое уравнение с новой переменной: $t+\frac{2}{t}=3$.
Решим получившееся уравнение:
$\frac{t^2-3t+2}{t}=0$.
$\frac{(t-2)(t-1)}{t}=0$.
Получили $t=2$ или $t=1$. Введем обратную замену $t=\frac{x}{y}$.
Получили: $x=2y$ и $x=y$.

Для каждого из выражений исходную систему надо решить отдельно:
$\begin{cases}x=2y, \\2x^2-y^2=1\end{cases}$.   $\begin{cases}x=y, \\2x^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\8y^2-y^2=1\end{cases}$.    $\begin{cases}x=y, \\2y^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\7y^2=1\end{cases}$.       $\begin{cases}x=2y, \\y^2=1\end{cases}$.
$\begin{cases}x=2y, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.      $\begin{cases}x=y, \\y=±1\end{cases}$.
$\begin{cases}x=±\frac{2}{\sqrt{7}}, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.     $\begin{cases}x=±1, \\y=±1\end{cases}$.
Получили четыре пары решений.
Ответ: $(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}})$; $(-\frac{2}{\sqrt{7}};-\frac{1}{\sqrt{7}})$; $(1;1)$; $(-1;-1)$.

Пример.
Решить систему: $\begin{cases}\frac{2}{x-3y}+\frac{3}{2x+y}=2, \\\frac{8}{x-3y}-\frac{9}{2x+y}=1\end{cases}$.

Решение.
Введем замену: $z=\frac{2}{x-3y}$ и $t=\frac{3}{2x+y}$.
Перепишем исходные уравнения с новыми переменными:
$\begin{cases}z+t=2, \\4z-3t=1\end{cases}$.
Воспользуемся методом алгебраического сложения:
$\begin{cases}3z+3t=6, \\4z-3t=1\end{cases}$.
$\begin{cases}3z+3t+4z-3t=6+1, \\4z-3t=1\end{cases}$.
$\begin{cases}7z=7, \\4z-3t=1\end{cases}$.
$\begin{cases}z=1, \\-3t=1-4\end{cases}$.
$\begin{cases}z=1, \\t=1\end{cases}$.
Введем обратную замену:
$\begin{cases}\frac{2}{x-3y}=1, \\\frac{3}{2x+y}=1\end{cases}$.
$\begin{cases}x-3y=2, \\2x+y=3\end{cases}$.
Воспользуемся методом подстановки:
$\begin{cases}x=2+3y, \\4+6y+y=3\end{cases}$.
$\begin{cases}x=2+3y, \\7y=-1\end{cases}$.
$\begin{cases}x=2+3(\frac{-1}{7}), \\y=\frac{-1}{7}\end{cases}$.
$\begin{cases}x=\frac{11}{7}, \\x=-\frac{11}{7}\end{cases}$.
Ответ: $(\frac{11}{7};-\frac{1}{7})$.

Задачи на системы уравнений для самостоятельного решения

Решите системы:
1. $\begin{cases}2x-2y=6, \\xy =-2\end{cases}$.
2. $\begin{cases}x+y^2=3, \\xy^2=4\end{cases}$.
3. $\begin{cases}xy+y^2=3, \\y^2-xy=5\end{cases}$.
4. $\begin{cases}\frac{2}{x}+\frac{1}{y}=4, \\\frac{1}{x}+\frac{3}{y}=9\end{cases}$.
5. $\begin{cases}\frac{5}{x^2-xy}+\frac{4}{y^2-xy}=-\frac{1}{6}, \\\frac{7}{x^2-xy}-\frac{3}{y^2-xy}=\frac{6}{5}\end{cases}$.
Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.

Метод подстановки

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.
2. Подставить полученное выражение вместо у в другое уравнение системы.
3. Решить полученное уравнение относительно х.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.


4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если то
5) Пары (2; 1) и решения заданной системы уравнений.

Ответ: (2; 1);

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений


Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения:
Вычтем второе уравнение системы из ее первого уравнения:


В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:


Эту систему можно решить методом подстановки. Из второго уравнения находим Подставив это выражение вместо у в первое уравнение системы, получим


Осталось подставить найденные значения х в формулу

Если х = 2, то

Таким образом, мы нашли два решения системы:

Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Введем новую переменную Тогда первое уравнение системы можно будет переписать в более простом виде: Решим это уравнение относительно переменной t:


Оба эти значения удовлетворяют условию , а потому являются корнями рационального уравнения с переменной t. Но значит, либо откуда находим, что х = 2у, либо
Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:

х = 2 у; у - 2х.

Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х 2 - у 2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений :

Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:

Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим


Так как х = 2у, то находим соответственно х 1 = 2, х 2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:

Снова воспользуемся методом подстановки : подставим выражение 2х вместо у во второе уравнение системы. Получим


Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.

Ответ: (2; 1); (-2;-1).

Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.

Пример 4. Решить систему уравнений

Введем две новые переменные:

Учтем, что тогда

Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:


Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:

Возвращаясь к переменным х и у, получаем систему уравнений


Применим для решения этой системы метод алгебраического сложения:


Так как то из уравнения 2x + y = 3 находим:
Таким образом, относительно переменных х и у мы получили одно решение:


Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных . Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.

Определение.

Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.

Графический метод решения систем уравнений

Мы уже с вами научились решать системы уравнений такими распространенными и надежными способами, как метод подстановки, алгебраического сложения и введения новых переменных. А теперь давайте с вами вспомним, метод, который вы уже изучали на предыдущем уроке. То есть давайте повторим, что вы знаете о графическом методе решения.

Метод решения систем уравнения графическим способом представляет собой построение графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).

Следует вспомнить, что для графической системы уравнений свойственно иметь либо одно единственное верное решение, либо бесконечное множество решений, либо же не иметь решений вообще.

А теперь на каждом из этих решений остановимся подробнее. И так, система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.

Ну а теперь давайте с вами рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:

Во-первых, вначале мы с вами строим график 1-го уравнения;
Вторым этапом будет построение графика, который относится ко второму уравнению;
В-третьих, нам необходимо найти точки пересечения графиков.
И в итоге мы получаем координаты каждой точки пересечения, которые и будут решением системы уравнений.

Давайте этот метод рассмотрим более подробно на примере. Нам дана система уравнений, которую необходимо решить:


Решение уравнений

1. Вначале мы с вами будем строить график данного уравнения: x2+y2=9.

Но следует заметить, что данным графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.

2. Следующим нашим шагом будет построение графика такого уравнения, как: y = x – 3.

В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).


3. Смотрим, что у нас получилось. Мы видим, что прямая пересекает окружность в двух ее точках A и B.

Теперь мы с вами ищем координаты этих точек. Мы видим, что координаты (3;0) соответствуют точке А, а координаты (0;−3) соответственно точке В.

И что мы получаем в итоге?

Получившиеся при пересечении прямой с окружностью числа (3;0) и (0;−3), как раз и являются решениями обоих уравнений системы. А из этого следует, что данные числа являются и решениями этой системы уравнений.

То есть, ответом этого решения являются числа: (3;0) и (0;−3).