Биографии Характеристики Анализ

Спектральная плотность. Пара преобразований Фурье

Для полноты мы кратко обсудим ниже понятия спектра и спектральной плотности. Применение этих важных понятий более подробно описано в . Мы не используем их для анализа временных рядов в этой книге, поэтому при первом чтении этот раздел можно опустить.

Выборочный спектр . При определении периодограммы (2.2.5) предполагается, что частоты являются гармониками основной частоты . Вводя спектр, мы ослабляем это предположение и позволяем частоте изменяется непрерывно в диапазоне 0-0,5 Гц. Определение периодограммы может быть изменено следующим образом:

, , (2.2.7)

где называется выборочным спектром . Подобно периодограмме, он может быть использован для обнаружения и оценки амплитуд синусоидальной компоненты неизвестной частоты , скрытой в шуме, и действительно это даже удобнее, если только не известно, что частота связана гармонически с длинной ряда, т. е. . Более того, он является отправным пунктом для теории спектрального анализа, использующей важное соотношение, приведенное в приложении П2.1. Это соотношение устанавливает связь выборочного анализа спектра и оценок автоковариационной функции:

. (2.2.8)

Таким образом, выборочный спектр - это косинус-преобразование Фурье выборочной автоковариационной функции.

Спектр . Периодограмма и выборочный спектр – удобные понятия анализа временных рядов, образованных смесью синусоид косинусоид с постоянными частотами, скрытыми в шуме. Однако стационарные временные ряды такого типа, как описанные в разд. 2.1, характеризуются случайными изменениями частоты, амплитуды и фазы. Для таких рядов выборочный спектр сильно флуктуирует и не допускает какой-либо разумной интерпретации .

Предположим, однако, что выборочный спектр был вычислен для временного ряда из наблюдений, являющегося реализацией стационарного нормального процесса. Как уже говорилось выше, такой процесс не имеет никаких детерминированных синусоидальных или косинусоидальных компонент, но мы можем формально провести анализ Фурье и получить значения , для любой частоты . Если повторные реализации наблюдений порождены стохастическим процессом, мы можем собрать популяцию значений и . Тогда мы можем найти среднее значение по повторным реализациям длины , а именно

. (2.2.9)

Для больших значений можно показать (см., например, ), что среднее значение автоковариации в повторных реализациях стремиться к теоретической автоковариации, т.е.

Переходя к пределу в (2.2.9) для , определяем спектра мощности как

, . (2.2.10)

Отметим, что так как

то для сходимости спектра должно убывать с ростом настолько быстро, что обеспечивать сходимость ряда (2.2.11). Так как спектр мощности это косинус – преобразования Фурье автоковариационной функции, знание автоковариационной функции математически эквивалентно знанию спектра мощности и наоборот. Далее мы будем называть спектр мощности просто спектром.

Интегрируя (2.2.10) в пределах от 0 да 1/2 , найдем дисперсию процесса

. (2.2.12)

Следовательно, так же как периодограмма показывает, каким образом дисперсия (2.2.6) ряда, состоящего из смеси синусоид и косинусоид, распределена между различными гармоническими компонентами, спектр показывает, как дисперсия стохастического процесса распределена в непрерывном диапазоне частот. Можно интерпретировать как приближенное значение дисперсии процесса в частотном диапазоне от до .

Нормированный спектр . Иногда более удобно определять спектр (2.2.10) при помощи автокорреляций , а не автоковариаций . Результирующая функция

, (2.2.13). Однако можно показать (см. ), что выборочный спектр стационарного временного ряда сильно флуктуирует вокруг теоретического спектра. Интуитивное объяснение этого факта заключается в том, что выборочный спектр соответствует использованию слишком узкого интервала в частотной области. Это аналогично использованию слишком узкого интервала группирования для гистограммы при оценке обычного распределения вероятностей, используя модифицированную, или сглаженную, оценку

, (2.2.14)

где - специально подобранные весы, называемые корреляционным окном, можно увеличить «ширину полосы» оценки и получит сглаженную оценку спектра.

На рис. 2.8 показана выборочная оценка спектра данных о партиях продукта. Видно, что дисперсия ряда сконцентрирована в основном на высоких частотах. Это вызвано быстрыми осцилляциями исходно ряда, показанного на рис. 2.1.

Рассмотрим так называемую энергетическую форму интеграла Фурье. В главе 5 были приведены формулы (7.15) и (7.16), дающие переход от функции времени к изображению Фурье и обратно. Если рассматривается некоторая случайная функция времени х (с), то для нее эти формулы могут быть записаны в виде

и проинтегрируем по всем

заменим выражением (11.54):

Величина, находящаяся в квадратных скобках (11.57), как нетрудно видеть, является исходной функцией времени (11.55). Поэтому в результате получается так называемая формула Релея (теорема Парсеваля), которая и соответствует энергетической форме интеграла Фурье:

Правая часть (11.58) и (11.39) представляет собой величину, пропорциональную энергии рассматриваемого процесса. Так, например, если рассматривается ток, протекающий по некоторому резистору с сопротивлением К, то энергия, выделившаяся в этом резисторе за время и будет

Формулы (11.58) и (11.59) и выражают энергетическую форму интеграла Фурье.

Однако эти формулы неудобны тем, что для большинства процессов энергия за бесконечный интервал времени стремится также к бесконечности. Поэтому удобнее иметь дело не с энергией, а со средней мощностью процесса, которая будет получена, если энергию поделить на интервал наблюдения. Тогда формулу (11.58) можно представить в виде

Вводя обозначение

носит название спектральной плотности. Важным

По своему физическому смыслу спектральная плотность есть величина, которая пропорциональна средней мощности процесса в интервале частот от со до со + й?со.

В некоторых случаях спектральную плотность рассматривают только для положительных частот, удваивая ее при этом, что можно сделать, так как спектральная плотность является четной функцией частоты. Тогда, например, формула (11.62) должна быть записана в виде

- спектральная плотность для положительных частот.

так как при этом формулы получают более симметричный характер.

Весьма важным обстоятельством является то, что спектральная плотность и корреляционная функция случайных процессов представляют собой взаимные преобразования Фурье, т. е. они связаны интегральными зависимостями типа (11.54) и (11.55). Это свойство приводится без доказательств .

Таким образом, могут быть записаны следующие формулы:

Так как спектральная плотность и корреляционная функция представляют собой четные вещественные функции, то иногда формулы (11.65) и (11.66) представляют в более простом виде;

)

Это вытекает из того, что имеют место равенства:

и мнимые части могут быть отброшены после подстановки в (11.65) и (11.66), так как слева стоят вещественные функции.

заключается в том, что чем уже график спектральной плотности (рис, 11.16, а), т. е. чем меньшие частоты представлены в спектральной плотности, тем медленнее изменяется величина х во времени. Наоборот, чем шире график спектральной плотности (рис. 11.16, б), т. е. чем большие частоты представлены в спектральной плотности, тем тоньше структура функции х (г) и тем быстрее происходят изменения.г во времени.

Как видно из этого рассмотрения, связь между видом спектральной плотности и видом функции времени получается обратной но сравнению со связью между корреляционной функцией и самим процессом (рис. 11.14). Отсюда вытекает, что более широкому графику спектральной плотности должен соответствовать более узкий график корреляционной функции и наоборот.

И 8 (со). Эти функции, в отличие от импульсных функций, рассматривавшихся в главе 4, являются четными. Это означает, что функция 8 (т) расположена симметрично относительно начала координат и может быть определена следующим образом;

Аналогичное определение относится к функции 8 (со). Иногда в рассмотрение вводят нормированную спектральную плотность, являющуюся изображением Фурье нормированной корреляционной функции (11.52):

и следовательно,

где О - дисперсия.

Взаимные спектральные плотности также являются мерой связи между двумя случайными величинами. При отсутствии связи взаимные спектральные плотности равны нулю.

Рассмотрим некоторые примеры.

Эта функция изображена на рис. 11.17, а. Соответствующее ей изображение Фурье на основании табл. 11.3 будет

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат (рис. 11,17, б).

Это означает, что вся мощность рассматриваемого процесса сосредоточена на пулевой частоте, что и следовало ожидать.

Эта функция изображена на рис. 11.18, а, В соответствии с табл. 11.3 спектральная плотность будет

3. Для периодической функции, разлагаемой в ряд Фурье

кроме периодической части будет содержать непериодическую составляющую, то спектр этой функции будет содержать, наряду с отдельными линиями типа импульсной функции, также и непрерывную часть (рис. 11.20). Отдельные пики на графике спектральной плотности указывают на присутствие в исследуемой функции скрытых нериодичностей.

не содержит периодической части, то она будет иметь непрерывный спектр без ярко выраженных пиков.

Рассмотрим некоторые стационарные случайные процессы, имеющие значение при исследовании систем управления. Будем рассматривать только центрированные

При этом средний квадрат случайной величины будет равен дисперсии:

учет постоянного смещения в системе управления является элементарным.

(рис. 11.21, а):

Пример такого процесса - тепловые шумы резистора, которые дают уровень спектральной плотности хаотического напряжения на этом резисторе

Абсолютная температура.

На основании (11,68) спектральной плотности (11.71) соответствует корреляционная функция

отсутствует корреляция между последующими и предыдущими значениями случайной величины х.

а следовательно, бесконечно большая мощность.

Чтобы получить физически реальный процесс, удобно ввести понятие белого шума с ограниченной спектральной плотностью (рис. 11.21, б):

Полоса частот для спектральной плотности.

Этому процессу соответствует корреляционная функция

Среднеквадратичное значение случайной величины пропорционально корню квадратному из полосы частот:

Часто бывает удобнее аппроксимировать зависимость (11.73) плавной кривой. Для этой цели можно, например, использовать выражение

Коэффициент, определяющий ширину полосы частот.

Процесс приближается к белому шуму, так

как для этих частот

Интегрирование (11.77) по всем частотам дает возможность определить дисперсию:

Поэтому спектральная плотность (11.77) может быть записана в другом виде:

Корреляционная функция для этого процесса

Корреляционная функция также изображена на рис. 11.21, в.

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона (11.4).

График такого вида получается, например, в первом приближении при слежении радиолокатором за движущейся целью. Постоянное значение скорости соответствует движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Будет средним значением интервала времени, в течение которого угловая скорость сохраняет постоянное значение. Применительно к радиолокатору это значение будет средним временем движения цели по прямой.

Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого произведения могут быть два случая.

относятся к одному интервалу. Тогда среднее значение произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

относятся к разным интервалам. Тогда среднее значение произведения скоростей будет равно пулю:

так как произведения с положительным и отрицательным знаками будут равновероятными. Корреляционная функция будет равна

Вероятность нахождения их в разных интервалах.

Вероятность отсутствия

Для интервала времени

так как эти события независимые.

В результате для конечного промежутка Ат получаем

Знак модуля при т поставлен вследствие того, что выражение (11.80) должно соответствовать четной функции. Выражение для корреляционной функции совпадает с (11.79). Поэтому спектральная плотность рассматриваемого процесса должна совпадать с (11.78):

Заметим, что в отличие от (11.78) формула спектральной плотности (11.81) записана для угловой скорости процесса (рис. 11.22). Если перейти от угловой скорости к углу, то получится нестационарный случайный процесс с дисперсией, стремящейся к бесконечности. Однако в большинстве случаев следящая система, на входе которой действует этот процесс, обладает астатизмом первого и более высоких порядков. Поэтому первый коэффициент ошибки с0 у следящей системы равен нулю и ее ошибка будет определяться только входной скоростью и производными более высоких порядков, относительно которых процесс стационарен. Это дает возможность использовать спектральную плотность (11.81) при расчете динамической ошибки следящей системы.

3. Нерегулярная качка. Некоторые объекты, например корабли, самолеты и другие, находясь под действием нерегулярных возмущений (нерегулярное волнение, атмосферные возмущения и т. п.), движутся но случайному закону Так как сами объекты имеют определенную им свойственную, частоту колебаний, то они обладают свойством подчёркивать те частоты возмущений, которые близки к их собственной частоте колебаний. Получающееся при этом случайное движение объекта называют нерегулярной качкой в отличие от регулярной качки, представляющей собой периодическое движение.

Типичный график нерегулярной качки изображен на рис. 11.23. Из рассмотрения этого графика видно, что, несмотря на случайный характер, это

движение довольно близко к периодическому.

В практике корреляционную функцию нерегулярной качки часто аппроксимируют выражением

Дисперсия.

находятся обычно путем обработки экспериментальных данных (натурных испытаний).

Корреляционной функции (11.82) соответствует спектральная плотность (см. табл. 11.3)

Неудобством аппроксимации (11.82) является то, что этой формулой можно описать поведение какой-либо одной величины нерегулярной качки (угла, угловой скорости или углового ускорения), В этом случае величина О будет соответствовать дисперсии угла, скорости или ускорения.

Если, например, записать формулу (11.82) для угла, то этому процессу будет соответствовать нерегулярная камка с дисперсией для угловых скоростей, стремящейся к бесконечности, т. е. это будет физически нереальный процесс.

Более удобная формула для аппроксимации угла качки

Однако и эта аппроксимация соответствует физически нереальному процессу, так как дисперсия углового ускорения получается стремящейся к бесконечности.

Для получения конечной дисперсии углового ускорения требуются еще более сложные формулы аппроксимации, которые здесь не приводятся.

Типичные кривые для корреляционной функции и спектральной плотности нерегулярной качки приведены на рис. 11.24.

Спектральная плотность и сигнал связаны между собой парой преобразований Фурье:

Все свойства спектральной плотности объединены в основных теоремах о спектрах.

I. Свойство линейности.

Если имеется некоторая совокупность сигналов причём,…, то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

Здесь - произвольные числовые коэффициенты.

II. Теорема о сдвигах.

Предположим, что для сигнала известно соответствие. Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчёта времени, обозначим этот смещённый сигнал как. Введём замену переменной: . Тогда,


Модуль комплексного числа при любых равен 1, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена фазовом спектре.

III. Теорема масштабов.

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени играет новая независимая переменная (- некоторое вещественное число.) Если > 1, то происходит “ сжатие” исходного сигнала; если же 0<<1, то сигнал “растягивается” во времени. Если, то:

Произведём замену переменной, тогда, откуда следует:

При сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр на оси частот. Модуль спектральной плотности при этом уменьшается в раз.

Очевидно, что при растягивании сигнала во времени (т.е. при <1) имеет место сужение спектра и увеличение модуля спектральной плотности.

IV. Теорема о спектре производной и неопределённого интеграла.

Пусть сигнал и его спектральная плоскость заданы. Будем изучать новый сигнал и поставим цель найти его спектральную плотность.

По определению:

Преобразование Фурье - линейная операция, значит, равенство (2.3) справедливо и по отношению к спектральным плотностям. Получаем по теореме о сдвигах:

Представляя экспоненциальную функцию рядом Тейлора:

подставляя этот ряд в (2.6) и ограничиваясь первыми двумя членами ряда, находим

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель. Поэтому говорят, что мнимое число является оператором дифференцирования, действующим в частотной области.

Вторая часть теоремы. Рассмотренная функция является неопределённым интегралом по отношению к функции. Интеграл это есть, значит - его спектральная плотность, а из формулы (2.7) равна:

Таким образом, множитель служит оператором интегрирования в частотной области.

V. Теорема о свёртке.

При суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и - два сигнала, для которых известны соответствия,. Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу:

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.9):

Изменив порядок интегрирования, будем иметь:

Интеграл, стоящий в правой части называют свёрткой функций и. Символически операция свёртки обозначается как *

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового множителя равна свёртке спектральных плотностей сомножителей.

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть - напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность - пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

которая полностью совпадает с корреляционной функцией, определяемой по (9.45).

Из рис. 9.5, б, в видно, что чем шире график спектральной плотности тем уже график соответствующей корреляционной функции и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.