Биографии Характеристики Анализ

Строение и функции ядра. Успехи современного естествознания

простейшие синтаксические модели данного языка, являющиеся основой речевой деятельности в том смысле, что пользующиеся данным языком подвергают эти модели разнообразным трансформациям в зависимости от ее требований контекста.

  • - упрощенные картины строения атомного ядра, допускающие простые, аналитические математические решения задачи об определении различных характеризующих его величин...
  • - превращения атомных ядер, обусловленные их взаимодействиями с элементарными частицами или друг с другом...

    Начала современного Естествознания

  • - боеприпасы, поражающее действие которых основано на использовании энергии ядерного взрыви. К ним относятся ядерные боевые части ракет и торпед, идерные бомбы, артиллерийские снаряды, глубинные бомбы, мины...

    Словарь военных терминов

  • Словарь юридических терминов

  • - ....

    Энциклопедический словарь экономики и права

  • - по определению ФЗ "Об использование атомной энергии" от 20 октября 1995 г. "материалы, содержащие или способные воспроизвести делящиеся ядерные вещества"...

    Большой юридический словарь

  • - snurps, small nuclear RNA - малые ядерные РНК.Обширная группа ядерных РНК небольшого размера, ассоциированная с гетерогенной ядерной РНК , входят в состав мелких рибонуклеопротеиновых гранул ядра...
  • - См. малые ядерные...

    Молекулярная биология и генетика. Толковый словарь

  • - аварии, возникающие на атомных электростанциях. При ядерной аварии резко усиливается радиоактивное загрязнение окружающей среды...

    Экологический словарь

  • - превращение атомов ядер при соударении с другими ядрами, элементарными частицами или гамма-квантами. При бомбардировке тяжелых ядер более легкими получены все трансурановые элементы...

    Энциклопедический словарь по металлургии

  • - "...ядерные материалы - материалы, содержащие или способные воспроизвести делящиеся ядерные вещества;..." Источник: Федеральный закон от 21.11...

    Официальная терминология

  • - приближенные методы описания некоторых свойств ядер, основанные на отождествлении ядра с какой-либо другой физической системой, свойства которой либо хорошо изучены, либо поддаются более простому теоретическому...
  • - реакции превращения атомных ядер при взамодействии с элементарными частицами, ?-квантами или друг с другом. Впервые начал изучать Эрнест Резерфорд в 1919...

    Большой энциклопедический словарь

  • - простейшие синтаксические построения данного языка, в которых предметы обозначены существительными, процессы глаголами, а признаки прилагательными и наречиями, от которых путем серии трансформаций образуются...

    Толковый переводоведческий словарь

  • - Простейшие синтаксические модели, являющиеся основой речевой деятельности, поскольку они используются для разнообразных трансформаций по требованиям контекста...

    Словарь лингвистических терминов

  • - 1) направление, опирающееся на грамматические категории и понятия, соотносимые с семантическими признаками...

    Методы исследования и анализа текста. Словарь-справочник

"ядерные структуры" в книгах

Ядерные евроракеты

Из книги Сугубо доверительно [Посол в Вашингтоне при шести президентах США (1962-1986 гг.)] автора Добрынин Анатолий Фёдорович

Ядерные робинзоны

Из книги Бомба. Тайны и страсти атомной преисподней автора Пестов Станислав Васильевич

Ядерные робинзоны В конце 50-х Хрущева очень заинтересовал один проект, предложенный военными инженерами. Суть его заключалась в создании искусственных островов у атлантического побережья США. Мыслилось это так: темной воровской ночью мощные сухогрузы пробираются к

98. Изучение внутренней структуры связей, сравнение структуры связей в разных совокупностях

Из книги Экономический анализ. Шпаргалки автора Ольшевская Наталья

98. Изучение внутренней структуры связей, сравнение структуры связей в разных совокупностях Изучение внутренней структуры связей в системе показателей имеет большое аналитическое значение, так как позволяет познавать механизм функционирования экономического объекта,

Ядерные амбиции

Из книги Очнись! Выжить и преуспеть в грядущем экономическом хаосе автора Чалаби Эл

Ядерные амбиции Во второй половине 2003 г. мир узнал о том, что иранская программа обогащения урана продвинута более, чем считалось раньше, и что через пару лет Иран станет обладателем ядерного оружия. Процитируем слова американского должностного лица, причастного

Ядерные продажи

Из книги Инфобизнес на полную мощность [Удвоение продаж] автора Парабеллум Андрей Алексеевич

Ядерные продажи В Японии сейчас тестируют интересную модель. Одна компания, которая занималась исследованиями покупателей, заключила уйму договоров с различными фирмами, которым нужна обратная связь от своих целевых аудиторий. Они открыли магазин бесплатных вещей –

«ЯДЕРНЫЕ ЧЕМОДАНЧИКИ»

Из книги Непознанное, отвергнутое или сокрытое автора Царева Ирина Борисовна

«ЯДЕРНЫЕ ЧЕМОДАНЧИКИ» Это покруче знаменитых «чемоданов с компроматом»!Неспешный, долгоиграющий скандал разворачивается вокруг так называемых «ядерных чемоданчиков».Все началось с сенсационного заявления, сделанного бывшим секретарем Совета безопасности РФ.

1.3. Методология исследования элементов структуры техники и анализ параметров структуры прогресса

Из книги Философия интеллекта реального идеализма автора Кутолин Сергей Алексеевич

1.3. Методология исследования элементов структуры техники и анализ параметров структуры прогресса Проблема открытия, рационализации, изобретения как форм умственной деятельности интеллектуальных систем (И.С. Ладенко), лейтмотивом функционального поведения которых

2. Межпредельные, или внутрипредельные, то есть промежуточные, структуры, или структуры в собственном смысле слова

Из книги Итоги тысячелетнего развития, кн. I-II автора Лосев Алексей Федорович

2. Межпредельные, или внутрипредельные, то есть промежуточные, структуры, или структуры в собственном смысле слова Ясно, что такого рода структуры как раз и являются теми структурами, как они обычно понимаются. Однако здесь должна быть соблюдаема та античная специфика,

ЯДЕРНЫЕ РЕАКЦИИ

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

ЯДЕРНЫЕ РЕАКЦИИ МЕТОДЫ БОМБАРДИРОВКИ ЯДЕР1.40. Кокрофт и Уолтон получали протоны с достаточно большой энергией путем ионизации газообразного водорода и последующего ускорения ионов высоковольтной установкой с трансформатором и выпрямителем. Подобный же метод можно

ЯДЕРНЫЕ АВАРИИ

Из книги Чрезвычайные происшествия на советском флоте автора Черкашин Николай Андреевич

ЯДЕРНЫЕ АВАРИИ

ЯДЕРНЫЕ ИГРЫ

Из книги КГБ - ЦРУ- Секретные пружины перестройки автора Широнин Вячеслав Сергеевич

ЯДЕРНЫЕ ИГРЫ Документально установлено, что США в дополнение к существовавшему плану столетней давности разработали два новых сценария. Сбросив атомные бомбы на Японию и исследуя последствия атомных ударов на окружающую среду, США разрабатывали планы таких ударов по

Ядерные боеприпасы

БСЭ

Ядерные боеприпасы Ядерные боеприпасы, боевые части ракет, торпед, авиационные (глубинные) бомбы, артиллерийские выстрелы, фугасы с ядерными зарядами. Предназначены для поражения различных целей, разрушения укреплений, сооружений и других задач. Действие Я. б. основано

Ядерные модели

Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

Ядерные оболочки

Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

Ядерные реакции

Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

В процессе эволюции претерпевали ряд изменений. Появлению новых органелл предшествовали преобразования в атмосфере и литосфере молодой планеты. Одним из значительных приобретений стало клеточное ядро. Эукариотические организмы получили, благодаря наличию обособленных органелл, существенные преимущества перед прокариотами и быстро стали доминировать.

Клеточное ядро, строение и функции которого несколько отличаются в разных тканях и органах, позволило повысить качество биосинтеза РНК и передачу наследственной информации.

Происхождение

На сегодняшний день есть две основные гипотезы об образовании эукариотической клетки. Согласно симбиотической теории органеллы (например, жгутики или митохондрии) когда-то были отдельными прокариотическими организмами. Предки современных эукариот поглотили их. В результате образовался симбиотический организм.

Ядро при этом сформировалось в результате выпячивания внутрь участка цитоплазматической было необходимым приобретением на пути освоения клеткой нового способа питания, фагоцитоза. Захват пищи сопровождался повышением степени подвижности цитоплазмы. Генофоры, представлявшие собой генетический материал прокариотической клетки и прикреплявшиеся к стенкам, попадали в зону сильного «течения» и нуждались в защите. В результате и образовалось глубокое впячивание участка мембраны, содержавшего прикрепленные генофоры. В пользу этой гипотезы свидетельствует тот факт, что оболочка ядра неразрывно связана с цитоплазматической мембраной клетки.

Существует и другая версия развития событий. Согласно вирусной гипотезе происхождения ядра, оно сформировалось в результате заражения клетки древней археи. В нее внедрился ДНК-вирус и постепенно получил полный контроль над жизненными процессами. Ученые, считающие эту теорию более правильной, приводят массу доводов в ее пользу. Однако на сегодняшний день нет исчерпывающего доказательства ни для одной из существующих гипотез.

Одно или несколько

Большая часть клеток современных эукариот имеет ядро. Подавляющее их число содержит только одну подобную органеллу. Существуют, однако, и клетки, которые утратили ядро по причине некоторых функциональных особенностей. К ним относятся, например, эритроциты. Встречаются и клетки с двумя (инфузории) и даже несколькими ядрами.

Структура клеточного ядра

Вне зависимости от особенностей организма, строение ядра характеризуется набором типичных органелл. От внутреннего пространства клетки оно отгорожено двойной мембраной. Внутренние и внешние ее прослойки в некоторых местах сливаются, образуя поры. Их функция заключается в обмене веществ между цитоплазмой и ядром.

Пространство органеллы заполнено кариоплазмой, также называемой ядерным соком или нуклеоплазмой. В ней размещается хроматин и ядрышко. Иногда последний из названных органоид клеточного ядра присутствует не в единственном экземпляре. У некоторых же организмов ядрышки, наоборот, отсутствуют.

Мембрана

Ядерная оболочка образована липидами и состоит из двух слоев: наружного и внутреннего. По сути, это та же клеточная мембрана. Ядро сообщается с каналами эндоплазматической сети через перинуклеарное пространство, полость, образованную двумя слоями оболочки.

Наружная и внутренняя мембрана имеют свои особенности в строении, однако в целом довольно похожи.

Ближайший к цитоплазме

Наружный слой переходит в мембрану эндоплазматической сети. Ее основное отличие от последней — значительно более высокая концентрация белков в структуре. Мембрана, непосредственно контактирующая с цитоплазмой клетки, покрыта слоем рибосом с наружной стороны. С внутренней мембраной она соединяется многочисленными порами, представляющими собой довольно крупные белковые комплексы.

Внутренний слой

Обращенная в клеточное ядро мембрана, в отличие от наружной, гладкая, не покрытая рибосомами. Она ограничивает кариоплазму. Характерная особенность внутренней мембраны — слой ядерной ламины, выстилающий ее со стороны, соприкасающейся с нуклеоплазмой. Эта специфическая белковая структура поддерживает форму оболочки, участвует в регуляции экспрессии генов, а также способствует прикреплению хроматина к мембране ядра.

Обмен веществ

Взаимодействие ядра и цитоплазмы осуществляется через Они представляют собой довольно сложные структуры, образованные 30 белками. Количество пор на одном ядре может быть разным. Он зависит от типа клетки, органа и организма. Так, у человека клеточное ядро может иметь от 3 до 5 тысяч пор, у некоторых лягушек оно доходит до 50 000.

Главная функция пор — обмен веществ между ядром и остальным пространством клетки. Некоторые молекулы проникают сквозь поры пассивно, без дополнительных затрат энергии. Они обладают небольшими размерами. Транспортировка крупных молекул и надмолекулярных комплексов требует расхода определенного количества энергии.

Из кариоплазмы в клетку попадают синтезируемые в ядре молекулы РНК. В обратном направлении транспортируются белки, необходимые для внутриядерных процессов.

Нуклеоплазма

Строение ядерного сока меняется в зависимости от состояния клетки. Их два — стационарное и возникающее в период деления. Первое характерно для интерфазы (время между делениями). При этом ядерный сок отличается равномерным распределением нуклеиновых кислот и неструктурированными молекулами ДНК. В этот период наследственный материал существует в виде хроматина. Деление клеточного ядра сопровождается преобразованием хроматина в хромосомы. В это время изменяется строение кариоплазмы: генетический материал приобретает определенную структуру, ядерная оболочка разрушается, и кариоплазма смешивается с цитоплазмой.

Хромосомы

Основные функции нуклеопротеидных структур преобразованного на время деления хроматина — хранение, реализация и передача наследственной информации, которую содержит клеточное ядро. Хромосомы характеризуются определенной формой: делятся на части или плечи первичной перетяжкой, также называемой целомерой. По ее расположению выделяют три типа хромосом:

  • палочкообразные или акроцентрические: для них характерно размещение целомеры практически на конце, одно плечо получается очень маленьким;
  • разноплечие или субметацентрические обладают плечами неравной длины;
  • равноплечие или метацентрические.

Набор хромосом в клетке называется кариотипом. У каждого вида он фиксирован. При этом разные клетки одного организма могут содержать диплоидный (двойной) или гаплоидный (одинарный) набор. Первый вариант характерен для соматических клеток, в основном составляющих тело. Гаплоидный набор — привилегия половых клеток. Соматические клетки человека содержат 46 хромосом, половые — 23.

Хромосомы диплоидного набора составляют пары. Одинаковые нуклеопротеидные структуры, входящие в пару, называются аллельными. Они имеют одинаковое строение и выполняют одни и те же функции.

Структурной единицей хромосом является ген. Он представляет собой участок молекулы ДНК, кодирующий определенный белок.

Ядрышко

Клеточное ядро обладает еще одним органоидом — это ядрышко. Оно не отделяется от кариоплазмы мембраной, но при этом его легко заметить во время изучения клетки с помощью микроскопа. Некоторые ядра могут иметь несколько ядрышек. Существуют и такие, в которых подобные органоиды отсутствуют совсем.

По форме ядрышко напоминает сферу, имеет достаточно небольшие размеры. В его состав входят различные белки. Основная функция ядрышка — синтез рибосомных РНК и самих рибосом. Они необходимы для создания полипептидных цепей. Ядрышки образуются вокруг специальных участков генома. Они получили название ядрышковых организаторов. Здесь содержатся гены рибосомной РНК. Ядрышко, кроме прочего, является местом с наибольшей концентрацией белка в клетке. Часть белков необходима для выполнения функций органоида.

В составе ядрышка выделяют два компонента: гранулярный и фибриллярный. Первый представляет собой созревающие субъединицы рибосом. В фибриллярном центре осуществляется Гранулярный компонент окружает фибриллярный, расположенный в центре ядрышка.

Клеточное ядро и его функции

Роль, которую играет ядро, неразрывно связана с его строением. Внутренние структуры органоида совместно реализуют важнейшие процессы в клетке. Здесь размещается генетическая информация, которая определяет строение и функции клетки. Ядро отвечает за хранение и передачу наследственной информации, осуществляющееся во время митоза и мейоза. В первом случае дочерняя клетка получает идентичный материнскому набор генов. В результате мейоза образуются половые клетки с гаплоидным набором хромосом.

Другая не менее важная функция ядра — регуляция внутриклеточных процессов. Она осуществляется в результате контроля синтеза белков, отвечающих за строение и функционирование клеточных элементов.

Влияние на белковый синтез имеет еще одно выражение. Ядро, контролируя процессы внутри клетки, объединяет все ее органоиды в единую систему с отлаженным механизмом работы. Сбои в нем приводят, как правило, к гибели клетки.

Наконец, ядро является местом синтеза субъединиц рибосом, которые отвечают за образование все того же белка из аминокислот. Рибосомы незаменимы в процессе транскрипции.

Представляет собой более совершенную структуру, чем прокариотическая. Появление органоидов с собственной мембраной позволило повысить эффективность внутриклеточных процессов. Формирование ядра, окруженного двойной липидной оболочкой, играло в этой эволюции очень важную роль. Защита наследственной информации мембраной позволила освоить древним одноклеточным организмам новые способы жизнедеятельности. Среди них был фагоцитоз, который по одной из версий привел к появлению симбиотического организма, позже ставшего прародителем современной эукариотической клетки со всеми характерными для нее органоидами. Клеточное ядро, строение и функции некоторых новых структур позволили задействовать кислород в метаболизме. Следствием этого стало кардинальное изменение в биосфере Земли, была заложена основа для формирования и развития многоклеточных организмов. Сегодня эукариотические организмы, к которым относится и человек, доминируют на планете, и ничто не предвещает изменений в этом плане.

Ядро (латин. nucleus) -это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), и выполняющий функции:

1)хранения и воспроизведения генетической информации

2)регуляции процессов обмена веществ, протекающих в клетке

Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной. Различают ядра шаровидные, многолопастные. Впячивания и выросты ядерной оболочки значительно увеличивают поверхность ядра и тем самым усиливают связь ядерных и цитоплазматических структур и веществ.

Строение ядра

Ядро окружено оболочкой, которая состоит из двух мембран, имеющих типичное строение. Наружная ядерная мембрана с поверхности,обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая.

Ядерная оболочка-часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети,образуя единую систему сообщающихся каналов. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цитоплазмой. Во-вторых, вещества из ядра в цитоплазму и обратно могут попадать вследствии отшнуровывания впячиваний и выростов ядерной оболочки. Несмотря на активный обмен веществами между ядром и цитоплазмой, ядерная оболочка ограничивает ядерное содержимое от цитоплазмы,обеспечивая тем самым различия в химическом составе ядерного сока и цитоплазмы.Это необходимо для нормального функционирования ядерных структур.

Содержимое ядра подразделяют на ядерный сок, хроматин и ядрышко.

В живой клетке ядерный сок выглядит бесструктурной массой, заполняющей промежутки между структурами ядра. В состав ядерного сока входят различные белки,в том числе большинство ферментов ядра, белки хроматина и рибосомальные белки.В ядерном соке находятся также свободные нуклеотиды, необходимые для построения молекул ДНК и РНК,аминокислоты, все виды РНК, а также продукты деятельности ядрышка и хроматина, транспортируемые затем из ядра в цитоплазму.

Хроматином (то греч.chroma-окраска,цвет)называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличаются по форме от ядрышка. Хроматин содержит ДНК и белки и представляет собой спирализованные и уплотненные участки хромосом Спирализованные участки хромосом в генетическом отношении неактивны.

Свою специфическую роль-передачу генетической информации-могут осуществлять только деспирализованные-раскрученные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп.

Третья характерная для клетки структура – ядрышко. Оно представляет собой плотное округлое тельце, погруженное в ядерный сок. В ядрах разных клеток, а также в ядре одной и той же клетки в зависимости от её функционального состояния число ядрышек может колебаться от 1 до 5-7 и более. Количество ядрышек может превышать число хромосом в наборе; это происходит за счет избирательной редупликации генов, отвечающих за синтез р-РНК. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают вследствие спирализации хромосом и выхода всех ранее образованных рибосом в цитоплазму, а после завершения деления возникают вновь.

Ядрышко не является самостоятельной структурой ядра. Оно образуется вокруг участка хромосомы, в котором закодирована структура р-РНК. Этот участок хромосомы-ген-носит название ядрышкового организатора(ЯО), и на нем происходит синтез р-РНК.

Кроме накопления р-РНК, в ядрышке формируются субъединицы рибосом, которые потом перемещаются в цитоплазму и, объединяясь при участии катионов Ca2+, формируют целостные рибосомы, способные принимать участие в биосинтезе белка.

Таким образом, ядрышко – это скопление р-РНК и рибосом на разных этапах формирования, в основе которого лежит участок хромосомы, несущий ген – ядрышковый организатор, заключающий наследственную информацию о структуре р –РНК.

Ядро, его строение и биологическая роль.

Ядро состоит из 1)поверхн аппарата ядра (в нем выдлел: 2 мембраны, перинуклеарн пространств, поровые комплексы, ламину.) 2) кариоплазмы (нуклеоплазмы) 3) хроматина (в нём эухроматин и гетерохроматин) 4) ядрышка (грануляр и фибриляр компонент.)

Ядро – это структура клетки которая выполняет функцию хранения и передачи инф, а так же регулирует все жизненные процессы клетки. Ядро несёт в себе генетическую (наследственную) инф в виде ДНК. Ядра обычно имеют шаровидную или яйцевидную форму. Я. окружено ядерн оболочкой. Ядерная оболочка пронизана ядерными порами. Через них ядро обменивается веществами с цитоплазмой(внутр средой клетки). Наружная мембрана переходит в эндоплпзматич ретикулум и может быть усеяна рибосомами. Отношение размеров ядра и клетки зависит от функциональной активности клетки. Большинство клеток одноядерные. Двуядерными могут быть кардиомиоциты. Всегда двуядерны инфузории. В них характерен ядерный дуализм.(то есть ядра различ по строению и финкциям). Малое ядро (генеративное) – диплойдное. Оно обеспечивает только половой процесс у инфузорий. Большое (вегетативное) ядро полиплойдное. Оно регулирует все остальные жизненные процессы. Многоядерными бывают клетки некоторых простейших и клетки скелетной мускулатуры.

П.А.Я. или кариотека ) имеет микроскопическую толщину и поэтому виден в световой микроскоп. Поверхностный аппарат ядра включает:

а)ядерную оболочку, или кариолемму;. б)паровые комплексы; в)периферическую плотную пластинку (ППП), или ламину.

(1) Ядерная оболочка (кариолемма). состоит из 2 мембран - наружной и внутренней, разделён­ных перинукляеарным пространством. Обе мембраны имеют такое же жидкосто-мозаичное строе­ние, как и плазматическая мембрана, и различаются по набору белков. Среди этих белков имеются ферменты, пере­носчики и рецепторы. Наружная ядерная мембрана является продолжением мембран грЭПС и может быть усеяна рибосомами, на которых идёт синтез белка. Со стороны цитоплазмы наружная мембрана окружена сетью промежуточных (ви-ментиновых) фипаментов. Между наружной и внутренней мембранами находится перинуклеарное пространство -полость шириной 15-40 нм, содержимое которого сообщается с полостями каналов ЭПС. По составу перинуклеарное пространство близко к гиалоплазме и может содержать синтезированные рибосомами белки. Главная функция кариолеммы - изоляция гиалоплазмы от кариоплазмы. Специальные белки ядерных мембран, расположенные в облас­ти ядерных пор, осуществляют транспортную функцию. Ядерная оболочка пронизана ядерными порами, через которые осуществляется связь кариоплазмы и гиалоплазмы. Для регуляции такой связи в порах находятся (2) поровые комплексы. Они занимают 3-35% поверхности ядер­ной оболочки. Число ядерных пор с поровыми комплексами является изменчивой величиной и зависит от активности ядра. В области ядерных пор наружная и внутренняя ядерные мембраны сливаются. Со­вокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Типичный поровый ком­плекс представляет собой сложную белковую структуру - содержит более 1000 молекул белка. В центре поры рас­положена центральная белковая глобула (гранула), от которой по радиусу отходят тонкие фибриллы к перифериче­ским белковым глобулам, образуя диафрагму поры. По периферии ядерной поры находятся две параллельные коль­цевые структуры диаметром 80-120 нм (по одному с каждой поверхности кариолеммы), каждое из которых образо­вано 8 белковыми гранулами (глобулами).



Белковые глобулы перового комплекса подразделяются на центральные и пе­риферические . С помощью периферических глобул осуществляется транспорт макромолекул из ядра в гиалоплазму. (фиксируются в мем­бране специальным интегральным белком. От этих гранул к центру сходятся белковые фибриллы, формирующие пе­регородку - диафрагму поры)

В нем участвуют специальные белки периферических глобул - нуклеопорины. В периферических глобулах имеется особый белок - переносчик молекул т-РНК

Центральная глобула специализируется на транспорте и-РНК из ядра в гиалопдазму. В её составе имеются ферменты, участвующее в химической модификации иРНК - ее процессинге.

Гранулы поровых комплексов структурно связаны с белками ядерной ламины, которая участвует в их организации

Функции комплекса ядерной поры:

1. Обеспечение регуляции избирательного транспорта в-в между цитоплазмой и ядром.

2. Активный перенос в ядро белков

3. Перенос в цитоплазму субъединиц рибосом

(3) ППП или ламина

слой толщиной 80-300 нм. прилегает изнутри к внутренней ядерной мембране. Внутренняя ядерная мембрана гладкая, ее интегральные белки связаны с ламиной (периферической плотной пластинкой). Ламина состоит из специальных переплетенных белков-ламинов, образующих периферический кариоскелет. Белки-ламины относятся к классу промежуточных филаментов (скелет­ных фибрилл). У млекопитающих известно 4 вида этих белков - это ломимы А, В, В 2 и С. Эти белки поступают в яд­ро из цитоплазмы. Ламины разных видов взаимодействуют между сбой и образуют белковую сеть под внутренней мембраной ядерной оболочки. С помощью ламинов «В» ППП соединяется со спец интеграл белкомядерн оболочки. С ППП взаимодействуют и белки приферич голобул «внутр кольца» порового комплекса. К ламину «А» присоед теломерн участки хромосом.

Функции ламины: 1) поддерд форму ядра. (даже есл бое мембраны разруш, то ядро за счет ламины сохр свою форму и поровые комп-сы ост на своём месте.

2) служит компонентом кариоскелета

3) участв в сборке ядерн оболочки (формирование кариоллемы) при делен клетки.

4) в интерфазном ядре к ламине прикрепл хроматин. таким образом ламина обеспеч функцию фиксации хроматина в ядре (обеспеч упорядочн укладку хроматина, участвует в пространственной организации хроматина в интерфазном ядре). Ламин «А» взаимодейств с теломерными участками хромосом.

5) обеспеч структур организацию поровых комплексов.

импорт и экспор белков.

В ядро через ядерные поры поступают: синтезированные цитоплазматическими рибосомами белки-ферменты, которые участвуют в процессах репликации и репарации (восстановления повреждений в ДНК); белки-ферменты, участвующие в процессе транскрипции; белки-репрессоры, которые регулируют процесс транскрипции; белки-гистоны.(которые связаны с молекулой ДНК и образуют хроматин); белки, входящие в состав субъединиц рибосом: белки ядерного матрикса, образующие кариоскелет; нуклеотиды; ионы минеральных солей, в частности, ионы Са и Mg .

Из ядра в цитоплазму выходят и-РНК. т-РНК и субъединицы рибосом, которые представляют собой рибонуклеопротеидные частицы (р-РНК, связанные с белками).

5. Химический состав и структурная организация хроматина. уровни компактизации. хромосомы чел их строен и классификация.

В ядре клеток мелкие зернышки и глыбки материала, окрашиваются основными красителями.

Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нуклеосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекру­ченными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромо­сом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом.

классификация хроматина:

1) эухроматин (активный деспирализованный. на нем происход считывание инф (транскрипция). в ядре выявляется как более светлые участки ближе к центру ядра) Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от­крыты для транскрипции.

2) гетерохроматин (нерабочий спирализованный, конденсированный, более компактный В ядре выявляется в виде глыбок на периферии.) делится на: конститутивный (всегда неактивен, никогда не переходит в эухроматин) и Факультативный (при определён условиях или на определен стадиях иммунного цикла может переходить в эухроматин). располагается ближе к оболочке ядра, более компактный. Примером скопления факульт гетерохроматина является тельце Барра - инактивированная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна.

Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохромати­на) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки.

Хроматин и хромосомы представляют собой дезоксирибонуклеопротеиды (ДНП), но хроматин - это рас­крученное, а хромосомы - скрученное состояние. Хромосом в интерфазном ядре нет, хромосомы появляются при разрушении ядерной оболочки (во время деления).

Строение хромосом:

хромосомы - наиболее упакованное состояние хроматина.

В хромосомах различают первичную перетяжку (центромеру), разделяющую хромосому на два плеча. Пер­вичная перетяжка - наименее спирализованная часть хромосомы, к ней во время деления клетки присоединяются нити веретена деления. На некоторых хромосомах есть глубокие вторичные перетяжки, отделяющие небольшие участки хромосом, называемые спутниками. В области вторичных перетяжек находятся гены, кодирующие ин­формацию об р-РНК, поэтому вторичные перетяжки хромосом называются ядрышковыми организаторами.

В зависимости от места расположения центромеры различают три типа хромосом:

1) метацентрические (имеют плечи равной или почтиравной величины);

2) субметацентрические (имеют плечи неравной величины);

3) акроцентрические (имеют палочковидную форму с коротким, почти незаметным вторым плечом);

Концы плеч хромосом называются теломерами

Уровни компаюпизации хроматина:

1. Нуклеосомный - Два с половиной витка двойной спирали ДНК (в 146-200 пар нуклеотидов) наматываются снаружи на белковый кор, образуя нуклеосому. Ка­ждый гистон представлен двумя молекулами. ДНК наматывается на кор снаружи, образуя два с половиной витка. Участок ДНК между нуклеосомами называется линкером и имеет протяжбенность 50-60 пар нуклеотидов. Толщина нуклеосомной нити составляет 8-11 нм.

2. Нуклеомерный. Нуклеосомная структура закручивается, обра­зуя суперспираль. В её образовании принимает участие ещё один гистоновый белок HI, лежащий между нуклеосомами и связанный с линкером. К каждому линкеру присоединяется 1 молекула гистона HI. Молекулы HI в комплексе с линкерами взаимодействуют меж­ду собой и вызывают суперспирализацию нуклеосомной фибриллы.

В результате образуется хроматиновая фибрил­ла, толщина которой составляет 30 нм (ДНК компактизирована в 40 раз). Суперспирализация происходит двумя способами. 1) нуклеосомная фибрилла может образовывать спираль второго порядка, которая имеет форму соле­ноида; 2) 8-10 нуклеосом образуют крупную компактную структуру - нуклеомеру. Этот уровень не допускает синтеза РНК с нуклеомерной ДНК (транскрипция не происходит).

3. Хромомерный (петельная структура). Хроматиновая фибрилла образует петли, кото­рые сцепляются между собой с помощью осо­бых негистоновых белков, либо петельные цен­тры - хромомеры. Толщина 300 нм.

4. Хромонемный - образуется в результате сближения хромомеров по длине. Хромонема содержит одну гигантскую молекулу ДНК в комплексе с белками, т.е. фибриллу дезокси-рибонуклеопротеина - ДНП (400 нм).

5. Хроматидный - хромонема складывается несколько раз, образуя тело хроматиды (700 нм). После репликации ДНК хромосома со­держит 2 хроматиды.

6. Хромосомный (1400 нм). Состоит из двух хроматид. Хроматиды соединены центромерой. При делении клетки хроматиды расходятся, по­падая в разные дочерние клетки.

хромосомы человека

Кариоти́п - совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам данного биологического вида (видовой кариотип ), данного организма (индивидуальный кариотип ) или линии (клона) клеток.

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток, для определения человеческого кариотипа используется либо одноядерные лейкоциты, извлечённые из пробы крови, деление которых провоцируется добавлением митогенов, либо культуры клеток, интенсивно делящихся в норме (фибробласты кожи, клетки костного мозга).

кариотип – диплойдный набор хромосом, свойтвенный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определённым числом и строением хромосом.

Хромосомный набор большинства клеток - диплоидный (2п) - это значит, что каждая хромосома имеет пару, т.е. гомологичную хромосому. Обычно диплоидный (2п) набор хромосом образуется в момент оплодотворения (одна из пары хромосом от отца, другая от матери). Некоторые клетки триплоидны (Зп), например клетки эндосперма.

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна , обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000.

Известны трисомии по 13-й хромосоме - Синдром Патау , а также по 18-й хромосоме - синдром Эдвардса , при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития.
Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) - это синдром Шерешевского-Тернера . Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.)

6. Гиалоплазма. Органеллы, их классификация. Биологические мембраны.

гиалоплазма - часть цитоплазмы животных и растительных клеток, не содержащая структур, различимых в световом микроскопе.

Гиалоплазма (hyaloplasma; от греч. hyalinos - прозрачный) составляет примерно 53-55 % от общего объема цитоплазмы (cytoplasma), образуя гомогенную массу сложного состава. В гиалоплазме присутствуют белки, полисахариды, нуклеиновые кислоты, ферменты. При участии рибосом в гиалоплазме синте­зируются белки, происходят различные реакции промежуточно­го обмена. В гиалоплазме располагаются также органеллы, включения и клеточное ядро.

Основная роль гиалоплазмы – объединение всех клеточных структур в отношении их химического взаимодействия и обеспечения транспортных биохимических процессов.

Органеллы (organellae) являются обязательными микрострук­турами для всех клеток, выполняющими определенные жизнен­но важные функции. Различают мембранные и немембранные ор­ганеллы .

К мембранным органеллам , отграниченным от окру­жающей их гиалоплазмы мембранами, относятся эндоплазмати­ческая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии.

Эндоплазматическая сеть пред­ставляет собой единую непрерывную структуру, образованную системой цистерн, трубочек и уплощенных мешочков. На элек­тронных микрофотографиях различают зернистую (шерохова­тую, гранулярную) и незернистую (гладкую, агранулярную) эндо­плазматическую сеть. Внешняя сторона зернистой сети покрыта рибосомами, незернистая лишена рибосом. Зернистая эндо­плазматическая сеть синтезирует (на рибосомах) и транспорти­рует белки. Незернистая сеть синтезирует липиды и углеводы и участвует в их обмене (например, стероидные гормоны в корковом веществе надпочечников и клетках Лейдига (сустеноцитах) яичек; гликоген - в клетках печени). Одной из важнейших функций эндоплазматической сети является синтез мембран­ных белков и липидов для всех клеточных органелл.

комплекс Гольджи представляет собой совокупность ме­шочков, пузырьков, цистерн, трубочек, пластинок, ограничен­ных биологической мембраной. Элементы комплекса Гольджи соединены между собой узкими каналами. В структурах ком­плекса Гольджи происходят синтез и накопление полисахари­дов, белково-углеводных комплексов, которые выводятся из клеток. Так образуются секреторные гранулы. Комплекс Гольд­жи имеется во всех клетках человека, кроме эритроцитов и ро­говых чешуек эпидермиса. В большинстве клеток комплекс Гольджи расположен вокруг или вблизи ядра, в экзокринных клетках - над ядром, в апикальной части клетки. Внутренняя выпуклая поверхность структур комплекса Гольджи обращена в сторону эндоплазматической сети, а внешняя, вогнутая, - к цитоплазме.

Мембраны комплекса Гольджи образованы зернистой эндо­плазматической сетью и переносятся транспортными пузырька­ми. От внешней стороны комплекса Гольджи постоянно отпо­чковываются секреторные пузырьки, а мембраны его цистерн постоянно обновляются. Секреторные пузырьки поставляют мембранный материал для клеточной мембраны и гликокалик­са. Таким образом обеспечивается обновление плазматической мембраны.

Лизосомы представляют собой пузырьки диамет­ром 0,2-0,5 мкм, содержащие около 50 видов различных гидро­литических ферментов (протеазы, липазы, фосфолипазы, нук­леазы, гликозидазы, фосфатазы). Лизосомальные ферменты синтезируются на рибосомах зернистой эндоплазматической сети, откуда переносятся транспортными пузырьками в ком­плекс Гольджи. От пузырьков комплекса Гольджи отпочковыва­ются первичные лизосомы. В лизосомах поддерживается кислая среда, ее рН колеблется от 3,5 до 5,0. Мембраны лизосом устой­чивы к заключенным в них ферментам и предохраняют цито­плазму от их действия. Нарушение проницаемости лизосомаль­ной мембраны приводит к активации ферментов и тяжелым по­вреждениям клетки вплоть до ее гибели.

Во вторичных (зрелых) лизосомах (фаголизосомах) происхо­дит переваривание биополимеров до мономеров. Последние транспортируются через лизосомальную мембрану в гиалоплаз­му клетки. Непереваренные вещества остаются в лизосоме, в результате чего лизосома превращается в так называемое оста­точное тельце высокой электронной плотности.

Митохондрии (mitochondrii), являющиеся «энергетическими станциями клетки», участвуют в процессах клеточного дыхания и преобразования энергии в формы, доступные для использова­ния клеткой. Их основные функции - окисление органических веществ и синтез аденозинтрифосфорной кислоты (АТФ). Много крупных ми­тохондрий в кардиомиоцитах, мышечных волокнах диафрагмы. Они расположены группами между миофибриллами, окружены гранулами гликогена и элементами незернистой эндоплазмати­ческой сети. Митохондрии являются органеллами с двойными мембранами (толщина каждой около 7 нм). Между наружной и внутренней митохондриальными мембранами расположено меж­мембранное пространство шириной 10-20 нм.

К немембранным органоидам относятся клеточный центр эукариотических клеток и рибосомы, имеющиеся в цитоплазме как эу- , так и прокариотических клеток.

Рибосома - это округлая рибонуклеопротеиновая частица диа­метром 20-30 нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (ин­формационной) РНК (мРНК). Одна молекула мРНК обычно объ­единяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основ­ном веществе цитоплазмы или прикреплены к мембранам шерохо­ватой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка.

70S - рибосомы обнаруживаются у прокариот и в хлоропластах и митохондриях эукариот. 8OS-рибосомы, несколько более крупные, находятся в цитоплазме эукариот. В процессе синтеза белка рибосомы дви­жутся вдоль мРНК. Процесс идет более эффективно, если вдоль мРНК движется не одна, а несколько рибосом. Такие цепи рибосом на мРНК называют полирибосомами, или полисомами.

МЕМБРАНЫ:

все мембраны образуют липопротеидные плёнки; имеют двойной слой липидов.

В составе мембран до 20% воды. липиды.

Мембраны состоят из липидов трех классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придает мембране жесткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жесткие и хрупкие.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднен. Различается состав и ориентация мембранных белков.

Одна из важнейших функций биомембраны - барьерная. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов.

Еще одно важное свойство биомембраны - избирательная проницаемость.