Биографии Характеристики Анализ

Строение кобальта. Физические свойства кобальта

Кобальт -- твердый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива б-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива в-модификация кобальта (решётка кубическая гранецентрированная). Кобальт -- ферромагнетик, точка Кюри 1121 °C.

Представляет собой блестящий металл, похожий на железо, с удельным весом 8,8. Температура его плавления несколько больше, чем у никеля. Кобальт очень тягуч. Он обладает большой твердостью и прочностью, чем сталь. Он ферромагнитен и только выше 10000 переходит в модификацию, не обладающую способностью намагничиваться.

Желтоватый оттенок ему придает тонкий слой оксидов.

При обычной температуре и до 417 °С кристаллическая решетка Кобальта гексагональная плотноупакованная (с периодами а = 2,5017Е, с = 4,614Е), выше этой температуры решетка Кобальта кубическая гранецентрированная (а = 3,5370Е). Атомный радиус 1,25Е, ионные радиусы Со 2+ 0,78Е и Со 3+ 0,64Е. Плотность 8,9 г/см 3 (при 20 °С); t пл 1493°С, t кип 3100°С. Теплоемкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°С); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·°С) при 0-100 °С. Удельное электросопротивление 5,68·10 -8 ом·м, или 5,68·10 -6 ом·см (при О °С). Кобальт ферромагнитен, причем сохраняет ферромагнетизм от низких температур до точки Кюри, И = 1121 °С. Механические свойства Кобальта зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м 2 (или 50 кгс/мм 2) для кованого и отожженного Кобальта; 242-260 Мн/м 2 для литого; 700 Мн/м 2 для проволоки. Твердость по Бринеллю 2,8 Гн/м 2 (или 280 кгс/мм 2) для наклепанного металла, 3,0 Гн/м 2 для осажденного электролизом; 1,2-1,3 Гн/м 2 для отожженного.

Химические свойства кобальта

Конфигурация внешних электронных оболочек атома Кобальта 3d 7 4s 2 . В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(III). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н 2 О = СоО + Н 2 . С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ 2 . При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со 2 Р, Co 2 As, CoSb 2 , Со 3 С, CoSi 3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоCl 2 и сульфата CoSO 4 . Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO 3) 2 . Концентрированная HNO 3 пассивирует Кобальт. Названные соли Со (II) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl 2 , 39,3 г CoSO 4 , 136,4 г Co(NO 3) 2 ]. Едкие щелочи осаждают из растворов солей Со 2+ синий гидрооксид Со(ОН) 2 , которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН) 3 . Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со 3 О 4 , или СоО·Со 2 О 3 - соединение типа шпинели. Соединение того же типа CoAl 2 О 4 или СоО·Al 2 О 3 синего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al 2 О 3 при температуре около 1000 °С

Из простых соединений Со (III) известны лишь немногие. При действии фтора на порошок Со или СоCl 2 при 300-400 °С образуется коричневый фторид CoF 3 . Комплексные соединения Со (III) весьма устойчивы и получаются легко. Например, KNO 2 осаждает из растворов солей Со (II), содержащих СН 3 СООН, желтый труднорастворимый гексанитрокобальтат (III) калия K 3 . Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (III), содержащие аммиак или некоторые органических амины.

Вода и воздух при обычной температуре не оказывают действия на компактный кобальт, но в мелкораздробленном состоянии он обладает пирофорными свойствами. В разбавленных кислотах, например в соляной или серной, кобальт растворяется значительно труднее, что соответствует его положению в электрохимическом ряду напряжений справа от железа (его нормальный потенциал равен -0,28 в). Разбавленная азотная кислота легко растворяет кобальт, а при действии концентрированной HNO3 он пассивируется. Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

При нагревании на воздухе Со окисляется, а при температуре белого каления сгорает до Сo 3 O 4 . При нагревании кобальт соединяется со многими другими веществами, причем реакция его с S, P, As, Sb, Sn и Zn нередко сопровождается воспламенением. При сплавлении с кремнием Со образует целый ряд соединений. При высокой температуре он соединяется также с бором, но не реагирует с азотом. Кобальт легко образует соединения с галогенами. С железом и никелем, а также с хромом и марганцем он образует твердые растворы в любых соотношениях. По отношению к углероду кобальт ведет себя так же, как железо; однако при охлаждении углеродсодержащих расплавов никогда не выделяется карбид Со 3 С (хотя, по данным Руффа, существование его в расплаве является вероятным); если содержание углерода превышает пределы существования твердого раствора, избыток углерода всегда выделяется в виде графита. При действии СН4 или СО на тонкоизмельченный металлический кобальт при слабом нагревании (ниже 225°), по данным Бара, образуется соединение Со2С, разлагающееся при более высоких температурах. Каталитическое разложение СH 4 и СО под действием кобальта происходит лишь при таких температурах, когда карбид становится неустойчивым

Co + 2HCl(разб.)+t= CoCl 2 + H 2

Co + H 2 SO 4 (разб.)+t= CoSO 4 + H 2

3Co + 8HNO 4 (разб.)+t= 3Co(NO 3) 2 + 2NO + 4H 2 O

4Co + 4NaOH + 3O 2 +t= 4NaCoO2 + 2H 2 O

2Co + O2 +t=2CoO

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат.

Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию.

Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля.

2СоСl 2 + NaClO + 4NaOH + H 2 O = 2Co(OH) 3 v + 5NaCl

Чёрный осадок Co(OH) 3 прокаливают для удаления воды, а полученный оксид Со 3 O 4 восстанавливают водородом или углеродом. Металлический кобальт, содержащий до 2-3% примесей (никель, железо, медь), может быть очищен электролизом.

Образование соединений кобальта

· При нагревании, кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором. 2Co + 3F 2 > CoF 3 , но, Co + Cl 2 > CoCl 2

· С серой кобальт образует 2 различных модификации CoS. Серебристо-серую б-форму (при сплавлении порошков) и чёрную в-форму (выпадает в осадок из растворов).

· При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со 9 S 8

· С другими окисляющими элементами, такими как углерод, фосфор, азот, селен, кремний, бор. кобальт тоже образует сложные соединения, являющиеся смесями где присутствует кобальт со степенями окисления 1, 2, 3.

· Кобальт способен растворять водород, не образуя химических соединений. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН 2 и СоН.

· Растворы солей кобальта CoSO 4 , CoCl 2 , Со(NO 3) 2 придают воде бледно-розовую окраску. Растворы солей кобальта в спиртах темно-синие. Многие соли кобальта нерастворимы.

· Кобальт создаёт комплексные соединения. Чаще всего на основе аммиака.

Наиболее устойчивыми комплексами являются лутеосоли 3+ жёлтого цвета.

Энергия ионизации
(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Температура плавления Температура кипения Уд. теплота плавления

15,48 кДж/моль

Уд. теплота испарения

389,1 кДж/моль

Молярная теплоёмкость Кристаллическая решётка простого вещества Структура решётки

гексагональная

Параметры решётки Отношение c /a Температура Дебая Прочие характеристики Теплопроводность

(300 K) 100 Вт/(м·К)


История

Соединения кобальта известны человеку с глубокой древности, синие кобальтовые стёкла, эмали, краски находят в гробницах Древнего Египта. Так, в гробнице Тутанхамона нашли много осколков синего кобальтового стекла, неизвестно, было ли приготовление стёкол и красок сознательным или случайным. Первое приготовление синих красок относится к 1800 году.

Происхождение названия

Название химического элемента кобальт происходит от нем. Kobold - домовой, гном. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка . Руда, содержащая эти минералы, получила у горняков имя горного духа Кобольда . Древние норвежцы приписывали отравления плавильщиков при переплавке серебра проделкам этого злого духа. В этом происхождение названия кобальта схоже с происхождением названия никеля .

Нахождение в природе

Массовая доля кобальта в земной коре 4·10 −3 %. Кобальт входит в состав минералов: каролит CuCo 2 S 4 , линнеит Co 3 S 4 , кобальтин CoAsS, сферокобальтит CoCO 3 , смальтин CoAs 2 , скуттерудит (Co, Ni)As 3 и других. Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют железо , никель , хром , марганец и медь . Содержание в морской воде приблизительно (1,7)·10 −10 %.

Месторождения

Самый крупный поставщик кобальта - Демократическая Республика Конго . Также есть богатые месторождения в Канаде, США, Франции, Замбии, Казахстане, России.

Получение

Кобальт получают в основном из никелевых руд, обрабатывая их растворами серной кислоты или аммиака. Также используется методы пирометаллургии . Для отделения от близкого по свойствам никеля используется хлор , хлорат кобальта (Co(ClO 3) 2) выпадает в осадок, а соединения никеля остаются в растворе.

Изотопы

Кобальт имеет только один стабильный изотоп - 59 Co (изотопная распространённость 100 %). Известны ещё 22 радиоактивных изотопа кобальта.

Физические свойства

Кобальт - твердый металл, существующий в двух модификациях . При температурах от комнатной до 427 °C устойчива α-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β-модификация кобальта (решётка кубическая гранецентрированная). Кобальт - ферромагнетик , точка Кюри 1121 °C. Желтоватый оттенок ему придает тонкий слой оксидов .

Химические свойства

Оксиды

  • На воздухе кобальт окисляется при температуре выше 300 °C.
  • Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co 3 O 4 , имеющий структуру шпинели , в кристаллической структуре которого одна часть узлов занята ионами Co 2+ , а другая - ионами Co 3+ ; разлагается с образованием CoO при температуре выше 900 °C.
  • При высоких температурах можно получить α-форму или β-форму оксида CoO.
  • Все оксиды кобальта восстанавливаются водородом:
\mathsf{Co_3O_4 + 4H_2 \rightarrow 3Co + 4H_2O}
  • Оксид кобальта (III) можно получить, прокаливая соединения кобальта (II), например:
\mathsf{4Co(OH)_2 + O_2 \rightarrow 2Co_2O_3 + 4H_2O}

Другие соединения

  • При нагревании кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором.
\mathsf{2Co + 3F_2 \rightarrow 2CoF_3} \mathsf{Co + Cl_2 \rightarrow CoCl_2}
  • С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).
  • При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со 9 S 8
  • С другими окисляющими элементами, такими, как углерод , фосфор , азот , селен , кремний , бор . Кобальт тоже образует сложные соединения, являющиеся смесями, где присутствует кобальт со степенями окисления 1, 2, 3.
  • Кобальт способен растворять водород , не образуя химических соединений. Косвенным путём синтезированы два стехиометрических гидрида кобальта СоН 2 и СоН.
  • Растворы солей кобальта CoSO 4 , CoCl 2 , Со(NO 3) 2 придают воде бледно-розовую окраску. Растворы солей кобальта в спиртах темно-синие. Многие соли кобальта нерастворимы.
  • Кобальт образует комплексные соединения. В степени окисления +2 кобальт образует лабильные комплексы, в то время как в степени окисления +3 - очень инертные. Это приводит к тому, что комплексные соединения кобальта(III) практически невозможно получить путём непосредственного обмена лигандов, поскольку такие процессы идут чрезвычайно медленно. Наиболее известны аминокомплексы кобальта.

Наиболее устойчивыми комплексами являются лутеосоли (например, 3+) жёлтого цвета и розеосоли (например, 3+) красного или розового цвета.

  • Также кобальт образует комплексы с CN − , NO 2 − и многими другими лигандами. Комплексный анион гексанитрокобальтат 3- образует нерастворимый осадок с катионами калия, что используется в качественном анализе.

Применение

  • Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и т. п.
  • Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов.
  • Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром .
  • Кобальт применяется как катализатор химических реакций.
  • Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов.
  • Силицид кобальта - отличный термоэлектрический материал, он позволяет производить термоэлектрогенераторы с высоким КПД.
  • Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.
  • 60 Со используется в качестве топлива в .

Биологическая роль

Кобальт - один из микроэлементов, жизненно важных организму. Он входит в состав витамина В 12 (кобаламин). Кобальт задействован при кроветворении, функциях нервной системы и печени, ферментативных реакциях. Потребность человека в кобальте - 0,007-0,015 мг, ежедневно. В теле человека содержится 0,2 мг кобальта на каждый килограмм массы человека. При отсутствии кобальта развивается акобальтоз .

Токсикология

Избыток кобальта для человека вреден.

В 1960-х годах соли кобальта использовались некоторыми пивоваренными компаниями для стабилизации пены. Регулярно выпивавшие более четырёх литров пива в день получали серьёзные побочные эффекты на сердце, и, в отдельных случаях, это приводило к смерти. Известные случаи т. н. кобальтовой кардиомиопатии в связи с употреблением пива происходили с 1964 по 1966 годы в Омахе (штат Небраска), Квебеке (Канада), Левене (Бельгия), и Миннеаполисе (штат Миннесота). С тех пор его использование в пивоварении прекращено, и в настоящее время является незаконным .

ПДК пыли кобальта в воздухе 0,5 мг/м³, в питьевой воде допустимое содержание солей кобальта 0,01 мг/л.

Токсическая доза (LD50 для крыс) - 50 мг.

Особенно токсичны пары октакарбонила кобальта Со 2 (СО) 8 .

Стоимость металлического кобальта

На 20 января 2013 г. стоимость кобальта на мировом рынке, по данным , составляет около 26 долл./кг.

Напишите отзыв о статье "Кобальт"

Примечания

Ссылки

Министерство общего и профессионального образования РФ

Уссурийский Государственный Педагогический Институт


ТЕМА : «Кобальт – химический элемент»

Выполнила:

Студентка биолого-химического

факультета Савенко О.В.

Проверила:

Профессор Максина Н.В.

Уссурийск, 2001г.

ПЛАН :

Элемент периодической системы…………………………….……3

История открытия…………………………………………………...3

Нахождение в природе……………………………………………...3

Получение……………………………………………………………4

Физические и химические свойства………………………………..4

Применение…………………………………………………………..7

Биологическая роль………………………………………………….7

Радионуклеид Кобальт-60…………………………………………..8

Список используемой литературы…………………………………9


Элемент периодической системы

Название элемента «кобальт» происходит от латинского Сobaltum.

Со, химический элемент с атомным номером 27. Его атомная масса 58,9332. Химический символ элемента Cо произносится так же, как и название самого элемента.

Природный кобальт состоит из двух стабильных нуклидов: 59Со (99,83% по массе) и 57Со (0,17%). В периодической системе элементов Д. И. Менделеева кобальт входит в группу VIIIВ и вместе с железом и никелем образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома кобальта 3s2p6d74s2. Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

Радиус нейтрального атома кобальта 0,125 Нм, радиус ионов (координационное число 6) Со2+ - 0,082 Нм, Со3+ - 0,069 Нм и Со4+ - 0,064 Нм. Энергии последовательной ионизации атома кобальта 7,865, 17,06, 33,50, 53,2 и 82,2 ЭВ. По шкале Полинга электроотрицательность кобальта 1,88.

Кобальт - блестящий, серебристо-белый, тяжелый металл с розоватым оттенком.

История открытия

С древности оксиды кобальта использовались для окрашивания стекол и эмалей в глубокий синий цвет. До 17 века секрет получения краски из руд держался в тайне. Эти руды в Саксонии называли «кобольд» (нем. Kobold - домовой, злой гном, мешавший рудокопам добывать руду и выплавлять из нее металл). Честь открытия кобальта принадлежит шведскому химику Г. Брандту. В 1735 году он выделил из коварных «нечистых» руд новый серебристо-белый со слабым розоватым оттенком металл, который предложил называть «кобольдом». Позднее это название трансформировалось в «кобальт».

Нахождение в природе

В земной коре содержание кобальта равно 410-3% по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo2SO4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит СоAs2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду - никель, железо, медь и марганец. В морской воде приблизительно (1-7)·10-10 % кобальта.

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями - хлором или гипохлоритом натрия NaOCl; кобальт при этом переходит в осадок. Окончательную очистку (рафинирование) кобальта осуществляют электролизом его сульфатного водного раствора, в который обычно добавлена борная кислота Н3ВО3.

Физические и химические свойства

Кобальт - твердый металл, существующий в двух модификациях. При температурах от комнатной до 427°C устойчива a-модификация (кристаллическая решетка гексагональная с параметрами а=0,2505 Нм и с=0,4089 Нм). Плотность 8,90 кг/дм3. При температурах от 427°C до температуры плавления (1494°C) устойчива b-модификация кобальта (решетка кубическая гранецентрированная). Температура кипения кобальта около 2960°C. Кобальт - ферромагнетик, точка Кюри 1121°C. Стандартный электродный потенциал Со0/Со2+ –0,29 B.

На воздухе компактный кобальт устойчив, при нагревании выше 300°C покрывается оксидной пленкой (высокодисперсный кобальт пирофорен). С парами воды, содержащимися в воздухе, водой, растворами щелочей и карбоновых кислот кобальт не взаимодействует. Концентрированная азотная кислота пассивирует поверхность кобальта, как пассивирует она и поверхность железа.

Известно несколько оксидов кобальта. Оксид кобальта(II) СоО обладает основными свойствами. Он существует в двух полиморфных модификациях: a-форма (кубическая решетка), устойчивая при температурах от комнатной до 985°C, и существующая при высоких температурах b-форма (также кубическая решетка). СоО можно получить или нагреванием в инертной атмосфере гидроксоркарбоната кобальта Со(ОН)2СоСО3, или осторожным восстановлением Со3О4.

Если нитрат кобальта Со(NO3)2, его гидроксид Со(ОН)2 или гидроксокарбонат прокалить на воздухе при температуре около 700°C, то образуется оксид кобальта Со3О4 (CoO·Co2O3). Этот оксид по химическому поведению похож на Fe3О4. Оба эти оксида сравнительно легко восстанавливаются водородом до свободных металлов:

Со3О4 + 4H2 = 3Со + 4H2O.

При прокаливании Со(NO3)2, Со(ОН)2 и т. д. при 300°C возникает еще один оксид кобальта - Со2О3.

При приливании раствора щелочи к раствору соли кобальта(II) выпадает осадок Со(ОН)2, который легко окисляется. Так, при нагревании на воздухе при температуре немногим выше 100°C Со(ОН)2 превращается в СоООН.

Если на водные растворы солей двухвалентного кобальта действовать щелочью в присутствии сильных окислителей, то образуется Со(ОН)3.

При нагревании кобальт реагирует со фтором с образованием трифторида СоF3. Если на СоО или СоCO3 действовать газообразным HF, то образуется еще один фторид кобальта СоF2. При нагревании кобальт взаимодействует с хлором и бромом с образованием, соответственно, дихлорида СоСl2 и дибромида СоBr2. За счет реакции металлического кобальта с газообразным НI при температурах 400-500°C можно получить дииодид кобальта СоI2.

Сплавлением порошков кобальта и серы можно приготовить серебристо-серый сульфид кобальта СоS (b-модификация). Если же через раствор соли кобальта(II) пропускать ток сероводорода H2S, то выпадает черный осадок сульфида кобальта СоS (a-модификация):

CoSO4 + H2S = CoS + H2SO4

При нагревании CoS в атмосфере H2S образуется Со9S8 с кубической кристаллической решеткой. Известны и другие сульфиды кобальта, в том числе Co2S3, Co3S4 и CoS2.

С графитом кобальт образует карбиды Со3C и Со2С, c фосфором - фосфиды составов СоP, Со2P, СоP3. Кобальт реагирует и с другими неметаллами, в том числе с азотом (возникают нитриды Со3N и Co2N), селеном (получены селениды кобальта CoSe и CoSe2), кремнием (известны силициды Co2Si, CoSi CoSi2) и бором (в числе известных боридов кобальта - Со3В, Со2В, СоВ).

Металлический кобальт способен поглощать значительные объемы водорода, не образуя при этом соединений постоянного состава. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН2 и СоН.

Известны растворимые в воде соли кобальта - сульфат СоSO4, хлорид СоСl2, нитрат Со(NO3)2 и другие. Интересно, что разбавленные водные растворы этих солей имеют бледно-розовую окраску. Если же перечисленные соли (в виде соответствующих кристаллогидратов) растворить в спирте или ацетоне, то возникают темно-синие растворы. При добавлении воды к этим растворам их окраска мгновенно переходит в бледно-розовую.

К нерастворимым соединениям кобальта относятся фосфат Со3(PO4)2, силикат Со2SiO4 и многие другие.

Для кобальта, как и для никеля, характерно образование комплексных соединений. Так, в качестве лигандов при образовании комплексов с кобальтом часто выступают молекулы аммиака NH3. При действии аммиака на растворы солей кобальта(II) возникают амминные комплексы кобальта красного или розового цвета, содержащие катионы состава 2+. Эти комплексы довольно неустойчивы и легко разлагаются даже водой.

Значительно стабильнее амминные комплексы трехвалентного кобальта, которые можно получить действием аммиака на растворы солей кобальта в присутствии окислителей. Так, известны гексамминные комплексы с катионом 3+ (эти комплексы желтого или коричневого цвета получили название лутеосолей), аквапентамминные комплексы красного или розового цвета с катионом 3+ (так называемые розеосоли) и др. В ряде случаев лиганды вокруг атома кобальта могут иметь различное пространственное расположение, и тогда существуют цис- и транс-изомеры соответствующих комплексов.

В качестве лигандов в комплексах кобальта могут выступать также анионы CN-, NO2- и другие.

При взаимодействии смеси водорода и СО с гидроксокарбонатом кобальта при повышенном давлении, а также взаимодействием под давлением СО и порошка металлического кобальта получают биядерный октакарбонил дикобальта состава Со2(СО)8. При его осторожном нагревании образуется карбонил Со4(СО)12. Карбонил Со2(СО)8 используют для получения высокодисперсного кобальта, применяемого для нанесения кобальтовых покрытий на различные материалы.

Применение

Основная доля получаемого кобальта расходуется на приготовление различных сплавов. Так, добавление кобальта позволяет повысить жаропрочность стали, обеспечивает улучшение ее механических и иных свойств. Кобальт - компонент некоторых твердых сплавов, из которых изготовляют быстрорежущий инструмент (сверла, разцы и другие). Особенно важны магнитные кобальтовые сплавы (в том числе так называемые магнитомягкие и магнитотвердые). Магнитные сплавы на основе кобальта используют при изготовлении сердечников электромоторов, их применяют в трансформаторах и в других электротехнических устройствах. Для изготовления головок магнитной записи применяют кобальтовые магнитомягкие сплавы. Кобальтовые магнитотвердые сплавы типа SmCo5, PrCo5 и др., характеризующиеся большой магнитной энергией, используют в современном приборостроении.

Для изготовления постоянных магнитов находят применение сплавы, содержащие 52% кобальта и 5-14% ванадия или хрома (так называемые викаллои).

Кобальт и некоторые его соединения служат катализаторами.

Соединения кобальта, введенные в стекла при их варке, обеспечивают красивый синий (кобальтовый) цвет стеклянных изделий. Соединения кобальта используют как пигменты многих красителей.

Биологическая роль

Кобальт относится к числу микроэлементов, то есть постоянно присутствует в тканях растений и животных. Некоторые наземные растения и морские водоросли способны накапливать кобальт. Входя в молекулу витамина В12 (кобаламина), кобальт участвует в важнейших процессах животного организма - кроветворении, функциях нервной системы и печени, ферментативных реакциях.

Кобальт участвует в ферментативных процессах фиксации атмосферного азота клубеньковыми бактериями.

В организме среднего человека (масса тела 70 кг) содержится около 14 мг кобальта. Суточная потребность составляет 0,007-0,015 мг, ежедневное поступление с пищей 0,005-1,8 мг. У жвачных животных эта потребность гораздо выше, например, у дойных коров - до 20 мг.

Соединения кобальта обязательно входят в состав микроудобрений. Однако избыток кобальта для человека вреден. ПДК пыли кобальта в воздухе 0,5 мг/м3, в питьевой воде допустимое содержание солей кобальта 0,01 мг/л. Токсическая доза - 500 мг. Особенно токсичны пары октакарбонила кобальта Со2(СО)8.

Радионуклид кобальт-60

Большое практическое значение имеет искусственно получаемый радионуклид кобальта 60Со (период полураспада Т1/2 5,27 года). Испускаемое этим радионуклидом гамма-излучение обладает достаточно мощной проникающей способностью, и «кобальтовые пушки» - устройства, снабженные 60Со, широко используют при дефектоскопии, например, сварных швов газопроводов, в медицине для лечения онкологических заболеваний и для других целей. Используется 60Со и в качестве радионуклидной метки.

Список используемой литературы:

· «Большая энциклопедия Кирилла и Мефодия 2001»

· «Кирилл и Мефодий» (с изменениями и дополнениями),

1997, 1998, 2000, 2001гг.

· «Большая Российская энциклопедия», 1996г.

Кобольд – злой дух из скандинавской мифологии. Жители Севера верили, что демон живет в горах и строит козни их посетителям, в частности, горнякам. Кобольд не только наносил увечья, но и губил. Особенно часто помирали плавильщики руд. Позже, ученые выяснили истинную причину смертей.

Вместе с рудами серебра в скалах Норвегии хранятся кобальтосодержащие минералы. В их состав входит мышьяк. Его летучий оксид выделяется при обжиге. Вещество токсично. Вот истинный убийца. Однако, у мышьяка уже было свое имя. Поэтому в честь Кобольда назвали связанный с ним металл. О нем и поговорим.

Химические и физические свойства кобальта

Кобальт – металл, внешне схож с железом, но темнее. Цвет элемента серебристо-белый, с розовыми или синеватыми отблесками. Разнится с железом и твердость по . Показатель кобальта – 5,5 баллов. Это чуть выше среднего. У железа твердость, напротив, немногим меньше 5-ти баллов.

По температуре плавления близок к никелю. Элемент размягчается при 1494-х градусах. Кристаллическая решетка кобальта начинает меняться при нагреве до 427-ми по шкале Цельсия. Гексагональная структура преобразуется в кубическую. До 300-от градусов металл не окисляется, будь воздух сухим или влажным.

Не вступает элемент в реакции и со щелочами, разбавленными кислотами, не взаимодействует с водой. После 300-ой отметки на шкале Цельсия кобальт начинает окисляться, покрываясь желтоватой пленкой.

От температуры зависят и ферримагнитные свойства кобальта. До 1000 градусов он способен намагничиваться произвольно. Если нагрев продолжается, металл теряет это свойство. Стоит довести температуру до 3185-ти градусов, кобальт закипит. В тонкораздробленном виде элемент способен самовоспламеняться.

Достаточно лишь контакта с воздухом. Явление называется пирофорией. В каком виде на нее способен кобальт? Цвет порошка должен быть черным. Более крупные гранулы светлее и не загораются.

Основная характеристика кобальта – тягучесть. Она превышает показатели других металлов. Тягучесть сочетается с относительной хрупкостью, уступающей, к примеру, стали. Поэтому, металл с трудом куется. Ограничивает ли это применение элемента?

Применение кобальта

В чистом виде пригождается лишь радиоактивный изотоп элемента 60 Со. Он служит источником излучения в дефектоскопах. Это приборы, просвечивающие металлические на предмет трещин и иных недочетов в них.

Медики тоже используют радиоактивный кобальт. Сплав методов ультразвуковой диагностики, терапии тоже зиждется на инструментах, в которые добавлен 27-ой элемент таблицы Менделеева.

Нужен кобальт и металлургам. Они добавляют элемент в , чтобы сделать их жаропрочными, твердыми, подходящими для инструментальной сферы. Так, составами с кобальтом покрывают детали машин.

Повышается их сопротивляемость износу и, что важно, не требуется термической обработки. Сплавы для автостроения зовут стеллитами. Кроме кобальта в них содержится 30% хрома, а так же, , вольфрам и углерод.

Сочетание никель-кобальт делает сплавы тугоплавкими и жаропрочными. Смеси применяют для связки металлических элементов при температуре до 1100 градусов Цельсия. Кроме никеля и кобальта в составы примешивают бориды и карбиды , титана, .

Дуэт железо-кобальт фигурирует в некоторых марках нержавеющей стали. Они – конструктивный материал для атомных реакторов. Чтобы сталь стала подходящей для их производства, достаточно всего 0,05% 27-го элемента.

Больше кобальта примешивают к железу при изготовлении постоянных магнитов. В качестве в сплавы добавляют никель, медь, лантан и титан. Наилучшие магнитные свойства имеют кобальтоплатиновые соединения, но они дорогостоящи.

Кобальт купить металлурги стремятся и для производства сплавов, устойчивых к воздействию кислот. Они нужны, к примеру, для нерастворимых анодов. В них 75% 27-го элемента, 13% кремния, 7% хрома и 5% марганца. По стойкости к соляной и азотной кислотам этот сплав превосходит даже платину.

Хлорид кобальта и оксид металла нашли место в химической промышленности. Вещества служат катализаторами в процессе гидоогенизации жиров. Так называют присоединение к ненасыщенным соединениям водорода. В итоге, становятся возможными синтез бензола, производство азотной кислоты, сульфата аммония и .

Оксид кобальта, так же, активно используют в лакокрасочной сфере, производстве стекла и керамики. Сплавляясь с эмалью, закись металла образует силикаты и алюмосиликаты синих тонов. Наиболее известна смальта.

Это двойной силикат калия и кобальта. Фото одного из кувшинов, найденных в гробнице Тутанхамона, интересно археологам именно, как доказательство использования солей и оксидов 27-го элемента древними египтянами. Ваза расписана узорами синего цвета. Анализ показал, что в качестве красителя использован кобальт.

Добыча кобальта

От общей массы земной коры на кобальт приходятся 0,002%. Запасы не маленькие – около 7 500 тонн, но они рассеяны. Поэтому, металл добывают, как побочный продукт переработки руд , и . Вкупе с последним элементом, как сказано в предисловии, обычно, идет мышьяк.

На непосредственно кобальтовое производство приходится всего 6%. 37% металла добывают параллельно переплавке медных руд. 57% элемента – следствие переработки никельсодержащих пород и залежей .

Чтобы выделить из них 27-ой элемент, проводят восстановление оксидов, солей и комплексных соединений кобальта. На них воздействуют углеродом, водородом. При нагревании используют метан.

Разведанных залежей кобальта должно хватить человечеству на 100 лет. С учетом океанических ресурсов, можно не испытывать дефицит элемента 2-3 столетия. На кобальт цены устанавливает Африка. В ее недрах сосредоточены 52% мировых запасов металла.

Еще 24% сокрыты в Тихоокеанском регионе. На Америку приходятся 17, а на Азию 7%. В последние годы разведаны крупные месторождения в России и Австралии. Это несколько изменило картину поставок 27-го элемента на мировой рынок.

Цена кобальта

Лондонская биржа цветных металлов. Вот где устанавливают мировые цены на кобальт. Отзывы о торгах и официальные сводки свидетельствуют, что за фунт просят около 26 000 рублей. Фунт – английская мера веса, равная 453-ем граммам. Рост стоимости 27-го элемента непрерывен начиная с 2004-го года.

С 2010-го года на Лондонской бирже начали торговать лотами по 1-ой тонне. Металл поставляется в стальных бочках по 100-500 килограммов. Весовое отклонение партии не должно превышать 2%, а содержание кобальта требуется на уровне 99,3%.

Металл успешен не только сам по себе. В тренде и цвет 27-го элемента. Не зря выпущен, к примеру, Шевроле Кобальт . Как и самородный металл, машина окрашена в серебристо-синеватый. Благородный окрас подчеркивает европейский характер машины. В базовой комплектации за нее просят около 600 000 рублей.

В эту сумму входит подогрев передних сидений. Задние складываются. Салон тканевый, в строю стеклоподъемники. Аудиоподготовка штатная. Можно купить машину, а можно почти 27 фунтов настоящего кобальта , — кому что нужнее.

Кобальт в виде порошка используют в основном в качестве добавки к сталям. При этом повышается жаропрочность стали , улучшаются ее механические свойства (твердость и износоустойчивость при повышенных температурах). Данный металл входит в состав твердых сплавов , из которых изготовляется быстрорежущий инструмент. Один из основных компонентов твердого сплава - карбид вольфрама или титана - спекается в смеси с порошком металлического кобальта. Именно Co улучшает вязкость сплава и уменьшает его чувствительность к толчкам и ударам. Так, например, резец из суперкобальтовой стали (18% Co) оказался самым износоустойчивым и с лучшими режущими свойствами по сравнению с резцами из ванадиевой стали (0% Co) и кобальтовой стали (6% Co). Также кобальтовый сплав может использоваться для защиты от износа поверхностей деталей, подверженных большим нагрузкам. Твердый сплав способен увеличить срок службы стальной детали в 4-8 раз.

Также стоит отметить магнитные свойства кобальта. Данный металл способен сохранять эти свойства после однократного намагничивания. Магниты должны иметь высокое сопротивление к размагничиванию, быть устойчивыми по отношению к температуре и вибрациям, легко поддаваться механической обработке. Добавление кобальта в стали позволяет им сохранять магнитные свойства при высоких температурах и вибрациях, а также увеличивает сопротивление размагничиванию. Так, например, японская сталь, содержащая до 60% Co, имеет большую коэрцитивную силу (сопротивление размагничиванию) и всего лишь на 2-3,5% теряет магнитные свойства при вибрациях. Магнитные сплавы на основе кобальта применяют при производстве сердечников электромоторов, трансформаторов и в других электротехнических устройствах.

Стоит отметить, что кобальт также нашел применение в авиационной и космической промышленности. Кобальтовые сплавы постепенно начинают конкурировать с никелевыми, которые хорошо зарекомендовали себя и давно используются в данной отрасли промышленности. Сплавы, содержащие Co, используются в двигателях, где достигается достаточно высокая температура, в конструкциях авиационных турбин. Никелевые сплавы при высоких температурах теряют свою прочность (при температурах от 1038°С) и тем самым проигрывают кобальтовым.

В последнее время кобальт и его сплавы стали применяться при изготовлении ферритов, в производстве «печатных схем» в радиотехнической промышленности, при изготовлении квантовых генераторов и усилителей. Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов. Силицид кобальта отличный термоэлектрический материал и позволяет производить термоэлектрогенераторы с высоким КПД. Соединения Co, введенные в стекла при их варке, обеспечивают красивый синий (кобальтовый) цвет стеклянных изделий.