Биографии Характеристики Анализ

Свинец: история открытия элемента. Особенности свинца, его основные характеристики и применение

В художественной литературе часто приходится встречаться с эпитетом «свинцовый». Как правило, он означает тяжесть в прямом или переносном смысле; иногда же он указывает на угрюмый сине-серый цвет. Против последнего сравнения возражать не приходится. Первое же требует уточнений. Среди металлов, используемых техникой нашего времени, многие тяжелее свинца. Свинец всплывает на поверхность, будучи погружен в . В расплаве меди свинцовый кораблик, несомненно, опустился бы на дно, тогда как в золоте плавал бы с очень большой легкостью. «Бы» - потому, что этого произойти не может: свинец плавится задолго до меди или золота (температуры плавления - 327, 1083 и 1063°С соответственно), и кораблик расплавится раньше, чем утонет.
Народы древности не могли изготовить из свинца ни меча, ни лемеха, ни даже горшка - для этого он слишком мягок и легкоплавок. Но в природе нет ни одного металла, который при обычных условиях мог бы соперничать с ним в пластичности. По десятибалльной «алмазной» шкале Мооса сравнительная твердость элемента № 82 выражается цифрой 1,5. Чтобы получить на свинце какое-нибудь изображение или надпись, нет надобности прибегать к чекану, достаточно простого тиснения. Отсюда - свинцовые печати старины. И в наше время принято товарные вагоны, сейфы, складские помещения опечатывать свинцовой пломбой. Кстати, само слово «пломба» (а их сейчас делают из разных материалов) произошло, видимо, от латинского названия свинца plumbum; по-французски название элемента - plomb.

Столь примитивное использование пластичности свинца, как получение на нем оттисков, для современной техники кажется анахронизмом. Тем не менее отпечатки на свинце иногда незаменимы и в наше время.
При глубинном бурении инструмент отнюдь не застрахован от поломок, вызывающих подчас аварии. Если на глубине нескольких сот метров в скважине останется сломанный бур, то как его извлечь обратно, как подцепить?
Самое простое и падежное в таком случае средство - свинцовая болванка. Ее опускают в скважину, и она расплющивается от удара, наткнувшись на сломанный бур. Извлеченная на поверхность болванка «предъявит» отпечаток, по которому можно определить, каким образом, за какую часть зацепить обломок. Появились, правда, гораздо более удобные «осведомители» - каротажные телеустановки. Но насколько они дороже, прихотливей, сложнее!
Свинец очень легко куется и прокатывается. Уже при давлении 2 т/см 2 свинцовая стружка спрессовывается в сплошную монолитную массу. С увеличением давления до 5 т/см 2 твердый свинец переходит в текучее состояние. Свинцовую проволоку получают, продавливая через фильеру не расплав, а твердый свинец. Обычным волочением ее сделать нельзя из-за малой разрывной прочности свинца.

Свинец и наука

В Аламогордо - место первого атомного взрыва - Энрико Ферми выехал в танке, оборудованном свинцовой защитой. Чтобы понять, почему от гамма-излучения защищаются именно свинцом, нам необходимо обратиться к сущности поглощения коротковолнового излучения.
Гамма-лучи, сопровождающие радиоактивный распад, идут из ядра, энергия которого почти в миллион раз превышает ту, что «собрана» во внешней оболочке атома. Естественно, что гамма-лучи неизмеримо энергичнее лучей световых. Встречаясь с веществом, фотон или квант любого излучения теряет свою энергию, этим-то и выражается его поглощение. Но энергия лучей различна. Чем короче их волна, тем они энергичнее, или, как принято выражаться, жестче. Чем плотнее среда, через которую проходят лучи, тем сильнее она их задерживает. Свинец плотен. Ударяясь о поверхность металла, гамма-кванты выбивают из нее электроны, на что расходуют свою энергию. Чем больше атомный номер элемента, тем труднее выбить электрон с его внешней орбиты из-за большей силы притяжения ядром.
Возможен и другой случай, когда гамма-квант сталкивается с электроном, сообщает ему часть своей энергии и продолжает свое движение. Но после встречи он стал менее энергичным, более «мягким», и в дальнейшем слою тяжелого элемента поглотить такой квант легче. Это явление носит название комптон-эффекта по имени открывшего его американского ученого.
Чем жестче лучи, тем больше их проникающая способность - аксиома, не требующая доказательств. Однако ученых, положившихся на эту аксиому, ожидал весьма любопытный сюрприз. Вдруг выяснилось, что гамма-лучи энергией более 1 млн. эв задерживаются свинцом не слабее, а сильнее менее жестких! Факт, казалось, противоречащий очевидности. После проведения тончайших экспериментов выяснилось, что гамма-квант энергией более 1,02 Мэв в непосредственной близости от ядра «исчезает», превращаясь в пару электрон - позитрон, и каждая из частиц уносит с собой половину затраченной на их образование энергии. Позитрон недолговечен и, столкнувшись с электроном, превращается в гамма-квант, но уже меньшей энергии. Образование электронно-позитронных пар наблюдается только у гамма-квантов высокой энергии и только вблизи от «массивного» ядра, то есть в элементе с большим атомным номером.
Свинец - один из последних стабильных элементов таблицы Менделеева . И из тяжелых элементов - самый доступный, с отработанной веками технологией добычи, с разведанными рудами. И очень пластичный. И очень удобный в обработке. Вот почему свинцовая защита от излучения - самая распространенная. Пятнадцати-двадцатисантиметрового слоя свинца достаточно, чтобы предохранить людей от действия излучения любого известного науке вида.
Коротко упомянем еще об одной стороне служения свинца науке. Она тоже связана с радиоактивностью.
В часах, которыми мы пользуемся, нет свинцовых деталей. Но в тех случаях, когда время измеряют не часами и минутами, а миллионами лет, без свинца не обойтись. Радиоактивные превращения урана и тория завершаются образованием стабильных изотопов элемента № 82. При этом, правда, получается разный свинец. Распад изотопов 235U и 238U приводит в конечном итоге к изотопам 207РЬ и 208РЬ. Наиболее распространенный изотоп тория 232Th заканчивает свои превращения изотопом 208РЬ. Установив соотношение изотопов свинца в составе геологических пород, можно узнать, сколько времени существует тот или иной минерал. При наличии особо точных приборов (масс- спектрометров) возраст породы устанавливают по трем независимым определениям - по соотношениям 206Pb: 238U: 207Pb: 235U и 208Pb: 232Th.
Начнем с того, что эти строчки отпечатаны литерами, изготовленными из свинцового сплава. Главные компоненты типографских сплавов - свинец, олово и сурьма. Интересно, что свинец и олово стали использовать в книгопечатании с первых его шагов. Но тогда они не составляли единого сплава. Немецкий первопечатник Иоганн Гутенберг литеры из олова отливал в свинцовые формы, так как считал удобным чеканить из мягкого свинца формы, которые выдерживали определенное количество заливок олова. Нынешние оловянно-свинцовые типографские сплавы составляют так, чтобы они удовлетворяли многим требованиям: они должны иметь хорошие литьевые свойства и незначительную усадку, быть достаточно твердыми и химически стойкими по отношению к краскам и смывающим их растворам; при переплавке должно сохраняться постоянство состава.
Однако служение свинца человеческой культуре началось задолго до появления первых книг. Живопись появилась раньше письменности. На протяжении многих столетий художники использовали краски на свинцовой основе, и они до сих пор не вышли из употребления: желтая - свинцовый крон, красная - сурик и, конечно, свинцовые белила. Между прочим, именно из-за свинцовых белил кажутся темными картины старых мастеров. Под действием микропримесей сероводорода в воздухе свинцовые белила превращаются в темный сернистый свинец PbS...
С давних пор стенки гончарных изделий покрывали глазурями. Простейшая глазурь делается из окиси свинца и кварцевого песка. Ныне санитарный надзор запрещает использовать эту глазурь при изготовлении предметов домашнего обихода: контакт пищевых продуктов с солями свинца должен быть исключен. Но в составе майоликовых глазурей, предназначенных для декоративных целей, сравнительно легкоплавкие соединения свинца используют, как и прежде.
Наконец, свинец входит в состав хрусталя, точнее, не свинец, а его окись. Свинцовое стекло варится без каких-либо осложнений, оно легко выдувается и гранится, сравнительно просто нанести на него узоры и обычную нарезку, винтовую, в частности. Такое стекло хорошо преломляет световые лучи и потому находит применение в оптических приборах.
Добавляя в шихту свинец и поташ (вместо извести), приготовляют страз - стекло с блеском, большим, чем у драгоценных камней .

Свинец в медицине

Попадая в организм, свинец, как и большинство тяжелых металлов, вызывает отравления. И тем не менее свинец нужен медицине. Со времен древних греков остались во врачебной практике свинцовые примочки и пластыри, но этим не ограничивается медицинская служба свинца.
Желчь нужна не только сатирикам. Содержащиеся в ней органические кислоты, прежде всего гликохолевая С 23 Н 36 (ОН) 3 СОNНСН 2 СH 2 COOН, а также таурохолевая С 23 Н 36 (ОН) 3 СОNНСН 2 СH 2 SO 3 Н, стимулируют деятельность печени. А поскольку не всегда и не у всех печень работает с точностью хорошо отлаженного механизма, эти кислоты нужны медицине. Выделяют их и разделяют с помощью уксуснокислого свинца. Свинцовая соль гликохолевой кислоты выпадает при этом в осадок, а таурохолевой - остается в маточном растворе. Отфильтровав осадок, из маточного раствора выделяют и второй препарат, действуя опять же свинцовым соединением - основной уксусной солью.
Но главная работа свинца в медицине связана с диагностикой и рентгенотерапией. Он защищает врачей от постоянного рентгеновского облучения. Для практически полного поглощения лучей Рентгена достаточно на их пути поставить слой свинца в 2-3 мм. Вот почему медицинский персонал рентгеновских кабинетов облачен в фартуки, рукавицы и шлемы из резины, в состав которой введен свинец. И изображение на экране наблюдают через свинцовое стекло.
Таковы главные аспекты взаимоотношений человечества со свинцом - элементом, известным с глубокой древности, но и сегодня служащим человеку во многих областях его деятельности.

– мягкий, ковкий, химически инертный металл весьма стойкий к коррозии. Именно эти качества в основном обуславливают широчайшее его применение в народном хозяйстве. К тому же металл обладает довольно низкой температурой плавления и легко образует разнообразные сплавы.

Давайте поговорим сегодня про и его применение в строительстве и промышленности: сплавы, свинцовые кабельные оболочки, краски на основе него,

Первое применение свинца было связано с его превосходной ковкостью и устойчивостью к коррозии. В результате металл использовался там, где применяться не должен был: при изготовлении посуды, водопроводных труб, умывальников и так далее. Увы, последствия такого использования были самые печальные: свинец является материалом токсичным, как и большинство его соединений и, попадая в организм человека, вызывает множество тяжких повреждений.

  • Настоящее же распространение металл получил после того, как от опытов с электричеством перешли к повсеместному использованию электротока. Именно свинец применяется в многочисленных химических источниках тока. Более 75% от всей доли выплавляемого вещества уходит на производство свинцовых аккумуляторов. Щелочные аккумуляторы, несмотря на большую легкость и надежность, вытеснить их не могут, поскольку свинцовые создают ток более высокого напряжения.
  • Свинец образует множество легкоплавких сплавов с висмутом, кадмием и так далее и все они применяются для получения электрических предохранителей.

Свинец, являясь токсичным, отравляет окружающую среду, да и для человека представляет немалую опасность. Свинцовые аккумуляторы нуждаются в утилизации или что перспективнее в переработке. На сегодня до 40% металла получают путем переработки аккумуляторов.

  • Еще одно интересное применение металла – обмотка сверхпроводящего трансформатора. Свинец был одним из первых металлов, проявивших сверхпроводимость, причем при относительно высокой температуре – 7,17 К (для сравнения температура сверхпроводимости для – 0,82 К).
  • 20% от объема вещества свинец используется при производстве свинцовых оболочек для силовых кабелей при подводной и подземной укладке.
  • Свинец, а, вернее, его сплавы – баббиты, являются антифрикционными. Их повсеместно используют при производстве подшипников.
  • В химической промышленности металл используется при получении кислотоупорной аппаратуры, так как очень неохотно реагирует с кислотами и с очень небольшим их числом. По тем же причинам из него производят трубы для перекачки кислот и сточную канализацию для лабораторий и химических предприятий.
  • В военном производстве роль свинца преуменьшить сложно. Свинцовые шары метали катапульты еще Древнего Рима. Сегодня это не только боеприпас для стрелкового, охотничьего или спортивного оружия, но и инициирующие взрывчатые вещества, например, знаменитый азид свинца.
  • Еще одно общеизвестное применение – припои. предоставляет универсальный материал для соединения всех остальных металлов, которые обычным способом не сплавляются.
  • Свинец металл хотя и мягкий, но относится к тяжелым, к тому же не просто тяжелым, а самым доступным в получении. А с этим связано одно из самых интересных его свойств, хотя и относительно недавно открытых – поглощение радиоактивного излучения, причем любой жесткости. Свинцовая защита применяется везде, где есть угроза повышения радиации – от рентгеновского кабинета до ядерного полигона.

Жесткое излучение обладает большей проникающей способностью, то есть, для защиты от него требуется более толстый слой материала. Однако свинец поглощает жесткое излучение даже лучше, чем мягкое: это связано с образованием электронно-позитронной пары вблизи массивного ядра. Слой свинца толщиной в 20 см способен защитить от любого известного науке излучения.

Во многих случаях альтернативы металлу попросту нет, так что ожидать приостановления из-за его экологической опасности нельзя. Все усилия такого рода должны быть направлены на разработку и внедрение эффективных способов очистки и вторичной переработки.

Данное видео расскажет о добыче и применении свинца:

Его использование в строительстве

Металл в строительных работах применяется нечасто: его токсичность ограничивает круг применения. Однако в составе сплавов или при сооружении специальных конструкций вещество используется. И первое, о чем мы погорим, это кровли из свинца.

Кровля

В качестве свинец применяется с незапамятных времен. В Древней Руси свинцовым листом покрывали церкви и колокольни, так как его цвет прекрасно подходил для этой цели. Металл пластичен, что позволяет получить листы едва ли не любой толщины, а, главное, формы. При перекрытии нестандартных архитектурных элементов, сооружении сложных карнизов свинцовый лист подходит просто идеально, поэтому используется постоянно.

Для кровли выпускают прокатный свинец, как правило, в рулонах. Кроме листов со стандартной ровной поверхностью, есть также материал волнистый – плиссированный, окрашенный, луженный и даже самоклеящийся с одной стороны.

На воздухе свинцовый лист довольно быстро покрывается патиной, состоящей из слоя оксида и карбонатов. Патина защищает металл от коррозии. Но если ее внешний вид по каким-то причина не нравится, кровельный материал можно покрыть специальным патинирующим маслом. Это делается вручную или в производственных условиях.

Звукопоглощение

Звукоизоляция жилища – одна из непреходящих проблем старых, и многих современных домов. Причин тому множество: сама конструкция, где стены или перекрытия проводят звук, материал перекрытий и стен, который не поглощает звук, новшество в виде лифта новой конструкции, который проектом не предусмотрен и создает дополнительную вибрацию и множество других факторов. Но в итоге обитатель квартиры вынужден самостоятельно справляться с этими проблемами.

На предприятии, в звукозаписывающей студии, в здании стадиона эта проблема приобретает куда большие размеры, а решается таким же образом – монтажом звукопоглощающей отделки.

Свинец, как ни странно, используется именно в этой роли – звукопоглотителя. Конструкция материала практически одинакова. Свинцовая пластина малой толщины – 0,2–0,4 мм покрывается защитным полимерным слоем, поскольку металл все же относится к опасным, а с двух сторон пластины закрепляется органический материал – вспененный каучук, полиэтилен, полипропилен. Звукоизолятор поглощает не только звук, но вибрацию.

Механизм таков: звуковая волна, проходя через первый полимерный слой, теряет часть энергии и возбуждает колебания свинцовой пластины. Часть энергии при этом поглощается металлом, а остаток гасится во втором вспененном слое.

Стоит отметить, что направление волны в этом случае никакого значения не имеет.

О том, как используют свинец в строительстве и хозяйстве, расскажет этот видеоролик:

Рентген-кабинеты

Рентгеновское излучение чрезвычайно широко используется в медицине, по сути, составляя базу инструментального обследования. Но если в минимальных дозах особой опасности оно не представляет, то получение большой дозы облучения составляет угрозу для жизни.

При обустройстве рентгеновского кабинета именно свинец используется в качестве защитного слоя:

  • стен и дверей;
  • пола и потолка;
  • мобильных перегородок;
  • средств индивидуальной защиты – фартуков, надплечников, перчаток и других предметов со свинцовыми вставками.

Защиту обеспечивают благодаря определенной толщине экранирующего материала, что требует точных расчетов с учетом размеров помещения, мощности аппаратуры, интенсивности использования и так далее. Способность материала снижать излучение измеряется в «свинцовом эквиваленте» – значении толщины такого слоя чистого свинца, который способен рассчитанное излучение поглотить. Эффективной считается такая защита, которая превосходит указанную величину на ¼ мм.

Уборка рентгеновских кабинетов проводится особым образом: здесь важным является своевременное удаление свинцовой пыли, так как последняя представляет опасность.

Другие направления


Свинец – тяжелый, ковкий, стойкий к коррозии металл, и что самое важное: доступный и достаточно дешевый в производстве. К тому же металл незаменим при защите от излучения. Так что полный отказ от его использования – дело довольно отдаленного будущего.

О проблемах со здоровьем, вызванных применением свинца, расскажет Елена Малышева в видео ниже:

Свинец (лат. plumbum), pb, химический элемент iv группы периодической системы Менделеева; атомный номер 82, атомная масса 207,2. С. - тяжёлый металл голубовато-серого цвета, очень пластичный, мягкий (режется ножом, царапается ногтем). Природный С. состоит из 5 стабильных изотопов с массовыми числами 202 (следы), 204 (1,5%), 206 (23,6%), 207 (22,6%), 208 (52,3%). Последние три изотопа - конечные продукты радиоактивных превращений 238 u, 235 u и 232 th. При ядерных реакциях образуются многочисленные радиоактивные изотопы С. Историческая справка. С. был известен за 6-7 тыс. лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Римляне пользовались свинцовыми трубами для водопроводов. Алхимики называли С. сатурном и обозначали его знаком этой планеты. Соединения С. - «свинцовая зола» pbo, свинцовые белила 2pbco 3 pb (oh) 2 применялись в Древней Греции и Риме как составные части лекарств и красок. Когда было изобретено огнестрельное оружие, С. начали применять как материал для пуль. Ядовитость С. отметили ещё в 1 в. н. э. греческий врач Диоскорид и Плиний Старший, Распространение в природе. Содержание С. в земной коре (кларк) 1,6 · 10 -3 % по массе. Образование в земной коре около 80 минералов, содержащих С. (главный из них галенит pbs), связано в основном с формированием гидротермальных месторождений . В зонах окисления полиметаллических руд образуются многочисленные (около 90) вторичные минералы: сульфаты (англезит pbso 4), карбонаты (церуссит pbco 3), фосфаты [пироморфит pb 5 (po 4) 3 cl]. В биосфере С. в основном рассеивается, его мало в живом веществе (5 · 10 -5 %), морской воде (3 · 10 -9 %). Из природных вод С. отчасти сорбируется глинами и осаждается сероводородом, поэтому он накапливается в морских илах с сероводородным заражением и в образовавшихся из них чёрных глинах и сланцах, Физические и химические свойства. С. кристаллизуется в гранецентрированной кубической решётке (а = 4,9389 å), аллотропических модификаций не имеет. Атомный радиус 1,75 å, ионные радиусы: pb 2+ 1,26å, pb 4+ 0,76 å: плотность 11,34 г/см 3 (20°С); t nл 327,4 °С; t kип 1725 °С; удельная теплоёмкость при 20°С 0,128 кдж/ (кг · К ) ; теплопроводность 33,5 вт/ (м · К ) ; температурный коэффициент линейного расширения 29,1 · 10 -6 при комнатной температуре; твёрдость по Бринеллю 25-40 Мн/м 2 (2,5-4 кгс/мм 2 ) ; предел прочности при растяжении 12-13 Мн/м 2 , при сжатии около 50 Мн/м 2 ; относительное удлинение при разрыве 50-70%. Наклёп не повышает механических свойств С., т. к. температура его рекристаллизации лежит ниже комнатной (около -35 °С при степени деформации 40% и выше). С. диамагнитен, его магнитная восприимчивость - 0,12 · 10 -6 . При 7,18 К становится сверхпроводником.

Конфигурация внешних электронных оболочек атома pb 6s 2 6р 2 , в соответствии с чем он проявляет степени окисления +2 и +4. С. сравнительно мало активен химически. Металлический блеск свежего разреза С. постепенно исчезает на воздухе вследствие образования тончайшей плёнки pbo, предохраняющей от дальнейшего окисления. С кислородом образует ряд окислов pb 2 o, pbo, pbo 2 , pb 3 o 4 и pb 2 o 3.

В отсутствие o 2 вода при комнатной температуре на С. не действует, но он разлагает горячий водяной пар с образованием окиси С. и водорода. Соответствующие окислам pbo и pbo 2 гидроокиси pb (oh) 2 и pb (oh) 4 имеют амфотерный характер.

Соединение С. с водородом pbh 4 получается в небольших количествах при действии разбавленной соляной кислоты на mg 2 pb. pbh 4 - бесцветный газ, который очень легко разлагается на pb и h 2 . При нагревании С. соединяется с галогенами, образуя галогениды pbx 2 (x - галоген). Все они малорастворимы в воде. Получены также галогениды pbx 4: тетрафторид pbf 4 - бесцветные кристаллы и тетрахлорид pbcl 4 - жёлтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя f 2 или cl 2 ; гидролизуются водой. С азотом С. не реагирует . Азид свинца pb (n 3 ) 2 получают взаимодействием растворов азида натрия nan 3 и солей pb (ii); бесцветные игольчатые кристаллы, труднорастворимые в воде; при ударе или нагревании разлагается на pb и n 2 со взрывом. Сера действует на С. при нагревании с образованием сульфида pbs - чёрного аморфного порошка. Сульфид может быть получен также при пропускании сероводорода в растворы солей pb (ii); в природе встречается в виде свинцового блеска - галенита.

В ряду напряжений pb стоит выше водорода (нормальные электродные потенциалы соответственно равны - 0,126 в для pb u pb 2+ + 2e и + 0,65 в для pb u pb 4+ + 4e). Однако С. не вытесняет водород из разбавленной соляной и серной кислот, вследствие перенапряжения h 2 на pb, а также образования на поверхности металла защитных плёнок труднорастворимых хлорида pbcl 2 и сульфата pbso 4 . Концентрированные h 2 so 4 и hcl при нагревании действуют на pb, причём получаются растворимые комплексные соединения состава pb (hso 4) 2 и h 2 . Азотная, уксусная, а также некоторые органические кислоты (например, лимонная) растворяют С. с образованием солей pb (ii). По растворимости в воде соли делятся на растворимые (ацетат, нитрат и хлорат свинца), малорастворимые (хлорид и фторид) и нерастворимые (сульфат, карбонат, хромат, фосфат, молибдат и сульфид). Соли pb (iv) могут быть получены электролизом сильно подкисленных h 2 so 4 растворов солей pb (ii); важнейшие из солей pb (iv) - сульфат pb (so 4) 2 и ацетат pb (c 2 h 3 o 2) 4 . Соли pb (iv) склонны присоединять избыточные отрицательные ионы с образованием комплексных анионов, например плюмбатов (pbo 3) 2- и (pbo 4) 4- , хлороплюмбатов (pbcl 6) 2- , гидроксоплюмбатов 2- и др. Концентрированные растворы едких щелочей при нагревании реагируют с pb с выделением водорода и гидроксоплюмбитов типа x 2 .

Получение. Металлический С. получают окислительным обжигом pbs с последующим восстановлением pbo до сырого pb («веркблея») и рафинированием (очисткой) последнего. Окислительный обжиг концентрата ведётся в агломерационных ленточных машинах непрерывного действия. При обжиге pbs преобладает реакция: 2pbs + 3o 2 = 2pbo + 2so 2 . Кроме того, получается и немного сульфата pbso 4 , который переводят в силикат pbsio 3 , для чего в шихту добавляют кварцевый песок. Одновременно окисляются и сульфиды других металлов (cu, zn, fe), присутствующие как примеси. В результате обжига вместо порошкообразной смеси сульфидов получают агломерат - пористую спекшуюся сплошную массу, состоящую преимущественно из окислов pbo, cuo, zno, fe 2 o 3 . Куски агломерата смешивают с коксом и известняком и эту смесь загружают в ватержакетную печь, в которую снизу через трубы («фурмы») подают воздух под давлением. Кокс и окись углерода восстанавливают pbo до pb уже при невысоких температурах (до 500 °С). При более высоких температурах идут реакции:

caco 3 = cao + co 2

2pbsio 3 + 2cao + С = 2pb + 2casio 3 + co 2 .

Окислы zn и fe частично переходят в znsio 3 и fesio 3 , которые вместе с casio 3 образуют шлак, всплывающий на поверхность. Окислы С. восстанавливаются до металла. Сырой С. содержит 92-98% pb, остальное - примеси cu, ag (иногда au), zn, sn, as, sb, bi, fe. Примеси cu и fe удаляют зейгерованием. Для удаления sn, as, sb через расплавленный металл продувают воздух. Выделение ag (и au) производится добавкой zn, который образует «цинковую пену», состоящую из соединений zn c ag (и au), более лёгких, чем pb, и плавящихся при 600-700 °С. Избыток zn удаляют из расплавленного pb пропусканием воздуха, водяного пара или хлора. Для очистки от bi к жидкому pb добавляют ca или mg, дающие трудноплавкие соединения ca 3 bi 2 и mg 3 bi 2 . Рафинированный этими способами С. содержит 99,8-99,9% pb. Дальнейшая очистка производится электролизом, в результате чего достигается чистота не менее 99,99%. Применение. С. широко применяют в производстве свинцовых аккумуляторов, используют для изготовления заводской аппаратуры, стойкой в агрессивных газах и жидкостях. С. сильно поглощает g -лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и др.). Большие количества С. идут на изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. На основе С. изготовляют многие свинцовые сплавы. Окись С. pbo вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления. Сурик, хромат (жёлтый крон) и основной карбонат С. (свинцовые белила) - ограниченно применяемые пигменты. Хромат С. - окислитель, используется в аналитической химии. Азид и стифнат (тринитрорезорцинат) - инициирующие взрывчатые вещества. Тетраэтилсвинец - антидетонатор. Ацетат С. служит индикатором для обнаружения h 2 s. В качестве изотопных индикаторов используются 204 pb (стабильный) и 212 pb (радиоактивный).

С. А. Погодин.

С. в организме. Растения поглощают С. из почвы, воды и атмосферных выпадений. В организм человека С. попадает с пищей (около 0,22 мг ) , водой (0,1 мг ) , пылью (0,08 мг ) . Безопасный суточный уровень поступления С. для человека 0,2-2 мг. Выделяется главным образом с калом (0,22-0,32 мг ) , меньше с мочой (0,03-0,05 мг ) . В теле человека содержится в среднем около 2 мг С. (в отдельных случаях - до 200 мг ) . У жителей промышленно развитых стран содержание С. в организме выше, чем у жителей аграрных стран, у горожан выше, чем у сельских жителей. Основное депо С. - скелет (90% всего С. организма): в печени накапливается 0,2-1,9 мкг/г; в крови - 0,15-0,40 мкг/мл; в волосах - 24 мкг/г, в молоке -0,005-0,15 мкг/мл; содержится также в поджелудочной железе, почках, головном мозге и др. органах. Концентрация и распределение С. в организме животных близки к показателям, установленным для человека. При повышении уровня С. в окружающей среде возрастает его отложение в костях, волосах, печени. Биологические функции С. не установлены.

Ю. И. Раецкая.

Отравления С. и его соединениями возможны при добыче руд, выплавке С., при производстве свинцовых красок, в полиграфии, гончарном, кабельном производствах, при получении и применении тетраэтилсвинца и др. Бытовые отравления возникают редко и наблюдаются при употреблении в пищу продуктов, которые длительно хранили в глиняной посуде, покрытой глазурью, содержащей свинцовый сурик или глёт. С. и его неорганические соединения в виде аэрозолей проникают в организм в основном через дыхательные пути, в меньшей степени - через желудочно-кишечный тракт и кожу. В крови С. циркулирует в виде высокодисперсных коллоидов - фосфата и альбумината. Выделяется С. в основном через кишечник и почки. В развитии интоксикации играют роль нарушение порфиринового, белкового, углеводного и фосфатного обменов, дефицит витаминов С и b 1 , функциональные и органические изменения центральной и вегетативной нервной системы, токсическое влияние С. на костный мозг. Отравления могут быть скрытыми (т. н. носительство), протекать в лёгкой, средней тяжести и тяжёлой формах.

Наиболее частые признаки отравления С. : кайма (полоска лиловато-аспидного цвета) по краю дёсен, землисто-бледная окраска кожных покровов; ретикулоцитоз и другие изменения крови, повышенное содержание порфиринов в моче, наличие в моче С. в количествах 0,04-0,08 мг/л и более и т. д. Поражение нервной системы проявляется астенией, при выраженных формах - энцефалопатией, параличами (преимущественно разгибателей кисти и пальцев рук), полиневритом. При т. н. свинцовой колике возникают резкие схваткообразные боли в животе, запор, продолжающиеся от нескольких ч до 2-3 нед; нередко колика сопровождается тошнотой, рвотой, подъёмом артериального давления, температуры тела до 37,5-38 °С. При хронической интоксикации возможны поражения печени, сердечно-сосудистой системы, нарушение эндокринных функций (например, у женщин - выкидыши, дисменорея, меноррагии и др.). Угнетение иммунобиологической реактивности способствует повышенной общей заболеваемости.

Лечение: специфические (комплексонообразователи и др.) и общеукрепляющие (глюкоза, витамины и др.) средства, физиотерапия, санаторно-курортное лечение (Пятигорск, Мацеста, Серноводск). Профилактика: замена С. менее токсичными веществами (например, цинковые и титановые белила вместо свинцовых), автоматизация и механизация операций в производстве С., эффективная вытяжная вентиляция, индивидуальная защита рабочих, лечебное питание, периодическая витаминизация, предварительные и периодические медицинские осмотры.

Препараты С. используют в медицинской практике (только наружно) как вяжущие и антисептические средства. Применяют: свинцовую воду (при воспалительных заболеваниях кожи и слизистых оболочек), простой и сложный свинцовые пластыри (при гнойно-воспалительных заболеваниях кожи, фурункулах) и др.

Л. А. Каспаров.

Лит.: Андреев В. М., Свинец, в кн.: Краткая химическая энциклопедия, т. 4, М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Чижиков Д. М., Металлургия свинца, в кн.: Справочник металлурга по цветным металлам, т. 2, М., 1947; Вредные вещества в промышленности, под ред. Н. В. Лазарева, 6 изд., ч. 2, Л., 1971; Тарабаева Г. И., Действие свинца на организм и лечебно-профилактические мероприятия, А.-А., 1961; Профессиональные болезни, 3 изд., М., 1973,

Радиус атома 175 пм Энергия ионизации
(первый электрон) 715,2 (7,41) кДж /моль (эВ) Электронная конфигурация 4f 14 5d 10 6s 2 6p 2 Химические свойства Ковалентный радиус 147 пм Радиус иона (+4e) 84 (+2e) 120 пм Электроотрицательность
(по Полингу) 1,8 Электродный потенциал Pb←Pb 2+ -0,126 В
Pb←Pb 4+ 0,80 В Степени окисления 4, 2 Термодинамические свойства простого вещества Плотность 11,3415 /см ³ Молярная теплоёмкость 26,65 Дж /( ·моль) Теплопроводность 35,3 Вт /( ·) Температура плавления 600,65 Теплота плавления 4,77 кДж /моль Температура кипения 2 013 Теплота испарения 177,8 кДж /моль Молярный объём 18,3 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированая Параметры решётки 4,950 Отношение c/a n/a Температура Дебая 88,00
Pb 82
207,2
4f 14 5d 10 6s 2 6p 2
Свинец

Свинец — элемент главной подгруппы четвёртой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 82. Обозначается символом Pb (лат. Plumbum). Простое вещество свинец (CAS-номер: 7439-92-1) — ковкий, сравнительно легкоплавкий металл серого цвета.

Происхождение слова «свинец» неясно. В большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом. Слово с тем же значением, но похожее по произношению на «свинец», встречается только в языках балтийской группы: švinas (литовский), svins (латышский).

Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber — водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей — Пьомбе, из которой по некоторым данным ухитрился бежать Казанова. Известен с глубокой древности. Изделия из этого металла (монеты, медальоны) использовались в Древнем Египте, свинцовые водопроводные трубы — в Древнем Риме. Указание на свинец как на определённый металл имеется в Ветхом Завете. Выплавка свинца была первым из известных человеку металлургических процессов. До 1990 г. большое количество свинца использовалось (вместе с сурьмой и оловом) для отливки типографских шрифтов, а также в виде тетраэтилсвинца — для повышения октанового числа моторного топлива.

Нахождение свинца в природе

Получение свинца

Страны — крупнейшие производители свинца (включая вторичный свинец) на 2004 год (по данным ILZSG), в тыс. тонн:

ЕС 2200
США 1498
Китай 1256
Корея 219

Физические свойства свинца

Свинец имеет довольно низкую теплопроводность, она составляет 35,1 Вт/(м·К) при температуре 0°C. Металл мягкий, легко режется ножом. На поверхности он обычно покрыт более или менее толстой плёнкой оксидов, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет.

Плотность — 11,3415 г/см³ (при 20 °C)

Температура плавления — 327,4 °C

Температура кипения — 1740 °C

Химические свойства свинца

Электронная формула: KLMN5s 2 5p 6 5d 10 6s 2 6p 2 , в соответствии с чем он имеет степени окисления +2 и +4. Свинец не очень активен химически. На металлическом разрезе свинца виден металлический блеск, постепенно исчезающий из-за образования тонкой плёнки РbО.

С кислородом образует ряд соединений Рb2О, РbО, РbО2, Рb2О3, Рb3О4. Без кислорода вода при комнатной температуре не реагирует со свинцом, но при большой температуре получают оксида свинца и водород при взаимодействии свинца и горячего водяного пара.

Оксидам РbО и РbО2 соответствуют амфотерные гидрооксиды Рb(ОН)2 и Рb(ОН)4.

При реакции Mg2Pb и разбавленной HCl получается небольшое количество РbН4. PbH4 — газозообразное вещество без запаха, которое очень легко разлагается на свинец и и водород. При большой температуре галогены образовывают со свинцом соединения вида РbХ2 (X — соответствующий галоген). Все эти соединения мало растворяются в воде. Могут быть получены галогениды и типа РbХ4. Свинец с азотом прямо не реагирует. Азид свинца Pb(N3)2 получают косвенным путём: взаимодействием растворов солей Рb (II) и соли NaN3. Сульфиды свинца можно получить при нагревании серы со свинцом, образуется сульфид PbS. Сульфид получают также пропусканием сероводорода в растворы солей Pb (II). В ряду напряжений Pb стоит левее водорода, но свинец не вытесняет водород из разбавленных HCl и H2SO4, из-за перенапряжения Н2 на Pb, а также на поверхности металла образуются плёнки трудно-растворимых хлорида РbCl2 и сульфата PbSO4, защищающие металл от дальнейшего действия кислот. Концентрированные кислоты типа H2SO4 и НCl при нагревании действуют на Pb и образуют с ним растворимые комплексные соединения состава Pb(HSO4)2 и Н2[РbCl4]. Азотная, а также некоторые органических кислоты (например, лимонная) растворяют свинец с получением солей Рb(II). По растворимости в воде соли свинца делятся на нерастворимые (напрммер, сульфат, карбонат, хромат, фосфат, молибдат и сульфид), малорастворимые (вроде, хлорид и фторид) и растворимые (к примеру,ацетат, нитрат и хлорат свинца). Соли Pb (IV) могут быть получены электролизом сильно подкисленных серной кислотой растворов солей Рb (II). Соли Pb (IV) присоединяют отрицательные ионы с образованием комплексных анионов, например, плюмбатов (РbО3)2- и (РbО4)4-, хлороплюмбатов (РbCl6)2-, гидроксоплюмбатов [Рb(ОН)6]2- и других. Концентрированные растворы едких щелочей при нагревании реагируют с Pb с выделением водорода и гидроксоплюмбитов типа Х2[Рb(ОН)4]. Еион (Ме=>Ме++e)=7,42 эВ.

Основные соединения свинца

Оксиды свинца

Оксиды свинца имеют преимущественно основный или амфотерный характер. Многие из них окрашены в красные, жёлтые, чёрные, коричневые цвета. На фотографии в начале статьи, на поверхности свинцовой отливки, в её центре видны цвета побежалости — это тонкая плёнка оксидов свинца, образовавшаяся из-за окисления горячего металла на воздухе.

Галогениды свинца

Халькогениды свинца

Халькогениды свинца — сульфид свинца, селенид свинца и теллурид свинца — представляют собой кристаллы чёрного цвета, которые являются узкозонными полупроводниками.

Соли свинца

Сульфат свинца
Нитрат свинца
Ацетат свинца — свинцовый сахар, относится к очень ядовитым веществам. Ацетат свинца, или свинцовый сахар, Pb(CH 3 COO) 2 ·3H 2 O существует в виде бесцветных кристаллов или белого порошка, медленно выветривающегося с потерей гидратной воды. Соединение хорошо растворимо в воде. Оно обладает вяжущим действием, но так как содержит ионы ядовитого свинца, то применяется как наружное в ветеринарии. Ацетат применяют также в аналитической химии, крашении, ситценабивном деле, как наполнитель шёлка и для получения других соединений свинца. Основной ацетат свинца Pb(CH 3 COO) 2 ·Pb(OH) 2 — менее растворимый в воде белый порошок — используется для обесцвечивания органических растворов и очистки растворов сахара перед анализом.

Применение свинца

Свинец в народном хозяйстве

Нитрат свинца применяется для производства мощных смесевых взрывчатых веществ. Азид свинца применяется как наиболее широкоупотребляемый детонатор (инициирующее взрывчатое вещество). Перхлорат свинца используется для приготовления тяжелой жидкости (плотность 2,6 г/см³), используемой во флотационном обогащении руд, он иногда применяется в мощных смесевых взрывчатых веществах как окислитель. Фторид свинца самостоятельно, а так же совместно с фторидом висмута, меди, серебра применяется в качестве катодного материала в химических источниках тока. Висмутат свинца, сульфид свинца PbS, иодид свинца применяются в качестве катодного материала в литиевых аккумуляторных батареях. Хлорид свинца PbCl2 в качестве катодного материала в резервных источниках тока. Теллурид свинца PbTe широко применяется в качестве термоэлектрического материала (термо-э.д.с 350 мкВ/К), самый широкоприменяемый материал в производстве термоэлектрогенераторов и термоэлектрических холодильников. Двуокись свинца PbO2 широко применяется не только в свинцовом аккумуляторе, но так же на её основе производятся многие резервные химические источники тока, например — свинцово-хлорный элемент, свинцово-плавиковый элемент и др.

Свинцовые белила , основной карбонат Pb(OH)2.PbCO3, плотный белый порошок, — получается из свинца на воздухе под действием углекислого газа и уксусной кислоты. Использование свинцовых белил в качестве красящего пигмента теперь не так распространено, как ранее, из-за их разложения под действием сероводорода H2S. Свинцовые белила применяют также для производства шпатлевки, в технологии цемента и свинцовокарбонатной бумаги.

Арсенат и арсенит свинца применяют в технологии инсектицидов для уничтожения насекомых — вредителей сельского хозяйства (непарного шелкопряда и хлопкового долгоносика). Борат свинца Pb(BO2)2·H2O, нерастворимый белый порошок, используют для сушки картин и лаков, а вместе с другими металлами — в качестве покрытий стекла и фарфора. Хлорид свинца PbCl2, белый кристаллический порошок, растворим в горячей воде, растворах других хлоридов и особенно хлорида аммония NH4Cl. Его применяют для приготовления мазей при обработке опухолей.

Хромат свинца PbCrO4 известен как хромовый желтый краситель, является важным пигментом для приготовления красок, для окраски фарфора и тканей. В промышленности хромат применяют в основном в производстве желтых пигментов. Нитрат свинца Pb(NO3)2 — белое кристаллическое вещество, хорошо растворимое в воде. Это вяжущее ограниченного применения. В промышленности его используют в спичечном производстве, крашении и набивке текстиля, окраске рогов и гравировке. Сульфат свинца Pb(SO4)2, нерастворимый в воде белый порошок, применяют как пигмент в аккумуляторах, литографии, в технологии набивных тканей.

Сульфид свинца PbS, чёрный нерастворимый в воде порошок, используют при обжиге глиняной посуды и для обнаружения ионов свинца.

Поскольку свинец хорошо поглощает γ-излучение, он используется для радиационной защиты в рентгеновских установках и в ядерных реакторах. Кроме того, свинец рассматривается в качестве теплоносителя в проектах перспективных ядерных реакторов на быстрых нейтронах.

Значительное применение находят сплавы свинца. Пьютер (сплав олова со свинцом), содержащий 85-90 % Sn и 15-10 % Pb, формуется, недорог и используется в производстве домашней утвари. Припой, содержащий 67 % Pb и 33 % Sn, применяют в электротехнике. Сплавы свинца с сурьмой используют в производстве пуль и типографского шрифта, а сплавы свинца, сурьмы и олова — для фигурного литья и подшипников. Сплавы свинца с сурьмой обычно применяют для оболочек кабелей и пластин электрических аккумуляторов. Соединения свинца используются в производстве красителей, красок, инсектицидов, стеклянных изделий и как добавки к бензину в виде тетраэтилсвинца (C2H5)4Pb (умеренно летучая жидкость, пары к-рой в малых концентрациях имеют сладковатый фруктовый запах, в больших-неприятный запах; Тпл = 130 °C, Ткип = 80°С/13 мм рт.ст.; плотн. 1,650 г/см³; nD2v = 1,5198; не раств. в воде, смешивается с орг. растворителями; высокотоксичен, легко проникает через кожу; ПДК = 0,005 мг/м³; ЛД50 = 12,7 мг/кг (крысы, перорально)) для повышения октанового числа.

Свинец в медицине

Экономические показатели

Цены на свинец в слитках (марка С1) в 2006 году составили в среднем 1,3—1,5 долл/кг.

Страны, крупнейшие потребители свинца в 2004 году, в тыс. тонн (по данным ILZSG):

Китай 1770
ЕС 1553
США 1273
Корея 286

Физиологическое действие

Свинец и его соединения токсичны. Попадая в организм, свинец накапливается в костях, вызывая их разрушение. ПДК в атмосферном воздухе соединений свинца 0,003 мг/м³, в воде 0,03 мг/л, почве 20,0 мг/кг. Выброс свинца в Мировой океан 430—650 тысяч т/год.

Свинец - это один из редких самородных металлов, имеющий бело-серебристый цвет. Он мягкий, легкоплавкий, пластичный.

Этот металл был известен уже в древние времена. В данной статье мы поговорим об использовании, производстве, физических и химических свойствах плюмбума Pb — химического элемента таблицы Менделеева.

Что такое свинец

Это элемент в химической таблице под атомным номером 82, он же Pb (Plumbum).

В классическом виде он обычно имеет серебряный цвет. Удельный вес — 11,35 г/см 3 .

История открытия химического элемента Pb

На ближнем Востоке свинец стал известен ещё с 3 тысячелетия до нашей эры, где он участвовал в создании кирпичей, статуй и разных бытовых предметов. Его сопоставляли Сатурну.

Археологические раскопки, которые проводились на территории Древнего царства Египта, помогли найти свинцовые изделия. Подобные открытия сделаны и на территории бывшей Месопотамии и Армении.

Его использовали не только в качестве самостоятельного металла для изделия, но также для очищения серебра и золота. Затем металлу нашли новую задачу – им обшивали корпуса кораблей и применяли в медицинских целях.

В конце 17 века появилось хрустальное стекло за счет добавления в стекло свинца. После, из него стали изготавливать пули.

Характеристика свинца

Если вас интересует, какого цвета свинец, то ответ следующий - плюмбум имеет голубовато-серый оттенок. Он плотный и тяжелый. Достаточно несложно добывается.

Как и любой из существующих металлов, свинец отличается своими физическими и химическими особенностями, которые и отличают его от других металлов.

Физические свойства

Металл не отличает высокая твердость. Это довольно мягкий металл, легко режущийся лезвием. Плавится при невысокой температуре плавления (327 градусов).

Температура кристаллизации — 327 градусов, а температура кипения — 2022 К. Плюмбум подлежит достаточно быстрому окислению на открытом воздухе.

Полезно знать: неприятным критерием свинца является его токсичность: в хроническом течении он собирается во внутренних органах и костной ткани, чем вызывает нарушения в организме живых существ.

Теплопроводность в два раза меньше железа.

Молярная масса 207,2 а. е. м. ± 0,1 а. е. м.

Формула простых оксидов - оксид свинца (II) PbO и оксид свинца (IV) PbO2 и смешанный Pb3O4 (свинцовый сурик).

Химические свойства

Является металлом малоактивным, стоящим в электрохимическом ряду перед водородом , что делает его легко вытесняемым иными металлами из растворов его солей. Степень окисления +2.

Заметно растворим в лимонной, уксусной и винной кислотах. Бесцветные ядовитые жидкости — производные свинца. Его пары ядовиты.

Некоторые школьники и студенты спрашивают — свинец магнитится или нет? Нет, такие качества отсутствуют.

Помимо токсичности, хочется знать, свинец радиоактивен или нет? Искусственные изотопы металла радиоактивны.

Основные соединения свинца

Галогениды образуются, взаимодействуя с фтором, хлором, бромом, йодом, и астатом. Халькогениды — с кислородом, серой, селеном, теллуром, и полонием. Пниктиды — с азотом и фосфором .

Области применения

Элемент получил широкое применение:

  1. В электротехнической системе, благодаря своей сопротивляемости коррозии, применяется в целях защиты кабелей, сверхпроводников, применяются свинцовые аккумуляторы.
  2. В военной промышленности — делают пули и снаряды, взрывчатки и детонаторы.
  3. В медицине — является защитником от радиации (пример: обследование рентгеном).
  4. В производстве - свинец входит в состав цемента, используется для защитных барьеров керамики и стекла.

Люди, боящиеся отравления свинцом, спрашивают — где можно найти свинец? В домашних условиях его можно обнаружить в аккумуляторах, в кабелях.

Производство свинца

Около половины металла производится из руд. Годовая добыча составляет 5 млн. тонн. Переработка крайне выгодна в плане экономии.

Приемы получения свинца это:

  • пирометаллургический;
  • гидрометаллургический.

В пирометаллургическом способе имеющиеся компоненты переплавляются, а во втором — наблюдается разложение существующих концентратов.

Наибольшими объёмами добычи свинцовой руды могут быть отмечены такие страны, как:

  • Китай;
  • Мексика;
  • Австралия;
  • Перу.

Добыча свинца в России

Седьмое место по производству этого металла занимает Россия. Доля РФ в запасах этого метала чуть более 2% из-за его низкой концентрации в местных месторождениях. Причем свинец отправляется на экспорт.

Было высчитано, что на территории России находится около 70 месторождений свинца, производящих 93% процента этого металла в таких регионах, как: Красноярский край, Республика Бурятия, Читинская область, Алтайский край и Приморский край.

Можно это выявить в процентном соотношении:

  • Сибирь – приблизительно 75%;
  • Урал – около 15%;
  • Дальний Восток – немногим меньше 10%.

Нахождение в природе

Обычно металл перемешан с каким-либо другим металлом, например, с оловом, а не встречается в чистом виде.

Свинец – является стадией распада урана, поэтому может находиться в урановых рудах. Свинец получается из такого сырья, как галенит.

Заключение

Свинец - это металл, который уже известен людям многие тысячи лет. Такая наука, как химия, сейчас помогает разобраться в его свойствах, чтобы правильно и экономно употребить. Его месторождения располагаются во многих частях Земли.

На мировом рынке его цена достаточно стабильна. Благодаря уникальности своих физико-химических свойств, Pb применяется во многих сферах и отраслях, подлежит импорту и экспорту.