Биографии Характеристики Анализ

Свойства соленоида. Магнитные поля соленоида и тороида

Соленоидом называется проводник, свитый спиралью, по которому пропущен электрический ток (рисунок 1, а ).

Если мысленно разрезать витки соленоида поперек, обозначить направление тока в них, как было указано выше, и определить направление магнитных индукционных линий по "правилу буравчика", то магнитное поле всего соленоида будет иметь такой вид, как показано на рисунке 1, б .

Рисунок 1. Соленоид (а ) и его магнитное поле (б )

Рисунок 2. Компьютерная модель соленоида

На оси бесконечно длинного соленоида, на каждой единице длины которого намотано n 0 витков, напряженность магнитного поля внутри соленоида определяется формулой:

H = I × n 0 .

В том месте, где магнитные линии входят в соленоид, образуется южный полюс, где они выходят - северный полюс.

Для определения полюсов соленоида пользуются "правилом буравчика", применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках катушки соленоида, то поступательное движение буравчика покажет направление магнитного поля (рисунок 3).

Видео про соленоид:

Электромагнит

Соленоид, внутри которого находится стальной (железный) сердечник, называется электромагнитом (рисунок 4 и 5). Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается. Полюсы у электромагнита можно определить, так же как и у соленоида, по "правилу буравчика".


Рисунок 5. Катушка электромагнита

Электромагниты широко применяются в технике. Они служат для создания магнитного поля в электрических генераторах и двигателях, в электроизмерительных приборах, электрических аппаратах и тому подобном.

В установках большой мощности для отключения поврежденного участка цепи вместо плавких предохранителей применяются автоматические, масляные и воздушные выключатели. Для приведения в действие отключающих катушек автоматических выключателей применяются различные реле. Реле называются приборы или автоматы, реагирующие на изменение тока, напряжения, мощности, частоты и прочих параметров.

Из большого числа реле, различных по своему назначению, принципу действия и конструкции, кратко рассмотрим устройство электромагнитных реле. На рисунке 6 представлены конструкции этих реле. Работа реле основана на взаимодействии магнитного поля, создаваемого неподвижной катушкой, по которой проходит ток, и стального подвижного якоря электромагнита. При изменении условий работы в цепи главного тока катушка реле возбуждается, магнитный поток сердечника подтягивает (поворачивает или втягивает) якорь, который замыкает контакты цепи, отключающей катушки привода масляных и воздушных выключателей или вспомогательных реле.


Рисунок 6. Электромагнитное реле

Реле нашли себе применение также в автоматике и телемеханике.

Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков (числа ампер-витков).

Если, например, взять соленоид, по обмотке которого проходит ток 5 А и число витков которого равно 150, то число ампер-витков будет 5 × 150 = 750. Тот же магнитный поток получится если взять 1500 витков и пропустить по ним ток 0,5 А, так как 0,5 × 1500 = 750 ампер-витков.

Увеличить магнитный поток соленоида можно следующими путями: 1) вложить в соленоид стальной сердечник, превратив его в электромагнит; 2) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока); 3) уменьшить воздушный зазор сердечника электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).

Видео про электромагнит:

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l , имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида - неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее,тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный кон­тур ABCDA , как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA , охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA . На участках АВ и CD контур перпендикулярен линиям магнитной индукции и B l = 0. На участке вне соленоида B =0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

(119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био - Савара - Лапласа; в результате получается та же формула (119.2).

Важное значение для практики имеет также магнитное поле тороида - кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симмет­рии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r . Тогда, по теореме о циркуляции (118.1), B × 2p r =m 0 NI , откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N - число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B × 2p r = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Для создания магнитного поля в технике используется соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на общий сердечник (рис. 4.5).

Рассмотрим соленоид длиной L , имеющий N витков, по которому течет ток I . Длину соленоида считаем во много раз большей диаметров его витков. Магнитное поле такого соленоида целиком сосредоточено внутри него и однородно. Снаружи соленоида поле мало и его практически можно считать равным нулю.

Величину индукции магнитного поля соленоида можно найти, складывая магнитные индукции полей, создаваемых каждым витком соленоида. Так как витки соленоида намотаны вплотную друг к другу, на длине dx сосредоточено витков. Суммарный ток, протекающий по кольцу, толщиной dx , равен . В точке, находящейся на оси соленоида каждое такое кольцо создает магнитное поле, согласно (4.7), равное:

.

Суммарное поле:

(4.9)

При интегрировании соленоид считаем бесконечным. Как видно из (4.9) магнитное поле соленоида зависит от плотности намотки – числа витков на единицу длины соленоида .

Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная:

= В n dS = Bcos α × dS , (4.10)

где В n – проекция вектора В на направление, перпендикулярное к площадке dS ; α – угол между вектором нормали n и вектором В .

Положительное направление нормали связано правилом правого винта с током, текущим по контуру, ограничивающему площадку dS . Магнитный поток Ф через произвольную поверхность S можно представить в виде:

Действие магнитного поля на заряды



На электрический заряд q , движущийся в магнитном поле с индукцией В со скоростью V , действует сила Лоренца:

. (4.12)

Абсолютная величина магнитной силы:

F = qvB Sin α ,

где α – угол между векторами V и В .

По правилу векторного произведения магнитная сила F перпендикулярна плоскости, в которой лежат вектора V и B .

Если q >0, магнитная сила F совпадает с направлением векторного произведения [V,B ], если q <0, то противоположно.

Для положительного заряда, движущегося в магнитном поле, как показано на рисунке 4.6, сила F направлена вдоль отрицательного направления оси Z . Продольная компонента скорости V ll под действием магнитного поля изменяться не будет и движение заряженной частицы вдоль оси Х – равномерное. Результирующее движение частицы – по винтовой линии (рис.4.6). Спираль может быть как правой, так и левой в зависимости от знака заряда q .

Радиус спирали R найдем из условия, что при равномерном движении частицы по окружности сила F является центростремительной силой:

,

где m – масса заряженной частицы. Отсюда:

.

Время, за которое частица совершит полный оборот (период):

. (4.13)

Из формулы (4.13) следует, что период обращения частицы не зависит от ее скорости. Однако надо помнить, что этот вывод справедлив только при условии V <<c , где: с – скорость света.

Если движение частицы происходит как в магнитном поле с индукцией B , так и в электрическом поле с напряженностью Е , то на нее действует обобщенная сила Лоренца:

. (4.14)

Электромагнитная индукция

Если поток магнитной индукции сквозь контур изменяется со временем, то, согласно закону электромагнитной индукции Фарадея, в контуре возникает ЭДС индукции:

E = – , (4.15)

Знак (–) означает: индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле стремиться скомпенсировать то изменение магнитного потока, которым вызван данный индукционный ток (правило Ленца).

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, индукция которого пропорциональна току: В ~ I. Поэтому сцепленный с контуром магнитный поток пропорционален силе тока в контуре I:

Ф = LI ,

гдеL коэффициент пропорциональности называют коэффициентом самоиндукции или индуктивностью контура.

Если по контуру протекает изменяющийся со временем ток I(t) , то изменяется магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции:

Индуктивность контура L в общем случае зависит от геометрии контура и магнитной проницаемости среды µ. Если эти величины не изменяются, то L = const . Т.е., если контур жесткий и поблизости нет ферромагнетиков, то L = const .

Рассмотрим два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 4.7). Если по контуру 1 пропустить ток I 1 , то он создает поток магнитной индукции через контур 2:

Ф 21 = L 21 I 1 . (4.17)

Коэффициент пропорциональности L 21 называют коэффициентом взаимной индукции контуров (взаимная индуктивность контуров). Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

При изменении силы тока в первом контуре магнитный поток сквозь второй контур изменяется; следовательно, в нем наводится ЭДС взаимной индукции:

. (4.18)

Формула справедлива в отсутствие ферромагнетиков.

Если поменять местами контуры 1 и 2 и повторить все предыдущие рассуждения, то получим:

. (4.19)

Коэффициенты взаимной индукции равны.

Без сомнения, всем в детстве нравилось играться с магнитом. Раздобыть постоянный магнит было очень просто: для этого нужно было найти старую колонку, извлечь из нее звуковоспроизводящий динамик и, после несложных «вандальных действий», достать из нее кольцевой магнит. Неудивительно, что многие проводили опыт с металлическим опилками и листом бумаги. Опилки располагались полосами - вдоль линий напряженности поля.

В электротехнике намного большее распространение получили не постоянные, а электромагниты. Из курса физики известно, что при протекании электрического тока по проводнику, вокруг последнего создается магнитное поле, величина которого непосредственно связана с действующим значением тока.

Сомневающиеся могут повторить простейший опыт Эрстеда, когда рядом с прямолинейным проводником с током размещается компас. При этом стрелка будет отклоняться от географического северного полюса планеты (перпендикулярно проводу). Направление отклонения можно определить при помощи правила правой руки: размещаем правую руку параллельно проводнику ладонью вниз. 4 пальца должны указывать Тогда отогнутый на 90 градусов большой палец укажет сторону отклонения стрелки. Вокруг прямого провода магнитное поле имеет вид цилиндра с проводом посередине. А вот линии напряженности образуют кольца.

В электротехнике указанные используются, прежде всего, в катушках. Часто можно услышать выражение «магнитное поле соленоида». Представим себе обыкновенный гвоздь и тонкий провод в изоляции. Равномерно наматывая провод на гвоздь, получаем соленоид. В данном случае гвоздь влияет на магнитное поле соленоида, но это тема совершенно другой статьи. Важно понять, что именно понимают под термином. Если теперь подключить катушку к то вокруг нее возникнет магнитное поле.

Поля соленоида прямопропорциональна значению индуктивности и квадрату проходящего по виткам тока. В свою очередь, индуктивность зависит от квадрата числа витков. При этом нужно учитывать конструкцию обмотки: это может быть простой случай с одним слоем витков, а также многослойная структура, где направление тока в витках оказывает корректирующее действие на суммарную энергию. Соленоиды используются в схемах трамваев, режущих механизмов, контакторов и пр.

Магнитное поле соленоида представляет собой кольца, выходящие из одного конца обмотки и входящие в другой. Внутри катушки силовые линии не прерываются, а распространяются в диэлектрической среде или по проводящему сердечнику. Следствие: поле соленоида полярно. Линии выходят из магнитного северного полюса, а возвращаются в южный. Нетрудно догадаться, что магнитное поле соленоида зависит от полярности источника тока, подключенного к концам провода. Магнитные свойства соленоида практически совпадают с Это позволяет использовать соленоид в качестве электромагнита. На производстве можно увидеть краны, у которых вместо крюка размещен диск электромагнита. Это «большой брат» соленоида - обмотка на сердечнике. Особенность всех электромагнитов в том, что магнитные свойства существуют лишь при протекании тока по виткам.

Кроме соленоидов часто используются тороиды. Это те же самые витки провода, но намотанные на магнитопроводе круглой формы. Соответственно, магнитное поле соленоида и тороида различны. Главная особенность в том, что силовые линии распространяются по основе-магнитопроводу внутри самой катушки, а не вне ее, как в случае соленоида. Все это свидетельствует о более высоком КПД катушек на кольцевом магнитопроводящем материале. Следствие: надежны и обладают меньшими потерями, чем их привычные собратья.

Являются замкнутыми, это свидетельствует о том, что в природе нет магнитных зарядов. Поля, силовые линии которых замкнуты, называют вихревыми поля-ми . То есть магнитное поле — это вихревое поле. Этим оно отличается от электрического поля , создаваемого зарядами.

Соленоид.

Соленоид — это проволочная спираль с током.

Соленоид характеризуется числом витков на единицу длины n , длиной l и диаметром d . Толщина провода в соленоиде и шаг спирали (винтовой линии) малы по сравнению с его диаметром d и длиной l . Термин «соленоид» применяют и в более широком значении — так называют катушки с произвольным сечением (квадратный соленоид, прямоугольный соленоид), и не обязательно ци-линдрической формы (тороидальный соленоид). Различают длинный соленоид (l d ) и короткий соленоид (l ≪ d ). В тех случаях, когда соотношение между d и l специально не оговаривается, подразуме-вается длинный соленоид.

Соленоид был изобретен в 1820 г. А. Ампером для усиления открытого X. Эрстедом магнитного действия тока и применен Д. Араго в опытах по намагничиванию стальных стержней. Магнит-ные свойства соленоида были экспериментально изучены Ампером в 1822 г. (тогда же им был вве-ден термин «соленоид»). Была установлена эквивалентность соленоида постоянным природным магнитам, что явилось подтверждением электродинамической теории Ампера, которая объясняла магнетизм взаимодействием скрытых в телах кольцевых молекулярных токов.

Силовые линии магнитного поля соленоида:

Направление этих ли-ний определяют с помощью второго правила правой руки .

Если обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

Сравнив магнитное поле соленоида с полем постоянного магнита (рис. ниже), можно заметить, что они очень похожи.

Как и у магнита, у соленоида есть два полюса — северный (N ) и южный (S ). Северным полюсом называют тот, из которого магнитные линии выходят; южным полюсом — тот, в который они входят. Северный полюс у соленоида всегда располагается с той стороны, на которую указывает большой палец ладони при ее расположении в соответствии со вторым правилом правой руки.

Соленоид в виде катушки с большим числом витков используют в качестве магнита.

Исследования магнитного поля соленоида показывают, что магнитное действие соленоида увеличивается с увеличением силы тока и числа витков в соленоиде. Кроме того, магнитное действие соленоида или катушки с током усиливается при введении в него железного стержня, который называют сердечником .

Электромагниты.

Современные электромагниты могут поднимать грузы массой несколько десятков тонн. Они используются на заводах при перемещении тяжелых изделий из чугуна и стали. Электромагниты используются также в сельском хозяйстве для очистки зерен ряда растений от сорняков и в дру-гих отраслях промышленности.