Биографии Характеристики Анализ

Виды измерительных шкал. Измерительные шкалы Абсолютная шкала измерений

В системном анализе выделяют раздел «теория эффективности», связанный с определением качества систем и процессов, их реализующих. Теория эффективности - научное направление, предметом изучения которого являются вопросы количественной оценки качества характеристик и эффективности функционирования сложных систем.

Оценка сложных систем может проводиться для разных целей:

4) для оптимизации - выбора наилучшего алгоритма из нескольких, реализующих один закон функционирования системы;

5) для идентификации - определения системы, качество которой наиболее соответствует реальному объекту в заданных условиях;

6) для принятия решений по управлению системой.

Общим во всех подобных задачах является подход, основанный на том, что понятия «оценка» и «оценивание» рассматриваются раздельно и оценивание проводится в несколько этапов. Под оценкой понимают результат, получаемый в ходе процесса, который определен как оценивание . Т.е. с термином «оценка» сопоставляется понятие «истинность», а с термином «оценивание» - «правильность». Истинная оценка может быть получена только при правильном процессе оценивания. Это положение определяет место теории эффективности в задачах системного анализа.

Выделяют четыре этапа оценивания сложных систем.

Этап 1. Определение цели оценивания. Выделяют два типа целей: качественные и количественные, достижение которых выражаются в соответствующих шкалах. Определение цели должно осуществляться относительно системы, в которой рассматриваемая система является элементом (подсистемой).

Этап 2. Измерение свойств систем, признанных существенными для целей оценивания. Для этого выбираются соответствующие шкалы измерений свойств и всем исследуемым свойствам систем присваивается определенное значение на этих шкалах.

Этап 3. Обоснование предпочтений критериев качества и критериев эффективности функционирования систем на основе измеренных на выбранных шкалах свойств.

Этап 4. Собственно оценивание. Все исследуемые системы, рассматриваемые как альтернативы, сравниваются по сформулированным критериям и в зависимости от целей оценивания ранжируются, выбираются, оптимизируются и т.д.

2.1.1. Понятие шкалы

В основе оценки лежит процесс сопоставления значений качественных или количественных характеристик исследуемой системы значениям соответствующих шкал. Исследование характеристик привело к выводу о том, что все возможные шкалы принадлежат к одному из нескольких типов, определяемых перечнем допустимых операций на этих шкалах.

Формально шкалой называется кортеж из трех элементов , j , Y>, где Х - реальный объект, Y - шкала, j - гомоморфное отображение X на Y .

В современной теории измерений определено:

X= {x 1 , х 2 ,…x i ,…, х п , R x } - эмпирическая система с отношением, включающая множество свойств x i , на которых в соответствии с целями измерения задано некоторое отношение R x . В процессе измерения необходимо каждому свойству х i ÎX поставить в соответствие признак или число, его характеризующее. Если, например, целью измерения является выбор, то элементы х i рассматриваются как альтернативы, а отношение R x позволяет сравнивать эти альтернативы; Y ={j (x 1),…, j(х п), R y } знаковая система с отношением, являющаяся отображением эмпирической системы в виде некоторой образной или числовой системы, соответствующей измеряемой эмпирической системе; j Î Ф - гомоморфное отображение X на Y , устанавливающее соответствие между X и Y так, что {j (x 1),…, j(х п), R y R y только тогда, когда (х 1 ,..., х п, ) Î R x .

Тип шкалы определяется по множеству допустимых преобразований Ф.

В соответствии с приведенными определениями, охватывающими как количественные, так и качественные шкалы, измерение эмпирической системы X с отношением R x состоит в определении знаковой системы Y с отношением R , соответствующей измеряемой системе. Предпочтения R x на множестве Х ´Х в результате измерения переводятся в знаковые (в том числе и количественные) соотношения R y на множестве Y ´Y.

2.1.2. Шкалы номинального типа

Самой слабой качественной шкалой является номинальная (шкала наименований , классификационная шкала ), по которой объектам или их неразличимым группам дается некоторый признак. Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Шкалы номинального типа задаются множеством взаимно однозначных допустимых преобразований шкальных значений. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Основным свойством этих шкал является сохранение неизменными отношений равенства между элементами эмпирической системы в эквивалентных шкалах.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

На рис.2.1 изображено измерение в номинальной шкале объектов, представляющих три множества элементов А, В, С. Здесь эмпирическую систему представляют четыре элемента: а ÎA, b ÎВ, {с, d} ÎС. Знаковая система представлена цифровой шкалой наименований, включающей элементы 1, 2,..., n и сохраняющей отношение равенства. Гомоморфное отображение φ ставит в соответствие каждому элементу из эмпирической системы определенный элемент знаковой системы. Номинальные шкалы имеют две особенности:

Всякая обработка результатов измерения в номинальной шкале должна учитывать данные особенности. В противном случае могут быть сделаны ошибочные выводы по оценке систем, не соответствующие действительности.

2.1.3. Шкалы порядка

Шкала называется ранговой (шкалой порядка ), если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений.

Монотонно возрастающим называется такое преобразование φ (х ), которое удовлетворяет условию: если х 1 > х 2 , то и φ (х 1) > φ (х 2) для любых шкальных значений из области определения. Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам.

Ситуации для применения ранговой шкалы:

Необходимо упорядочить объекты во времени или пространстве. При этом интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением объектов;

Нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;

Какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

Примеры шкал порядка: шкала твердости минералов, предложенная в 1811 г. немецким ученым Ф. Моосом и до сих пор распространенная в полевой геологической работе; шкалы силы ветра, силы землетрясения, сортности товаров в торговле, социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка S с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

2.1.4. Шкалы интервалов

Одним из наиболее важных типов шкал является тип интервалов . Этот тип содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида φ (х ) = ах + b, где х ÎY Y; а > 0; b - любое значение.

Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:

Примеры применения шкал интервалов:

1) Шкалы температур. Переход от одной шкалы к эквивалентной, например от шкалы Цельсия к шкале Фаренгейта, задается линейным преобразованием шкальных значений:
t °F = 1,8 t °С + 32.

2) Измерение признака «дата совершения события», поскольку для измерения времени в конкретной шкале необходимо фиксировать масштаб и начало отсчета. Григорианский и мусульманский календари - две конкретизации шкал интервалов.

При переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр а).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов. Запись означает, что расстояние между х 1 и х 2 в K раз больше расстояния между х 3 и х 4 и в любой эквивалентной шкале это значение (отношение разностей численных оценок) сохранится. При этом отношения самих оценок не сохраняются.

В социологических исследованиях в шкалах интервалов обычно измеряют временные и пространственные характеристики объектов. Например, даты событий, стаж, возраст, время выполнения заданий, разницу в отметках на графической шкале и т.д. Однако прямое отождествление замеренных переменных с изучаемым свойством не столь просто.

Типичная ошибка: свойства, измеряемые в шкале интервалов, принимаются в качестве показателей для других свойств, монотонно связанных с данными.

Применяемые для измерения связанных свойств исходные шкалы интервалов становятся всего лишь шкалами порядка. Игнорирование этого факта приводит к неверным результатам.

2.1.5. Шкалы отношений

Шкалой отношений (подобия) называется шкала, если Ф состоит из преобразований подобия j(х) = ах, а >0, где х Î Y- шкальные значения из области определения Y; а - действительные числа. В шкалах отношений остаются неизменными отношения численных оценок объектов: .

Примерами измерений в шкалах отношений являются измерения массы и длины объектов. При установлении массы используется большое разнообразие численных оценок: производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстояний и длин предметов.

Шкалы отношений отражают отношения свойств объектов, т.е. во сколько раз свойство одного объекта превосходит это же свойство другого объекта.

Шкалы отношений образуют подмножество шкал интервалов фиксированием нулевого значения параметра b : b = 0. Это соответствует заданию нулевой точки начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

2.1.6. Шкалы разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига φ (х ) = х + b, где х ÎY шкальные значения из области определения Y; b - вещественные числа. Т.е. при переходе от одной числовой системы к другой меняется лишь начало отсчета. Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств: φ (х 1) - φ (х 2) = х 1 - х 2 .

Примеры измерений в шкалах разностей:

3) Измерение прироста продукции предприятий (в абсолютных единицах) в текущем году по сравнению с прошлым;

4) Увеличение численности учреждений, количество приобретенной техники за год и т. д.

5) Летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра а : (а = 1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной. Шкалы разностей сохраняют отношения интервалов между оценками пар объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

2.1.7. Абсолютные шкалы

Абсолютными называют шкалы, в которых единственными допустимыми преобразованиями Ф являются тождественные преобразования: φ (х ) = {е }, где е(х) = х.

Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и вещественные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов: различие, порядок, отношение интервалов, отношение и разность значений и т.д.

Кроме указанных существуют промежуточные типы шкал, например, степенная шкала φ(х) = ах b ; а >0, b >0, а ¹1, b ¹1, и ее разновидность логарифмическая шкала φ(х) = х b ; b >0, b ¹1.



Изобразим для наглядности соотношения между основными типами шкал в виде иерархической структуры основных шкал (рис.2.2). Стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе φ(х) . Некоторые шкалы являются изоморфными, т.е. равносильными. Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей и шкале отношений.

Шкалы измерений

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства тел, веществ, явлений и процессов- Как было показано в предыдущих разделах, некоторые свойства проявляются только качественно, другие - количественно. Разнообразные проявления (количественные или ка­чественные) любого свойства образуют множества, отображения элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой ФВ. Шкала физической величины - это упорядоченная последовательность значений ФВ, принятая по соглашению на ос­новании результатов точных измерений. Термины и определения теории шкал измерений изложены в документе МИ 2365-96.

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений.

1. Шкала наименований (шкала классификации). Такие шкалы используются для классификации эмпирических объектов, свой­ства которых проявляются только в отношении эквивалентности. Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен.

В шкалах наименований, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы - они должны надежно различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: "не приписывай одну и ту же цифру разным объектам". Числа, приписанные объектам, могут быть использованы для определения вероятности или частоты появления данного объекта, но их нельзя использовать для суммирования и других математических операций.



Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствует понятия нуля, "больше" или "меньше" и единицы измерения. Примером шкал наименований являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

2. Шкала порядка (шкала рангов). Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка существует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить во сколько раз больше или меньше конкретные проявления свойства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение шкалы удобно и достаточно для практики, используют условные (эмпирические) шкалы порядка. Условная шкала - это шкала ФВ, исходные значения которой выражены в условных единицах. Например, шкала вязкости Энглера, 12-бальная шкала Бофорта для силы морского ветра.

Широкое распространение получили шкалы порядка с нанесенными на них реперными точками. К таким шкалам, например, относится шкала Мооса для определения твердости минералов, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости: тальк - 1; гипс - 2; кальций - 3; флюорит - 4; апатит - 5; ортоклаз - 6; кварц - 7; топаз - 8; корунд - 9; алмаз - 10. Отнесение минерала к той или иной градации твердости осуществляется на основании эксперимента, который состоит в том, что испытуемый материал царапается опорным. Если после царапанья испытуемого минерала кварцем (7) на нем остается след, а после ортоклаза (6) - не остается, то твердость испытуемого материала составляет более 6, но менее 7.-Более точного ответа в этом случае дать невозможно.

В условных шкалах одинаковым интервалам между размерами данной величины не соответствуют одинаковые размерности чисел, отображающих размеры. С помощью этих чисел можно найти вероятности, моды, медианы, квантили, однако их нельзя использовать для суммирования, умножения и других математических операций.

Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием . Оценивание по шкалам порядка является неоднозначным и весьма условным, о чем свидетельствует рассмотренный пример.

3. Шкала интервалов (шкала разностей). Эти шкалы являются дальнейшим развитием шкал порядка и применяются для объ­ектов, свойства которых удовлетворяют отношениям эквива­лентности, порядка и аддитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало - нулевую точку. К таким шкалам относится летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо рождество Христово и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

На шкале интервалов определены действия сложения и вычитания интервалов. Действительно, по шкале времени интервалы можно суммировать или вычитать и сравнивать, во сколько раз один интервал больше другого, но складывать даты каких-либо событий просто бессмысленно.

Шкала интервалов величины Q описывается уравнением

где q - числовое значение величины; - начало отсчета шкалы; - единица рассматриваемой величины. Такая шкала полностью определяется заданием начала отсчета шкалы и единицы данной величины .

Задать шкалу практически можно двумя путями. При первом из них выбираются два значения и величины, которые относительно просто реализованы физически. Эти значения называются опорными точками, или основными реперами, а интервал () - основным интервалом. Точка принимается за начало отсчета, а величина за единицу Q. При этом n выбирается таким, чтобы было целой величиной.

Перевод одной шкалы интервалов , в другую осуществляется по формуле

(2.2)

Числовое значение интервала между началами отсчета по рассматриваемым шкалам, измеренного в градусах Фаренгейта ( , равно 32. Переход от температуры по шкале Фаренгейта к температуре по шкале Цельсия производится по формуле .

При втором пути задания шкалы единица воспроизводится не­посредственно как интервал, его некоторая доля или некоторое число интервалов размеров данной величины, а начало отсчета выбирают каждый раз по-разному в зависимости от конкретных условий изучаемого явления. Пример такого подхода - шкала времени, в которой 1 с = 9 192 631 770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. За начало отсчета принимается начало изучаемого явления.

4. Шкала отношений . Эти шкалы описывают свойства эмпирических объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода -аддитивные), а в ряде случаев и пропорциональности (шкалы первого рода - пропорциональные). Их примерами являются шкала массы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и единица измерений, установленная по соглашению. С формальной точки зрения шкала отношений является шкалой интервалов с естествен­ным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерении ФВ.

Шкалы отношений - самые совершенные. Они описываются уравнением Q = q[Q], где Q - ФВ, для которой строится шкала, [Q] - ее единица измерения, q - числовое значение ФВ. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением .

5. Абсолютные шкалы. Некоторые авторы используют понятие абсолютных шкал, под которыми понимают шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящие от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам: коэффициенту усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные едини­цы абсолютных шкал.

Отметим, что шкалы наименований и порядка называют неметрическими (концептуальными), а шкалы интервалов и отношений - метрическими (материальными). Абсолютные и метрические шкалы относятся к разряду линейных. Практическая реа­лизация шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного

Виды и методы измерений

Виды и методы измерений.

Измерения как экспериментальные процедуры определения значений измеряемых величин весьма разнообразны, что объясняется множеством измеряемых величин, различным характером их изменения во времени, различными требованиями и точности измерений и т.д.

Измерения в зависимости от способа обработки экспериментальных данных для нахождения результата относят к прямым, косвенным, совместным и совокупным.

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных в результате выполнения измерения.

(Пример – измерение вольтметром напряжения источника).

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

(Например: сопротивление резистора R находят из уравнения R=U/I, в которое подставляют измеренные значения падения напряжения U на резисторе и тока I через него).

Совместные измерения – одновременные изменения нескольких неодноименных величин для нахождения зависимости между ними. При этом решают систему уравнений.

(Например: определяют зависимость сопротивления резистора от температуры R t = R 0 (1+At+Bt 2); измеряя сопротивление резистора при трех различных температурах, составляют систему из трех уравнений, из которых находят параметры R 0 , A и B зависимости).

Совокупные измерения – одновременные измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, составленных из результатов прямых измерений различных сочетаний этих величин. (Например: измерение сопротивлений резисторов, соединенных треугольником, путем измерений сопротивлений между различными вершинами треугольника; по результатам трех измерений определяют сопротивления резисторов).


Взаимодействие средств измерений с объектом основано на физических явлениях, совокупность которых составляет принцип измерений, а совокупность приемов использования принципа и средств измерений называют методом измерений .

Числовое значение измеряемой величины получается путем ее сравнения с известной величиной, воспроизводимой определенным видом средств измерений – мерой.

В зависимости от способа применения меры известной величины различают метод непосредственной оценки и методы сравнения с мерой.

При методе непосредственной оценки значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора прямого преобразования, шкала которого заранее была градуирована с помощью многозначной меры, воспроизводящей известные значения измеряемой величины.

(Пример: измерение силы тока с помощью амперметра).

Методы сравнения с мерой – методы, при которых производится сравнение измеряемой величины и величины воспроизводимой мерой.

Сравнение может быть непосредственным или опосредственным через другие величины, однозначно связанные с первыми.

Отличительной чертой методов сравнения является непосредственное участие в процессе измерения меры известной величины, однородной с измеряемой.

Группа методов сравнения с мерой включает в себя следующие методы: нулевой , дифференциальный , замещения и совпадения .

При нулевом методе измерения разность измеряемой величины и известной величины или разность эффектов, производимых измеряемой и известной величинами, сводится в процессе измерения к нулю, что фиксируется высокочувствительным прибором – нуль-индикатором.

При высокой точности мер, воспроизводящих известную величину, и высокой чувствительности нуль–индикатора может быть достигнута высокая точность измерений.

(Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления).

При дифференциальном методе разность измеряемой величины и величины известной, воспроизводимой мерой, измеряется с помощью измерительного прибора.

Неизвестная величина определяется по известной величине и измеренной разности. В этом случае уравновешивание измеряемой величины известной величиной производится не полностью и в этом заключается отличие дифференциального метода от нулевого. Дифференциальный метод также может обеспечить высокою точность измерения, если известная величина воспроизводится с высокой точностью и разность между ней и неизвестной величиной мала.

Пример: измерение напряжения U x постоянного тока с помощью дискретного делителя R напряжения U и вольтметра V


Рис.1.1. Схема измерения напряжения дифференциальным методом.

Неизвестное напряжение U x =U 0 + U x , где U 0 – известное напряжение, U x – измеренная разность напряжений.

При методе замещения производится поочередное подключение на вход прибора измеряемой величины и известной величины и по двум показаниям прибора оценивается значение неизвестной величины. Наиболее высокая точность измерения получается в том случае, когда в результате подбора известной величины прибор дает тот же выходной сигнал, что и при неизвестной величине.

Пример : измерение малого напряжения с помощью высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отключение указателя, а затем с помощью регулируемого источника известного напряжения добываются того же отклонения указателя. При этом известное напряжение равно известному.

При методе совпадения измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов.

Пример : измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, но частота вспышек и смещению метки определяют частоту вращения детали.

Погрешность измерений. Основные понятия и виды погрешностей

. Основные понятия и виды погрешностей.

Процедура измерений состоит из следующих основных этапов:

- принятые модели объекта измерения;

- выбор метода измерений;

- выбор средств измерений;

- проведение эксперимента для получения численного значения результата измерения.

Различные недостатки, присуще этим этапам, приводят к тому, что результат измерения отличается от истинного значения измеряемой величины.

Причины возникновения погрешности могут быть различными.

Измерительные преобразования осуществляются с использованием различных физических явлений, на основании которых можно установить соотношение между измеряемой величиной объекта исследования и выходным сигналом средства измерений, по которому оценивается результат измерения.

Точно установить это соотношение никогда не удается вследствие недостаточной изученности объекта исследования и неадекватности его принимаемой модели, невозможности точного учета влияния внешних факторов, недостаточной разработанности теории физических явлений, положенных в основу измерения, использования простых, но приближенных аналитических зависимостей вместо более точных, но сложных и т.д.

Понятие "погрешность" - одно из центральных в метрологии, где используются понятия "погрешность результата измерения" и "погрешность средства измерения". Погрешность результата из­мерения - это разница между результатом измерения X и истин­ным (или действительным) значением Q измеряемой величины:

Она указывает границы неопределенности значения измеряемой ве­личины. Погрешность средства измерения - разность между по­казанием СИ и истинным (действительным) значением измеряемой ФВ. Она характеризует точность результатов измерений, проводи­мых данным средством.

Эти два понятия во многом близки друг к другу и классифици­руются по одинаковым признакам.

По характеру проявления погрешности делятся на случайные, систематические, прогрессирующие и грубые (промахи).

Заметим, что из приведенного выше определения погрешности никак не следует, что она должна состоять из каких-либо состав­ляющих. Деление погрешности на составляющие было введено для удобства обработки результатов измерений исходя из характера их проявления. В процессе формирования метрологии было обнаруже­но, что погрешность не является постоянной величиной. Путем эле­ментарного анализа установлено, что одна ее часть проявляется как постоянная величина, а другая - изменяется непредсказуемо. Зги части назвали систематической и случайной погрешностями.

Как будет показано в разд. 4.3, изменение погрешности во вре­мени представляет собой нестационарный случайный процесс. Разделение погрешности на систематическую, прогрессирующую и слу­чайную составляющие представляет собой попытку описать раз­личные участки частотного спектра этого широкополосного про­цесса: инфранизкочастотный, низкочастотный и высокочастотный.

Случайная погрешность - составляющая погрешности измере­ния, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера ФВ, прове­денных с одинаковой тщательностью в одних и тех же условиях. В появлении таких погрешностей (рис. 4.1) не наблюдается какой-либо закономерности, они обнаруживаются при повторных измере­ниях одной и той же величины в виде некоторого разброса получае­мых результатов. Случайные погрешности неизбежны, неустрани­мы и всегда присутствуют в результате измерения. Описание слу­чайных погрешностей возможно только на основе теории случай­ных процессов и математической статистики.



В отличие от систематических случайные погрешности нельзя исключить из результатов измерений путем введения поправки, од­нако их можно существенно уменьшить путем увеличения числа наблюдений. Поэтому для получения результата, минимально от­личающегося от истинного значения измеряемой величины, проводят многократные измерения требуемой величины с последующей Математической обработкой экспериментальных данных.

Большое значение имеет изучение случайной погрешности как функции номера наблюдения i или соответствующего ему момента времени 1 проведения измерений, т.е. Д; = A(t.). Отдельные значе­ния погрешности являются значениями функции A(t), следователь­но, погрешность измерения есть случайная функция времени. При проведении многократных измерений получается одна реализация такой функции. Именно такая реализация показана на рис. 4.1. Повтор серии измерений даст нам другую реализацию этой функ­ции, отличающуюся от первой, и т. д. Погрешность, соответствую­щая каждому i-му измерению, является сечением случайной функ­ции A(t). В каждом сечении данной функции можно найти среднее значение, вокруг которого группируются погрешности в различ­ных реализациях. Если через полученные таким образом средние значения провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени.

Систематическая погрешность - составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же ФВ. Постоянная и пере­менная систематические погрешности показаны на рис. 4.2. Их отличительный признак заключается в том, что они могут быть предсказаны, обнаружены и благодаря этому почти полностью уст­ранены введением соответствующей поправки.

Следует отметить, что в последнее время приведенное выше оп­ределение систематической погрешности подвергается обоснован­ной критике, особенно в связи с техническими измерениями. Весь­ма аргументированно предлагается считать систематическую погрешность специфической, "вырожденной" случайной величиной (см. разд. 5.1), обладающей некоторыми, но не всеми свойствами случайной величины, изучаемой в теории вероятностей и матема­тической статистике. Ее свойства, которые необходимо учитывать при объединении составляющих погрешности, отражаются теми же характеристиками, что и свойства "настоящих" случайных величин: дисперсией (средним квадратическим отклонением) и коэффи­циентом взаимной корреляции.

Прогрессирующая (дрейфовая) погрешность - это непредска­зуемая погрешность, медленно меняющаяся во времени. Впервые это понятие было введено в монографии М.Ф. Маликова "Основы метрологии" , изданной в 1949 г. Отличительные особенности прогрессирующих погрешностей:

Они могут быть скорректированы поправками только в дан­ный момент времени, а далее вновь непредсказуемо изменяются;

Изменения прогрессирующих погрешностей во времени - нестационарный случайный процесс, и поэтому в рамках хорошо раз­работанной теории стационарных случайных процессов они могут
быть описаны лишь с известными оговорками.

Понятие прогрессирующей погрешности широко используется при исследовании динамики погрешностей СИ и метрологической надежности последних.


Грубая погрешность (промах) - это случайная погрешность результата отдельного наблюдения, входящего в ряд измерений, которая для данных условий резко отличается от остальных ре­зультатов этого ряда. Они, как правило, возникают из-за ошибок или неправильных действий оператора (его психофизиологическо­го состояния, неверного отсчета, ошибок в записях или вычислени­ях, неправильного включения приборов или сбоев в их работе и др.). Возможной причиной возникновения промахов также могут быть кратковременные резкие изменения условий проведения из­мерений. Если промахи обнаруживаются в процессе измерений, то результаты, их содержащие, отбрасывают. Однако чаще всего про­махи выявляют только при окончательной обработке результатов измерений с помощью специальных критериев, которые рассмотре­ны в гл. 7.

По способу выражения , различают абсолютную, относительную и приведенную погрешности.

Абсолютная погрешность описывается формулой (4.1) и выража­ется в единицах измеряемой величины.

Однако она не может в пол­ной мере служить показателем точности измерений, так как одно и то же ее значение, например, Д = 0,05 мм при X = 100 мм соответствует достаточно высокой точности измерений, а при X = 1 мм - низкой. Поэтому и вводится понятие относительной погрешности. Относи­тельная погрешность - это отношение абсолютной погрешности из­мерения к истинному значению измеряемой величины:

Эта наглядная характеристика точности результата измерения не годится для нормирования погрешности СИ, так как при изме­нении значений Q принимает различные значения вплоть до беско­нечности при Q = 0. В связи с этим для указания и нормирования погрешности СИ используется еще одна разновидность погрешно­сти - приведенная.

Приведенная погрешность - это относительная погрешность, в которой абсолютная погрешность СИ отнесена к условно принятому , постоянному во всем диапазоне измерений или его части:


Условно принятое значение Q N называют нормирующим. Чаще всего за него принимают верхний предел измерений данного СИ, применительно к которым и используется главным образом поня­тие "приведенная погрешность".

В зависимости от места возникновения различают инструмен­тальные, методические и субъективные погрешности.

Инструментальная погрешность обусловлена погрешностью при­меняемого СИ. Иногда эту погрешность называют аппаратурной.

Методическая, погрешность измерения обусловлена:

Отличием принятой модели объекта измерения от модели, аде­кватно описывающей его свойство, которое определяется путем из­мерения;

Влиянием способов применения СИ. Это имеет место, напри­мер, при измерении напряжения вольтметром с конечным значе­нием внутреннего сопротивления. В данном случае вольтметр шун­тирует участок цепи, на котором измеряется напряжение, и оно оказывается меньше, чем было до присоединения вольтметра;

Влиянием алгоритмов (формул), по которым производятся вы­числения результатов измерений;

Влиянием других факторов, не связанных со свойствами ис­пользуемых средств измерения.

Отличительной особенностью методических погрешностей явля­ется то, что они не могут быть указаны в нормативно-технической документации на используемое СИ, поскольку от него не зависят, а должны определяться оператором в каждом конкретном случае. В связи с этим оператор должен четко различать фактически измеряе­мую им величину и величину, подлежащую измерению.

Субъективная (личная) погрешность измерения обусловлена по­грешностью отсчета оператором показаний по шкалам СИ, диаграм­мам регистрирующих приборов. Они вызываются состоянием опера­тора, его положением во время работы, несовершенством органов чувств, эргономическими свойствами СИ. Характеристики личной погрешности определяют на основе нормированной номинальной це­ны деления шкалы измерительного прибора (или диаграммной бу­маги регистрирующего прибора) с учетом способности "среднего опе­ратора" к интерполяции в пределах деления шкалы.

По зависимости абсолютной погрешности от значений из­меряемой величины различают погрешности (рис. 4.4):

аддитивные , не зависящие от измеряемой величины;

мультипликативные , которые прямо пропорциональны измеряемой величине;

нелинейные , имеющие нелинейную зависимость от изме­ряемой величины.

Эти погрешности применяют в основном для описания метроло­гических характеристик СИ. Разделение погрешностей на аддитив­ные, мультипликативные и нелинейные весьма существенно при решении вопроса о нормировании и математическом описании по­грешностей СИ.

Примеры аддитивных погрешностей - от постоянного груза на чашке весов, от неточной установки на нуль стрелки прибора перед измерением, от термо-ЭДС в цепях постоянного тока. Причинами возникновения мультипликативных погрешностей могут быть: из­менение коэффициента усиления усилителя, изменение жесткости мембраны датчика манометра или пружины прибора, изменение опорного напряжения в цифровом вольтметре.


Рис. (1).4. Аддитивная (а), мультипликативная (б) и нелинейная (в)погрешности

По влиянию внешних условий различают основную и дополни­тельную погрешности СИ. Основной называется погрешность СИ, определяемая в нормальных условиях его применения. Для каждо­го СИ в нормативно-технических документах оговариваются усло­вия эксплуатации - совокупность влияющих величин (температу­ра окружающей среды, влажность, давление, напряжение и часто­та питающей сети и др.), при которых нормируется его погреш­ность. Дополнительной, называется погрешность СИ, возникающая вследствие отклонения какой-либо из влияющих величин.

В зависимости от влияния характера изменения измеряе­мых величин погрешности СИ делят на статические и динамиче­ские. Статическая погрешность - это погрешность СИ приме­няемого для измерения ФВ, принимаемой за неизменную. Динамической называется погрешность СИ, возникающая дополнительно при измерении переменной ФВ и обусловленная несоответствием его реакции на скорость (частоту) изменения измеряемого сигнала.

14. Понятие, виды, особенности измерительных шкал

Измерение - это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через хi. i=1,…, m наблюдаемое состояние (свойство) объекта, а через уi, i = 1,..,m - обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!

Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые - номинальные шкалы, а самые сильные - абсолютные.

С. Стивенсом предложена классификация из 4 типов шкал измерения:

1) номинативная, или номинальная, или шкала наименований;

2) порядковая, или ординальная, шкала;

3) интервальная, или шкала равных интервалов;

4) шкала равных отношений.

Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:

1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;

2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;

3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.

Кроме того, выделяют следующие группы:

    неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая(ранговая) шкалы);

    количественные или метрические (шкала интервалов, абсолютная шкала).

Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.

Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.

Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют места.

Виды шкал:

    Номинативная или шкала наименований:

Позволяет установить к какому классу относится тот или иной объект измерения. Все объекты группируются по классам. Каждому классу приписывается значение. Особенностью является то, что учитывается одно значение чисел. Обычные арифметические операции недопустимы. Мы можем сделать вывод о тождественности по измеряемому свойству. Иными словами, объекты сравниваются друг с другом и определяется их эквивалентность -- неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена. О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом. Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик.

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Операции с числами для номинативной шкалы.

1) Нахождение частот распределения по пунктам шкалы с помощью процентирования или в

численности к общему ряду распределения (частоты).

2) Поиск средней тенденции по модальной частоте. Модальной (Мо) называют группу с

наибольшей численностью. Эти две операции дают представление о распределении

психологических характеристик в количественных показателях. Его наглядность повышается

отображением в диаграммах.

3) Самым сильным способом количественного анализа является установление взаимосвязи

между рядами свойств, расположенных неупорядоченно. С этой целью составляют

перекрестные таблицы. Помимо простой процентовки в таблицах перекрестной

    Порядковая (ранговая) шкала:

Измерения предполагают приписывание объектам чисел в зависимости от выраженности признака. Данная шкала делит всю совокупность признаков на множество, которые связаны отношениями «больше - меньше». Для объектов с одинаковой выраженностью признака используется правило равных рангов. При ранжировании необходимо указывать какому значению (наибольшему или наименьшему) присваивается первый ранг. Эта операция должна быть одинакова для всех признаков.

Чтобы проверить правильность ранжирования используется формула: сумма рангов равна общее количество измерений умноженное на сумму N+1 и делённое на 2.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа.Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать.

    Интервальная шкала.

Отражает уровень выраженности свойства. Данная шкала предполагает использование единиц измерения. Тестовые шкалы, разработанные в следствии стандартизации. Но в данной шкале не существует нулевой точки отсчёта. Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы -- балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются на столько же, на сколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса--дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Операции с числами в интервальной метрической шкале богаче. Чем в номинальных

1) Точка отсчета на шкале выбирается произвольно.

2) Все методы описательной статистики.

3) Возможности корреляционного и регрессионного анализа. Можно использовать коэффициент парной корреляции Пирсона и коэффициенты множественной корреляции, что может предсказать изменения в одной переменной в зависимости от изменений в другой или в целом ряде переменных.

    Шкала абсолютная. (шкала отношений):

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов. Шкала отношений по сути очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример -- шкала температур Кельвина. Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания -- области применения шкалы отношений.

В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная честность – понятия скорее житейской психологии.

Возможны преобразования из одной шкалы в другую. Результаты, полученные по шкале интервалов, могут быть преобразованы в ранги или переведены в номинативную шкалу.

Рассмотрим, например, первичные результаты шести испытуемых по шкале экстраверсии-

интроверсии теста Айзенка. психолог обязан помнить, что в действительности

скрывается за величинами, которыми он оперирует.

1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.

Проблема обеспечения высокого качества продукции тесным образом связана с проблемой качества измерений. Между ними явно прослеживается непосредственная связь: там, где качество измерений не соответствует требованиям технологического процесса, невозможно достичь высокого уровня качества продукции. Поэтому качество продукции в значительной степени зависит от успешного решения вопросов, связанных с точностью измерений параметров качества материалов и комплектующих изделий и поддержания заданных технологических режимов. Иными словами, технический контроль качества осуществляется путем замеров параметров технологических процессов, результаты измерений которых необходимы для регулирования процессом.

Следовательно, качество измерений представляет собой совокупность свойств состояния измерений, обеспечивающих результаты измерений с требуемыми точностными характеристиками, получаемые в необходимом виде за определенный отрезок времени.

Основные свойства состояния измерений:

Точность результатов измерений;

Воспроизводимость результатов измерений;

Сходимость результатов измерений;

Быстрота получения результатов;

Единство измерений.

При этом под воспроизводимостью результатов измерений понимается близость результатов измерений одной и той же величины, полученные в разных местах, разными методами, разными средствами, разными операторами, в разное время, однако в одних и тех же условиях измерений (температуре, давлении, влажности и т.д.).

Сходимость результатов измерений - это близость результатов измерений одной и той же величины, проведенных повторно с применением одних и тех же средств, одним и тем же методом в одинаковых условиях и с той же тщательностью.

Любое измерение или количественное оценивание чего-либо осуществляется, используя соответствующие шкалы.

Шкала - это упорядоченный ряд отметок, соответствующий соотношению последовательных значений измеряемых величин. Шкалой измерений называется принятая по соглашению последовательность значений одноименных величин различного размера.

В метрологии шкала измерений является средством адекватного сопоставления и определения численных значений отдельных свойств и качеств различных объектов. Практически используют пять видов шкал: шкалу наименований, шкалу порядка, шкалу интервалов, шкалу отношений и шкалу абсолютных значений.

Шкала наименований (номинальная шкала). Это самая простая из всех шкал. В ней числа выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов. Числа, составляющие шкалу наименований, разрешается менять местами. В этой шкале нет отношений типа «больше-меньше», поэтому некоторые полагают, что применение шкалы наименований не стоит считать измерением. При использовании шкалы наименований могут проводится только некоторые математические операции. Например, ее числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Шкала порядка. Места, занимаемые величинами в шкале порядка, называются рангами, а сама шкала называется ранговой, или неметрической. В такой шкале составляющие ее числа упорядочены по рангам (т.е. занимаемым местам), но интервалы между ними точно измерить нельзя. В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше-меньше», «лучше-хуже» и т.п.

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии. К рангам шкалы порядка можно применять большее число математических операций, чем к числам шкалы наименований.

Шкала интервалов. Это такая шкала, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Особенность, отличающая ее от описываемой дальше шкалы отношений, состоит в том, что нулевая точка выбирается произвольно. Примерами могут быть календарное время (начало летоисчисления в разных календарях устанавливалось по случайным причинам, температура, потенциальная энергия поднятого груза, потенциал электрического поля и др.).

Результаты измерений по шкале интервалов можно обрабатывать всеми математическими методами, кроме вычисления отношений. Данные шкалы интервалов дают ответ на вопрос «на сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20°С, то нельзя сказать, что стало в два раза теплее.

Шкала отношений. Эта шкала отличается от шкалы интервалов только тем, что в ней строго определено положение нулевой точки. Благодаря этому шкала отношений не накладывает никаких ограничений на математический аппарат, используемый для обработки результатов наблюдений.

По шкале отношений измеряют и те величины, которые образуются как разности чисел, отсчитанных по шкале интервалов. Так, календарное время отсчитывается по шкале интервалов, а интервалы времени - по шкале отношений.

При использовании шкалы отношений (и только в этом случае!) измерение какой-либо величины сводится к экспериментальному определению отношения этой величины к другой подобной, принятой за единицу. Измеряя длину объекта, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в данном случае) и т.п. Если ограничиться только применением шкал отношений, то можно дать другое (более узкое, частное) определение измерения: измерить какую-либо величину - значит найти опытным путем ее отношение к соответствующей единице измерения.

Шкала абсолютных величин. Во многих случаях напрямую измеряется величина чего-либо. Например, непосредственно подсчитывается число дефектов в изделии, количество единиц произведенной продукции, сколько студентов присутствует на лекции, количество прожитых лет и т.д. и т.п. При таких измерениях на измерительной шкале отмечаются

абсолютные количественные значения измеряемого. Такая шкала абсолютных значений обладает и теми же свойствами, что и шкала отношений, с той лишь разницей, что величины, обозначенные на этой шкале, имеют абсолютные, а не относительные значения.

Результаты измерений по шкале абсолютных величин имеют наибольшую достоверность, информативность и чувствительность к неточностям измерений.

Шкалы интервалов, отношений и абсолютных величин называются метрическими, так как при их построении используются некоторые меры, т.е. размеры, принятые в качестве единиц измерений.

В практической деятельности возникает необходимость измерять различные величины, характеризующие свойства тел, веществ, явлений, процессов и систем. Однако, некоторые свойства проявляются только качественно, другие – качественно и количественно. Разнообразные проявления какого-либо свойства образуют множества, отображение элементов которых на упорядоченное множество чисел или, в более общем случае, условных знаков, образуют шкалы измерения этих свойств. Шкала измерений величины – это упорядоченная последовательность значений этой величины, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в «РМГ 83-2007 Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений. Шкалы измерений. Термины и определения».

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений: наименований, порядка, разностей (интервалов), отношений и абсолютные.

Шкала наименований или классификаций или шкала измерений качественного свойства. Такие шкалы используются для классификации объектов, свойства которых проявляются только в отношении эквивалентности или отличиями проявлений этого свойства. Это самый простой тип шкал, относящийся к качественным. В них отсутствует понятие нуля, «больше или меньше» и единицы измерения. Для шкалы наименований или классификацийнедопустимы изменения спецификаций, описывающих конкретную шкалу. Процесс измерения осуществляется с использованием органов чувств человека – глаз, носа, ушей. Здесь наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы – они должны надежно различаться наблюдателями – экспертами, оценивающими данное свойство.

По шкале наименований объектам могут быть приписаны числа, однако они могут быть использованы только для определения вероятности или частоты появления данного объекта, но никак для суммирования или других математических операций. Например, могут быть пронумерованы игроки в команде с целью изучения качественных – игровых возможностей каждого игрока.

Цвета отличаются, прежде всего, качественно. Поэтому шкалы измерений цвета (колориметрия) являются шкалами наименований, однако упорядоченными по признаку близости (сходства) цветов. Кроме того, качественно неразличимые цвета (одинаковой цветности) могут отличаться количественно по светлоте (яркости).

С библейских времен существуют шкалы цветов, основанные на обозначениях их системами названий или других символов. Чаще всего исходными для образования таких шкал наименований являются семь цветов радуги. Комбинации этих и других названий составляют сотни и даже тысячи наименований цветов. В таких шкалах цветовое пространство делится на ряд блоков, которые обозначаются в соответствии с общепринятой цветовой терминологией или комбинациями символов (кодом). Например, в системе Евроколор код цвета составляет семизначное число: первые три цифры соответствуют цветовому тону, четвертая и пятая – светлоте, шестая и седьмая – насыщенности цвета. В системе Манселла код цвета составляется из буквенных символов и цифр. Однако, общепринятой на мировом уровне системы названий и символических обозначений цветов пока нет.

Такие символические шкалы наименований цветов материализуются в виде атласов цветов, состоящих из необходимого числа стандартизованных цветных образцов. В СССР был создан «Атлас стандартных образцов цвета», содержащий 1000 цветных образцов. Он предназначен для метрологического обеспечения различных отраслей. Цвет промышленного образца визуально сравнивают с цветом эталонного образца, помещенного в атласе. Специализированный для полиграфии атлас цветов содержит 1358 материальных образцов цвета. Кроме того, существует множество специальных цветовых шкал более низкого уровня общезначимости. Например,

    ГОСТ 2667- 82 Шкала цвета светлых нефтепродуктов.

    ГОСТ 3351-74 Шкала цветности питьевой воды

    ГОСТ 12789-87 Йодная и кобальт-хромпиковая шкалы цвета пива

    ГОСТ 19266-79 Йодометрическая шкала цвета лакокрасочных материалов

Цветовые измерения широко применяются при изготовлении кинескопов цветных телевизоров, в световой и цветовой сигнализации, на транспорте, в регулировании движения, в навигации, в полиграфии, в строительной и текстильной промышленности. На соответствующие методы цветовых измерений существует значительное число национальных и международных стандартов.

В химической и пищевой промышленности колориметрия применяется для определения цвета ароматических углеводородов бензольного ряда по ГОСТ 2706.1-74, окраски серной кислоты по ГОСТ 2706.3-74, цветности растительных масел по ГОСТ 5477-93, цвета неорганических пигментов и наполнителей по ГОСТ 16873-92, цветности сахара – песка и рафинада по ГОСТ 12572-93. (Для закрепления материала рекомендуется ознакомиться с содержанием какого-либо вышеперечисленного стандарта, где описаны конкретные шкалы наименований или классификаций).

Сравнение свойств по шкале наименований под силу только опытному эксперту, который обладает не только практическим опытом, но и соответствующими зрительными или обонятельными возможностями. Для получения сопоставимых результатов оценки физических величин, относящихся к шкале наименований, в последние годы разработаны и приняты мировым сообществом международные и национальные стандарты, такие как

    ГОСТ Р 53161-2008 (ИСО 5495:2005). Национальный стандарт Российской Федерации. Органолептический анализ. Методология. Метод парного сравнения;

    ГОСТ Р ИСО 8586-1-2008. Национальный стандарт Российской Федерации. Органолептический анализ. Общее руководство по отбору, обучению и контролю испытателей. Часть 1. Отобранные испытатели;

    ГОСТ Р ИСО 8588-2008 Национальный стандарт Российской Федерации. Органолептический анализ. Методология. Испытания «А» – «не А».

Шкала порядков или рангов – это шкала измерений количественного свойства (величины), характеризующаяся соотношениями эквивалентности и порядка по возрастанию или убыванию различных проявлений свойства. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка ноль существует, либо не существует. Однако принципиально нельзя ввести единицу измерения и размерность. Следовательно, нельзя судить, во сколько раз больше или меньше конкретные проявления свойства. На практике используют условные шкалы порядка. В них допустимы любые монотонные преобразования, но недопустимо изменение спецификаций, описывающих конкретные шкалы. В шкалах порядков или ранговисходные значения физических величин выражены в условных единицах – ранжированы.

Определение значения величин при помощи шкал порядка часто нельзя считать измерением. Например, в педагогике, спорте и других видах деятельности применяют термин «оценивание», Знания в школе, вузе оценивается по 5-ти или 4-х бальной шкале. Аналогично оцениваются результаты конкурсов, соревнований. Органолептическими методами в соответствии с установленными правилами оценивают качество продукции.

Широкое распространение получили шкалы порядка с нанесенными на них реперными точками для физических тел и явлений. Точкам реперной шкалы могут быть поставлены в соответствие цифры, называемые баллами. К таким шкалам относятся 10-ти бальная шкала Мооса для оценивания чисел твердости минералов, шкалы Роквелла, Бринелля, Виккерса для определения твердости металлов, 12-ти бальная шкала Бофорта для оценивания силы морского ветра, 12-ти бальная шкала землетрясений Рихтера (сейсмическая международная шкала), шкала вязкости Энглера, шкала чувствительности фотопленок, шкала белизны, акустическая шкала громкости звука и другие.

Своеобразны шкалы белизны. Белизна рассеивающих поверхностей материалов характеризует сходство их по цвету с некоторым стандартным белым цветом, белизна которого принимается за 100 %. Единой для различных видов материалов шкалы белизны пока не создано, но во всех вариантах применяемых шкал белизны отклонение исследуемого цвета от стандартного белого определяется одномерными критериями, например, цветовым различием. Шкалы белизны являются одномерными шкалами порядка. Белизна бумаги, картона, целлюлозы, текстильных материалов оценивается по коэффициенту отражения в синей области спектра при длине волны, равной 457 нм.

Примеры конкретных способов определения белизны (шкалы белизны):

    ГОСТ 7690-76 Целлюлоза, бумага картон. Методы определения белизны.

    ГОСТ 26361-84 Мука. Метод определения белизны.

    ГОСТ 24024-80 Фосфор и неорганические соединения фосфора. Метод определения степени белизны.

    ГОСТ 16873-92 Пигменты и наполнители неорганические. Метод измерения цвета и белизны.*

Метрологическое обеспечение измерений белизны опирается на государственные эталоны ГЭТ 81-90 (координат цвета и координат цветности) и ГЭТ 156-91 (спектрального коэффициента отражения).

На практике по шкале порядка оценивают светочувствительность фотоматериалов, которая характеризуется числами светочувствительности. Например, в России это числа чувствительности по ГОСТ, в Германии по DIN, существует международная шкала чисел общей светочувствительности, рекомендованная ИСО.

Шкалы наименований и порядка называются условными шкалами, так как в них не определены единицы измерения. Их также называют не метрическими или концептуальными. В условных шкалах одинаковым интервалам между размерами данной величины, например, чисел твердости, не соответствуют одинаковые размеры свойств величин. Поэтому баллы нельзя складывать, вычитать, делить. Разных видов условных шкал может быть сколь угодно много, так как они появляются по мере необходимости оценивания (определения) какой либо величины, в виде приписанного числа.

Шкала интервалов или разностей . В этой шкале описывают количественные свойства величин, проявляющиеся в отношениях эквивалентности, порядка и аддитивности (суммирования интервалов различных проявлений свойства). Шкала интервалов состоит из одинаковых интервалов, масштаб которых устанавливается по согласованию, имеет единицу измерения и произвольно выбранную нулевую точку. На шкале интервалов возможны действия сложения и вычитания интервалов; можно оценить во сколько раз один интервал больше другого, применимо понятие «размерность», допустимы изменения спецификаций, описывающих конкретные шкалы. Однако для некоторых физических величин сами физические величины складывать бессмысленно, например, календарные даты.

Примеры шкал интервалов – летоисчисление по различным календарям, шкала времени, температурные шкалы Цельсия, Фаренгейта, шкала длин.

В шкале Цельсия есть две реперные точки: температуры таяния льда и кипения воды. Масштаб по шкале – 1 градус Цельсия – выбирается как одна сотая интервала между двумя реперными точками. В шкале Фаренгейта также две реперные точки: температура смеси льда, поваренной соли и нашатыря и температура человеческого тела. Масштаб по шкале – 1 градус Фаренгейта – выбирается как одна девяностошестая интервала между двумя реперными точками.

Шкала отношений. В этой шкале также описывают количественные свойства величин, проявляющиеся в отношениях эквивалентности, порядка и пропорциональности (шкалы первого рода), либо аддитивности различных проявлений свойства (шкалы второго рода). В пропорциональных шкалах отношений (1-го рода), операция суммирования не имеет смысла.

Например, шкала термодинамической температуры – это шкала первого рода, шкала массы – второго рода. Отличительные признаки шкал отношений: наличие естественного нуля и устанавливаемой по соглашению единицы измерений; применимость понятия "размерность". К значениям, полученным по этой шкале, применимы все арифметические действия, то есть, допустимы масштабные преобразования, допустимо изменение спецификаций, описывающих конкретные шкалы. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчета. Шкалы отношений самые совершенные. Они описываются уравнением:

где Х – физическая величина, для которой строится шкала, q - числовое значение физической величины, – единица измерения физической величины. Например, Р = 10Н , m = 50 kg

Переход от одной шкалы отношений к другой происходит в соответствии с уравнением q 2 = q 1 /, так как размер свойства есть величина постоянная.

Абсолютная шкала – это шкала отношений (пропорциональная или аддитивная) безразмерной величины. Такие шкалы обладают всеми признаками шкал отношений, но дополнительно имеют естественное, однозначное определение единицы измерения, не зависящее от принятой системы единиц измерения. В этих шкалах допустимы только тождественные преобразования и допустимы изменения спецификаций, описывающих конкретные шкалы. Примеры шкал относительных величин: к.п.д., коэффициенты усиления или ослабления, коэффициенты амплитудной модуляции, нелинейных искажений, и т.д. Ряду абсолютных шкал присущи границы, заключенные между нулем и единицей. Результаты измерений в абсолютных шкалах могут быть выражены не только в арифметических единицах, но и в процентах, промилле, битах, байтах, децибелах (см. логарифмические шкалы). Единицы абсолютных шкал могут быть применены в сочетании с единицами размерных величин. Например: скорость передачи информации в битах в секунду. Абсолютные шкалы широко используются в радиотехнических и электротехнических измерениях. Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений (со специальным названием) в таких шкалах принимают какое-то определенное число частиц (квантов), например один моль – число частиц, равное числу Авогадро.

Шкалы интервалов и отношений называют метрическими (материальными). Абсолютные и метрические шкалы относятся к разряду линейных.

Значимость изучения характеристик различных шкал и особенностей их использования, наряду с узаконенными единицами измерений, существенно возросла за последнее время в системе обеспечения единства измерений. Этот процесс будет развиваться в направлении включения понятия «шкала измерений» в определение единства измерений. Практическая реализация шкал измерений осуществляется путем стандартизации самих шкал, единиц измерений, способов и условий их однозначного воспроизведения.