السير الذاتية صفات تحليل

حل المعادلة x تربيع. طرق حل المعادلات التربيعية

مع برنامج الرياضيات هذا يمكنك حل المعادلة التربيعية.

لا يقدم البرنامج الإجابة على المشكلة فحسب، بل يعرض أيضًا عملية الحل بطريقتين:
- باستخدام التمييز
- استخدام نظرية فييتا (إن أمكن).

علاوة على ذلك، يتم عرض الإجابة على أنها دقيقة وليست تقريبية.
على سبيل المثال، بالنسبة للمعادلة \(81x^2-16x-1=0\) يتم عرض الإجابة بالشكل التالي:

$$ x_1 = \frac(8+\sqrt(145))(81)، \quad x_2 = \frac(8-\sqrt(145))(81) $$ وليس هكذا: \(x_1 = 0.247; \رباعي x_2 = -0.05\)

هذا البرنامجقد تكون مفيدة لطلاب المدارس الثانوية المدارس الثانويةاستعدادا ل الاختباراتوالامتحانات، عند اختبار المعرفة قبل امتحان الدولة الموحدة، ليتمكن الآباء من التحكم في حل العديد من المشكلات في الرياضيات والجبر. أو ربما يكون استئجار مدرس أو شراء كتب مدرسية جديدة مكلفًا للغاية؟ أم أنك تريد فقط إنجاز الأمر في أسرع وقت ممكن؟ العمل في المنزلفي الرياضيات أو الجبر؟ وفي هذه الحالة، يمكنك أيضًا استخدام برامجنا مع الحلول التفصيلية.

بهذه الطريقة يمكنك قضاء التدريب الخاصو/أو تدريبهم الأخوة الأصغر سناأو الأخوات، في حين يرتفع مستوى التعليم في مجال المشاكل التي يتم حلها.

إذا لم تكن على دراية بقواعد إدخال كثيرات الحدود التربيعية، فنوصيك بالتعرف عليها.

قواعد لإدخال كثيرات الحدود من الدرجة الثانية

أي حرف لاتيني يمكن أن يكون بمثابة متغير.
على سبيل المثال: \(x, y, z, a, b, c, o, p, q\)، إلخ.

يمكن إدخال الأرقام كأرقام كاملة أو كسرية.
علاوة على ذلك، أرقام كسريةيمكن إدخالها ليس فقط ككسر عشري، ولكن أيضًا ككسر عادي.

قواعد إدخال الكسور العشرية.
في الكسور العشرية، يمكن فصل الجزء الكسري عن الجزء بأكمله إما بنقطة أو بفاصلة.
على سبيل المثال، يمكنك إدخال الكسور العشريةمثل هذا: 2.5x - 3.5x^2

قواعد إدخال الكسور العادية.
يمكن للعدد الصحيح فقط أن يكون بمثابة البسط والمقام والجزء الصحيح من الكسر.

لا يمكن أن يكون المقام سالبًا.

عند الدخول جزء رقمييتم فصل البسط عن المقام بعلامة القسمة: /
الجزء الكاملمفصولة عن الكسر بعلامة الضم: &
الإدخال: 3&1/3 - 5&6/5z +1/7z^2
النتيجة: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\)

عند إدخال التعبير يمكنك استخدام الأقواس. في هذه الحالة، عند حل معادلة من الدرجة الثانية، يتم تبسيط التعبير المقدم أولاً.
على سبيل المثال: 1/2(ص-1)(ص+1)-(5ص-10&1/2)


=0
يقرر

تم اكتشاف أن بعض البرامج النصية اللازمة لحل هذه المشكلة لم يتم تحميلها، وقد لا يعمل البرنامج.
ربما قمت بتمكين AdBlock.
وفي هذه الحالة، قم بتعطيله وتحديث الصفحة.

تم تعطيل جافا سكريبت في المتصفح الخاص بك.
لكي يظهر الحل، تحتاج إلى تمكين JavaScript.
فيما يلي إرشادات حول كيفية تمكين JavaScript في متصفحك.

لأن هناك الكثير من الأشخاص الراغبين في حل المشكلة، وقد تم وضع طلبك في قائمة الانتظار.
في بضع ثوان سوف يظهر الحل أدناه.
انتظر من فضلك ثانية...


اذا أنت لاحظت خطأ في الحل، فيمكنك الكتابة عن هذا في نموذج الملاحظات.
لا تنسى تشير إلى المهمةعليك أن تقرر ما أدخل في الحقول.



ألعابنا وألغازنا ومحاكياتنا:

القليل من النظرية.

المعادلة التربيعية وجذورها. المعادلات التربيعية غير الكاملة

كل من المعادلات
\(-x^2+6x+1.4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
يشبه
\(ax^2+bx+c=0, \)
حيث x متغير، وa وb وc أرقام.
في المعادلة الأولى أ = -1، ب = 6 و ج = 1.4، في الثانية أ = 8، ب = -7 و ج = 0، في الثالثة أ = 1، ب = 0 و ج = 4/9. تسمى مثل هذه المعادلات المعادلات التربيعية.

تعريف.
معادلة من الدرجة الثانيةتسمى معادلة من الشكل ax 2 +bx+c=0، حيث x متغير، وa وb وc هي بعض الأرقام، و\(a \neq 0 \).

الأرقام a وb وc هي معاملات المعادلة التربيعية. الرقم a يسمى المعامل الأول، والرقم b هو المعامل الثاني، والرقم c هو الحد الحر.

في كل من المعادلات ذات الصيغة ax 2 +bx+c=0، حيث \(a\neq 0\)، أكبر قوة للمتغير x هي مربع. ومن هنا الاسم: المعادلة التربيعية.

لاحظ أن المعادلة التربيعية تسمى أيضًا معادلة من الدرجة الثانية، نظرًا لأن طرفها الأيسر متعدد الحدود من الدرجة الثانية.

تسمى المعادلة التربيعية التي معامل x 2 يساوي 1 نظرا للمعادلة التربيعية. على سبيل المثال، المعادلات التربيعية المعطاة هي المعادلات
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

إذا كان في المعادلة التربيعية ax 2 +bx+c=0 واحد على الأقل من المعاملات b أو c يساوي الصفر، فإن هذه المعادلة تسمى معادلة تربيعية غير مكتملة. وبالتالي، فإن المعادلات -2x 2 +7=0، 3x 2 -10x=0، -4x 2 =0 هي معادلات تربيعية غير كاملة. في الأول ب = 0، في الثاني ج = 0، في الثالث ب = 0 و ج = 0.

هناك ثلاثة أنواع من المعادلات التربيعية غير الكاملة:
1) الفأس 2 +c=0، حيث \(c \neq 0 \);
2) الفأس 2 +bx=0، حيث \(b \neq 0 \);
3) الفأس 2 =0.

دعونا نفكر في حل المعادلات لكل من هذه الأنواع.

لحل معادلة تربيعية غير كاملة من الصيغة ax 2 +c=0 لـ \(c \neq 0 \)، انقل حدها الحر إلى الجانب الأيمن واقسم طرفي المعادلة على a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

منذ \(c \neq 0 \)، ثم \(-\frac(c)(a) \neq 0 \)

إذا كان \(-\frac(c)(a)>0\)، فإن المعادلة لها جذرين.

إذا \(-\frac(c)(a) لحل معادلة تربيعية غير كاملة من الصيغة ax 2 +bx=0 مع \(b \neq 0 \) عامل طرفها الأيسر واحصل على المعادلة
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (صفيف)(l) x=0 \\ x=-\frac(b)(a) \end(array) \right. \)

هذا يعني أن المعادلة التربيعية غير المكتملة ذات الصيغة ax 2 +bx=0 لـ \(b \neq 0 \) لها دائمًا جذرين.

المعادلة التربيعية غير المكتملة ذات الصيغة ax 2 =0 تعادل المعادلة x 2 =0 وبالتالي لها جذر واحد 0.

صيغة لجذور المعادلة التربيعية

دعونا الآن نفكر في كيفية حل المعادلات التربيعية التي يكون فيها معاملات المجهول والحد الحر غير صفر.

دعونا نحل المعادلة التربيعية في منظر عامونتيجة لذلك نحصل على صيغة الجذور. ويمكن بعد ذلك استخدام هذه الصيغة لحل أي معادلة تربيعية.

حل المعادلة التربيعية ax 2 +bx+c=0

بقسمة الطرفين على a، نحصل على المعادلة التربيعية المخفضة المكافئة
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

دعونا نحول هذه المعادلة عن طريق تحديد مربع ذات الحدين:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2)) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac)) (2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac)) )(2a) \)

يسمى التعبير الجذري مميز المعادلة التربيعيةالفأس 2 +bx+c=0 ("المميز" باللاتينية - المميز). يتم تحديده بالحرف D، أي.
\(د = ب^2-4ac\)

الآن، باستخدام التمييز، نعيد كتابة صيغة جذور المعادلة التربيعية:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \)، حيث \(D= b^2-4ac \)

من الواضح أن:
1) إذا كانت D > 0، فإن المعادلة التربيعية لها جذرين.
2) إذا كانت D=0، فإن المعادلة التربيعية لها جذر واحد \(x=-\frac(b)(2a)\).
3) إذا D وهكذا، اعتمادًا على قيمة المميز، يمكن أن تحتوي المعادلة التربيعية على جذرين (لـ D > 0)، أو جذر واحد (لـ D = 0) أو ليس لها جذور (لـ D عند حل معادلة تربيعية باستخدام هذا الصيغة، فمن المستحسن القيام بالطريقة التالية:
1) احسب المميز وقارنه بالصفر؛
2) إذا كان المميز موجبًا أو يساوي صفرًا، فاستخدم صيغة الجذر، وإذا كان المميز سالبًا، فاكتب أنه لا توجد جذور.

نظرية فييتا

المعادلة التربيعية المعطاة ax 2 -7x+10=0 لها جذور 2 و5. مجموع الجذور هو 7، وحاصل الضرب 10. نرى أن مجموع الجذور يساوي المعامل الثاني المأخوذ من علامة المعاكسوحاصل ضرب الجذور يساوي الحد الحر. أي معادلة تربيعية مختزلة لها جذور لها هذه الخاصية.

مجموع جذور المعادلة التربيعية أعلاه يساوي المعامل الثاني المأخوذ بالإشارة المعاكسة، وحاصل ضرب الجذور يساوي الحد الحر.

أولئك. تنص نظرية فييتا على أن الجذور x 1 و x 2 للمعادلة التربيعية المختزلة x 2 +px+q=0 لها الخاصية:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

مدرسة كوبيفسكايا الريفية الثانوية

10 حلول المعادلات التربيعية

الرئيس: باتريكيفا جالينا أناتوليفنا،

مدرس رياضيات

قرية كوبيفو، 2007

1. تاريخ تطور المعادلات التربيعية

1.1 المعادلات التربيعية في بابل القديمة

1.2 كيف قام ديوفانتوس بتأليف وحل المعادلات التربيعية

1.3 المعادلات التربيعية في الهند

1.4 المعادلات التربيعية للخوارزمي

1.5 المعادلات التربيعية في أوروبا الثالث عشر- السابع عشر قرون

1.6 حول نظرية فييتا

2. طرق حل المعادلات التربيعية

خاتمة

الأدب

1. تاريخ تطور المعادلات التربيعية

1.1 المعادلات التربيعية في بابل القديمة

إن الحاجة إلى حل المعادلات ليس فقط من الدرجة الأولى ولكن أيضًا من الدرجة الثانية في العصور القديمة كانت ناجمة عن الحاجة إلى حل المشكلات المتعلقة بإيجاد المساحات قطع ارضومع أعمال الحفر ذات الطبيعة العسكرية، وكذلك مع تطور علم الفلك والرياضيات نفسها. يمكن حل المعادلات التربيعية حوالي عام 2000 قبل الميلاد. ه. البابليون.

باستخدام التدوين الجبري الحديث، يمكننا القول أنه في نصوصهم المسمارية، بالإضافة إلى النصوص غير الكاملة، مثل، على سبيل المثال، المعادلات التربيعية الكاملة:

X 2 + X = ¾; X 2 - X = 14,5

وقاعدة حل هذه المعادلات الواردة في النصوص البابلية تتطابق بشكل أساسي مع القاعدة الحديثة، لكن من غير المعروف كيف وصل البابليون إلى هذه القاعدة. تقريبًا جميع النصوص المسمارية التي تم العثور عليها حتى الآن تقدم فقط مشاكل مع حلول موضوعة في شكل وصفات، دون أي إشارة إلى كيفية العثور عليها.

بالرغم من مستوى عالتطور الجبر في بابل، افتقرت النصوص المسمارية إلى مفهوم العدد السالب و الأساليب العامةحل المعادلات التربيعية.

1.2 كيف قام ديوفانتوس بتأليف وحل المعادلات التربيعية.

لا تحتوي عملية حسابية ديوفانتوس على عرض منهجي للجبر، ولكنها تحتوي على سلسلة منهجية من المسائل، مصحوبة بتفسيرات ويتم حلها عن طريق بناء معادلات بدرجات مختلفة.

عند إنشاء المعادلات، يختار ديوفانتوس بمهارة المجهول لتبسيط الحل.

وهنا، على سبيل المثال، إحدى مهامه.

المشكلة 11."أوجد رقمين مع العلم أن مجموعهما 20 وحاصل ضربهما 96"

يبرر ديوفانتوس ما يلي: من شروط المشكلة يترتب على أن الأعداد المطلوبة غير متساوية، لأنها إذا كانت متساوية، فلن يكون ناتجها يساوي 96، بل 100. وبالتالي، سيكون واحد منهم أكثر من نصف مجموعهم، أي. 10 + سوالآخر أقل، أي. 10. الفرق بينهما 2x .

ومن هنا المعادلة:

(10 + س)(10 - س) = 96

100 - × 2 = 96

× 2 - 4 = 0 (1)

من هنا س = 2. أحد الأرقام المطلوبة يساوي 12 ، آخر 8 . حل س = -2لأن ديوفانتوس غير موجود، لأن الرياضيات اليونانية كانت تعرف الأعداد الموجبة فقط.

إذا حللنا هذه المشكلة باختيار أحد الأعداد المطلوبة كمجهول، فسنصل إلى حل للمعادلة

ص(20 - ص) = 96,

ص 2 - 20ص + 96 = 0. (2)


ومن الواضح أنه باختيار نصف الفرق بين الأعداد المطلوبة باعتبارها المجهولة، يبسط ديوفانتوس الحل؛ تمكن من تقليل المشكلة إلى حل معادلة تربيعية غير مكتملة (1).

1.3 المعادلات التربيعية في الهند

تم العثور على مشاكل المعادلات التربيعية بالفعل في الأطروحة الفلكية "Aryabhattiam"، التي جمعها عالم الرياضيات والفلكي الهندي Aryabhatta في عام 499. وأوضح عالم هندي آخر، براهماغوبتا (القرن السابع). قاعدة عامةحل المعادلات التربيعية المختزلة إلى موحدة الشكل الكنسي:

اه 2+ ب س = ج، أ > 0. (1)

في المعادلة (1)، المعاملات، باستثناء أ، كما يمكن أن تكون سلبية. قاعدة براهماجوبتا هي في الأساس نفس حكمنا.

في الهند القديمةكانت المسابقات العامة في حل المشكلات الصعبة شائعة. يقول أحد الكتب الهندية القديمة عن مثل هذه المسابقات ما يلي: "كما تحجب الشمس النجوم بريقها كذلك" رجل متعلمكسوف مجد شخص آخر في المجالس الشعبية من خلال اقتراح وحل المسائل الجبرية. غالبًا ما يتم تقديم المشكلات في شكل شعري.

هذه إحدى مشاكل عالم الرياضيات الهندي الشهير في القرن الثاني عشر. باسكارز.

المشكلة 13.

"قطيع من القرود المرحة، واثني عشر على طول الكروم...

السلطات، بعد أن أكلت، استمتعت. بدأوا بالقفز والتعليق..

هناك هم في الساحة الجزء الثامن كم قرد كان هناك؟

لقد كنت أستمتع في المقاصة. قل لي، في هذه الحزمة؟

يشير حل بهاسكارا إلى أنه كان يعلم أن جذور المعادلات التربيعية ذات قيمتين (الشكل 3).

المعادلة المقابلة للمشكلة 13 هي:

( س /8) 2 + 12 = س

يكتب بهاسكارا تحت ستار:

× 2 - 64س = -768

ولإكمال الجانب الأيسر من هذه المعادلة إلى المربع، نضيف إلى كلا الطرفين 32 2 ، ثم الحصول على:

× 2 - 64س + 32 2 = -768 + 1024،

(س - 32) 2 = 256،

س - 32 = ± 16،

× 1 = 16، × 2 = 48.

1.4 المعادلات التربيعية في الخوارزمي

وقد ورد في رسالة الخوارزمي الجبرية تصنيف للمعادلات الخطية والتربيعية. أحصى المؤلف 6 أنواع من المعادلات، معبراً عنها كما يلي:

1) "المربعات تساوي الجذور" أي: الفأس 2 + ج = ب X.

2) "المربعات تساوي أرقاماً" أي: الفأس 2 = ج.

3) "الجذور تساوي العدد" أي. آه = س.

4) "المربعات والأعداد تساوي الجذور" أي: الفأس 2 + ج = ب X.

5) "المربعات والجذور تساوي الأعداد" أي: اه 2+ bx = س.

6) "الجذور والأعداد تساوي مربعات" أي: bx + ج = الفأس 2 .

للخوارزمي الذي اجتنب الاستهلاك أرقام سلبية، شروط كل من هذه المعادلات عبارة عن عمليات جمع وليست قابلة للطرح. في هذه الحالة، من الواضح أن المعادلات التي ليس لها حلول موجبة لا تؤخذ في الاعتبار. المؤلف يحدد الحلول المعادلات المذكورة أعلاهباستخدام تقنيات الجبر والمقابلة. قراراته، بالطبع، لا تتزامن تماما مع قراراتنا. ناهيك عن أنها بلاغية بحتة، تجدر الإشارة، على سبيل المثال، إلى أنه عند حل معادلة تربيعية غير كاملة من النوع الأول

الخوارزمي، مثل جميع علماء الرياضيات قبل القرن السابع عشر، لا يأخذ في الاعتبار الحل الصفري، ربما لأنه في مسائل عملية محددة لا يهم. عند حل المعادلات التربيعية الكاملة، يحدد الخوارزمي قواعد حلها باستخدام أمثلة عددية معينة، ثم البراهين الهندسية.

المشكلة 14."المربع والعدد 21 يساويان 10 جذور. العثور على الجذر" (مما يعني جذر المعادلة x 2 + 21 = 10x).

يبدو حل المؤلف كالتالي: اقسم عدد الجذور على النصف، ستحصل على 5، اضرب 5 في نفسه، اطرح 21 من الناتج، ما يتبقى هو 4. خذ الجذر من 4، تحصل على 2. اطرح 2 من 5 ، تحصل على 3، سيكون هذا هو الجذر المطلوب. أو أضف 2 إلى 5، لتحصل على 7، وهذا أيضًا جذر.

إن رسالة الخوارزمي هي أول كتاب وصل إلينا، والذي يحدد بشكل منهجي تصنيف المعادلات التربيعية ويعطي صيغ لحلها.

1.5 المعادلات التربيعية في أوروبا الثالث عشر - السابع عشر ب

تم توضيح صيغ حل المعادلات التربيعية على غرار الخوارزمي في أوروبا لأول مرة في كتاب العداد، الذي كتبه عالم الرياضيات الإيطالي ليوناردو فيبوناتشي عام 1202. هذا العمل الضخم الذي يعكس تأثير الرياضيات في كل من الدول الإسلامية و اليونان القديمة، يتميز بالاكتمال والوضوح في العرض. طور المؤلف بشكل مستقل بعض الجديد أمثلة جبريةحل المشكلات وكان الأول في أوروبا الذي أدخل الأرقام السالبة. ساهم كتابه في نشر المعرفة الجبرية ليس فقط في إيطاليا، بل أيضًا في ألمانيا وفرنسا ودول أوروبية أخرى. تم استخدام العديد من المسائل من كتاب العداد في جميع الكتب المدرسية الأوروبية تقريبًا في القرنين السادس عشر والسابع عشر. والثامن عشر جزئيًا.

القاعدة العامة لحل المعادلات التربيعية المختزلة إلى شكل قانوني واحد:

× 2+ bx = ج،

لجميع المجموعات الممكنة من علامات المعاملات ب , معتمت صياغته في أوروبا فقط في عام 1544 بواسطة M. Stiefel.

اشتقاق صيغة حل المعادلة التربيعية بشكل عام متاح من Vieta، لكن Vieta معترف به فقط جذور إيجابية. كان علماء الرياضيات الإيطاليون تارتاليا وكاردانو وبومبيلي من بين الأوائل في القرن السادس عشر. يأخذون في الاعتبار، بالإضافة إلى الإيجابية، و الجذور السلبية. فقط في القرن السابع عشر. بفضل أعمال جيرار وديكارت ونيوتن وآخرين طريقة العلماءحل المعادلات التربيعية يأخذ شكلا حديثا.

1.6 حول نظرية فييتا

النظرية التي تعبر عن العلاقة بين معاملات المعادلة التربيعية وجذورها، والتي سميت باسم فييتا، صاغها لأول مرة في عام 1591 على النحو التالي: "إذا ب + د، مضروبا أ - أ 2 ، يساوي دينار بحريني، الذي - التي أيساوي فيوعلى قدم المساواة د ».

لكي نفهم فييتا، علينا أن نتذكر ذلك أ، مثل أي حرف علة، يعني المجهول (لدينا X)، الحروف المتحركة في، د- معاملات المجهول. في لغة الجبر الحديث، تعني صيغة فييتا المذكورة أعلاه: إذا كان هناك

(أ+ ب )س - س 2 = أب ,

× 2 - (أ + ب )س + أ ب = 0,

س 1 = أ، س 2 = ب .

التعبير عن العلاقة بين جذور ومعاملات المعادلات الصيغ العامةمكتوبة باستخدام الرموز، أنشأت فييت التوحيد في أساليب حل المعادلات. ومع ذلك، فإن رمزية فيتنام لا تزال بعيدة عن ذلك نظرة حديثة. لم يتعرف على الأعداد السالبة، وبالتالي، عند حل المعادلات، أخذ في الاعتبار فقط الحالات التي تكون فيها جميع الجذور موجبة.

2. طرق حل المعادلات التربيعية

المعادلات التربيعية هي الأساس الذي يقوم عليه صرح الجبر المهيب. تستخدم المعادلات التربيعية على نطاق واسع في حل المعادلات والمتباينات المثلثية والأسية واللوغاريتمية وغير العقلانية والمتعالية. نعلم جميعًا كيفية حل المعادلات التربيعية من المدرسة (الصف الثامن) حتى التخرج.

تتم دراسة المعادلات التربيعية في الصف الثامن، لذلك لا يوجد شيء معقد هنا. القدرة على حلها ضرورية للغاية.

المعادلة التربيعية هي معادلة على الصورة ax 2 + bx + c = 0، حيث المعاملات a وb وc هي أرقام عشوائية وa ≠ 0.

قبل الدراسة طرق محددةالحلول، لاحظ أنه يمكن تقسيم جميع المعادلات التربيعية إلى ثلاث فئات:

  1. ليس لها جذور.
  2. لديك جذر واحد بالضبط؛
  3. يملك اثنان جذور مختلفة.

وهذا فرق مهم بين المعادلات التربيعية والمعادلات الخطية، حيث يكون الجذر موجودًا دائمًا وفريدًا. كيفية تحديد عدد جذور المعادلة؟ هناك شيء رائع لهذا - تمييزي.

مميز

دع المعادلة التربيعية ax 2 + bx + c = 0. إذن فإن المميز هو ببساطة الرقم D = b 2 − 4ac.

عليك أن تعرف هذه الصيغة عن ظهر قلب. من أين يأتي ليس مهما الآن. شيء آخر مهم: من خلال علامة المميز يمكنك تحديد عدد جذور المعادلة التربيعية. يسمى:

  1. إذا د< 0, корней нет;
  2. إذا كان D = 0، هناك جذر واحد بالضبط؛
  3. إذا كان D > 0، سيكون هناك جذرين.

يرجى ملاحظة: يشير المميز إلى عدد الجذور، وليس علاماتها على الإطلاق، كما يعتقد الكثير من الناس لسبب ما. ألقِ نظرة على الأمثلة وستفهم كل شيء بنفسك:

مهمة. ما عدد جذور المعادلات التربيعية:

  1. س 2 − 8س + 12 = 0;
  2. 5س 2 + 3س + 7 = 0؛
  3. س 2 − 6س + 9 = 0.

لنكتب معاملات المعادلة الأولى ونوجد المميز:
أ = 1، ب = −8، ج = 12؛
د = (−8) 2 − 4 1 12 = 64 − 48 = 16

إذن يكون المميز موجبًا، وبالتالي فإن المعادلة لها جذرين مختلفين. نقوم بتحليل المعادلة الثانية بنفس الطريقة:
أ = 5؛ ب = 3؛ ج = 7؛
د = 2 3 − 4 5 7 = 9 − 140 = −131.

المميز سالب، ولا توجد جذور. المعادلة الأخيرة المتبقية هي:
أ = 1؛ ب = −6؛ ج = 9؛
د = (−6) 2 − 4 1 9 = 36 − 36 = 0.

المميز هو صفر، وسيكون الجذر واحدًا.

يرجى ملاحظة أنه تم كتابة المعاملات لكل معادلة. نعم، إنها طويلة، نعم، إنها مملة، لكنك لن تخلط بين الاحتمالات وترتكب أخطاء غبية. اختر لنفسك: السرعة أو الجودة.

بالمناسبة، إذا تمكنت من ذلك، فلن تحتاج بعد فترة إلى كتابة جميع المعاملات. سوف تقوم بإجراء مثل هذه العمليات في رأسك. يبدأ معظم الأشخاص في القيام بذلك في مكان ما بعد حل المعادلات بنسبة 50-70 - بشكل عام، ليس كثيرًا.

جذور المعادلة التربيعية

الآن دعنا ننتقل إلى الحل نفسه. إذا كان المميز D > 0، فيمكن العثور على الجذور باستخدام الصيغ:

الصيغة الأساسية لجذور المعادلة التربيعية

عندما يكون D = 0، يمكنك استخدام أي من هذه الصيغ - سوف تحصل على نفس الرقم، والذي سيكون الجواب. وأخيراً إذا كان د< 0, корней нет — ничего считать не надо.

  1. س 2 − 2س − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. × 2 + 12س + 36 = 0.

المعادلة الأولى:
س 2 − 2س − 3 = 0 ⇒ أ = 1; ب = −2؛ ج = −3;
د = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ للمعادلة جذرين. دعونا نجدهم:

المعادلة الثانية:
15 − 2x − x 2 = 0 ⇒ أ = −1; ب = −2؛ ج = 15؛
د = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ المعادلة لها جذرين مرة أخرى. دعونا نجدهم

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \النهاية(محاذاة)\]

وأخيراً المعادلة الثالثة:
س 2 + 12س + 36 = 0 ⇒ أ = 1; ب = 12؛ ج = 36؛
د = 12 2 − 4 1 36 = 0.

د = 0 ⇒ المعادلة لها جذر واحد. يمكن استخدام أي صيغة. على سبيل المثال، الأول:

كما ترون من الأمثلة، كل شيء بسيط للغاية. إذا كنت تعرف الصيغ وتستطيع العد، فلن تكون هناك مشاكل. في أغلب الأحيان، تحدث الأخطاء عند استبدال المعاملات السلبية في الصيغة. هنا مرة أخرى، ستساعد التقنية الموضحة أعلاه: انظر إلى الصيغة حرفيًا، واكتب كل خطوة - وسرعان ما تتخلص من الأخطاء.

المعادلات التربيعية غير الكاملة

يحدث أن المعادلة التربيعية تختلف قليلاً عما ورد في التعريف. على سبيل المثال:

  1. س 2 + 9س = 0؛
  2. س 2 − 16 = 0.

من السهل ملاحظة أن هذه المعادلات تفتقد أحد المصطلحات. إن حل هذه المعادلات التربيعية أسهل من حل المعادلات القياسية: فهي لا تتطلب حتى حساب المميز. لذلك، دعونا نقدم مفهوما جديدا:

تسمى المعادلة ax 2 + bx + c = 0 بمعادلة تربيعية غير مكتملة إذا كان b = 0 أو c = 0، أي. معامل المتغير x أو العنصر الحر يساوي صفر.

بالطبع، هناك حالة صعبة للغاية عندما يكون كلا هذين المعاملين مساويًا للصفر: b = c = 0. في هذه الحالة، تأخذ المعادلة الشكل ax 2 = 0. من الواضح أن هذه المعادلة لها جذر واحد: x = 0.

دعونا ننظر في الحالات المتبقية. لنفترض أن b = 0، ثم نحصل على معادلة تربيعية غير كاملة بالصيغة ax 2 + c = 0. فلنحولها قليلاً:

منذ الحساب الجذر التربيعييوجد فقط من رقم غير سالب، والمساواة الأخيرة تكون منطقية فقط من أجل (-c /a) ≥ 0. الخلاصة:

  1. إذا كانت في معادلة تربيعية غير مكتملة من الصيغة ax 2 + c = 0 تم تحقيق المتراجحة (−c /a) ≥ 0، فسيكون هناك جذرين. الصيغة مذكورة أعلاه.
  2. إذا (-ج /أ)< 0, корней нет.

كما ترون، لم يكن المميز مطلوبًا، إذ لا توجد حسابات معقدة على الإطلاق في المعادلات التربيعية غير المكتملة. في الواقع، ليس من الضروري حتى أن نتذكر المتراجحة (−c /a) ≥ 0. يكفي التعبير عن القيمة x 2 ومعرفة ما هو على الجانب الآخر من علامة المساواة. إن كان هناك رقم موجب، عدد إيجابي- سيكون هناك جذرين. إذا كانت سلبية، فلن يكون هناك جذور على الإطلاق.

الآن دعونا نلقي نظرة على المعادلات ذات الصيغة ax 2 + bx = 0، حيث العنصر الحر يساوي الصفر. كل شيء بسيط هنا: سيكون هناك دائمًا جذرين. يكفي تحليل كثير الحدود إلى عوامل:

أخذ العامل المشترك من بين قوسين

يكون الناتج صفرًا عندما يكون أحد العوامل على الأقل صفرًا. ومن هنا تأتي الجذور. وفي الختام، دعونا نلقي نظرة على عدد قليل من هذه المعادلات:

مهمة. حل المعادلات التربيعية:

  1. س 2 − 7س = 0;
  2. 5س 2 + 30 = 0؛
  3. 4س 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; س 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. لا توجد جذور، لأنه لا يمكن للمربع أن يساوي رقمًا سالبًا.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; × 2 = −1.5.