Биографии Характеристики Анализ

Как се решава дискриминантът. Как се решават непълни квадратни уравнения? Дефиниция на квадратно уравнение

Първо ниво

Квадратни уравнения. Изчерпателно ръководство (2019)

В термина „квадратно уравнение“ ключовата дума е „квадратично“. Това означава, че уравнението задължително трябва да съдържа променлива (същото x) на квадрат и не трябва да има x на трета (или по-голяма) степен.

Решаването на много уравнения се свежда до решаване на квадратни уравнения.

Нека се научим да определяме, че това е квадратно уравнение, а не някое друго уравнение.

Пример 1.

Нека да се отървем от знаменателя и да умножим всеки член на уравнението по

Нека преместим всичко в лявата страна и подредим членовете в низходящ ред на степените на X

Сега можем да кажем с увереност, че дадено уравнениее квадратна!

Пример 2.

Нека умножим ляво и правилната странана:

Това уравнение, въпреки че първоначално е в него, не е квадратно!

Пример 3.

Нека умножим всичко по:

Страшен? Четвърта и втора степен... Ако обаче направим замяна, ще видим, че имаме просто квадратно уравнение:

Пример 4.

Изглежда, че е там, но нека го разгледаме по-отблизо. Нека преместим всичко отляво:

Виждате ли, тя се е свила - и сега е проста линейно уравнение!

Сега се опитайте да определите сами кои от следните уравнения са квадратни и кои не:

Примери:

Отговори:

  1. квадрат;
  2. квадрат;
  3. не е квадратна;
  4. не е квадратна;
  5. не е квадратна;
  6. квадрат;
  7. не е квадратна;
  8. квадрат.

Математиците условно разделят всички квадратни уравнения на следните типове:

  • Пълни квадратни уравнения- уравнения, в които коефициентите и, както и свободният член c, не са равни на нула (както в примера). В допълнение, сред пълните квадратни уравнения има дадено- това са уравнения, в които коефициентът (уравнението от пример едно е не само пълно, но и намалено!)
  • Непълни квадратни уравнения- уравнения, в които коефициентът и/или свободният член c са равни на нула:

    Те са непълни, защото им липсва някакъв елемент. Но уравнението винаги трябва да съдържа x на квадрат!!! В противен случай това вече няма да е квадратно уравнение, а някакво друго уравнение.

Защо са измислили такова разделение? Изглежда, че има Х на квадрат и добре. Това разделение се определя от методите за решаване. Нека разгледаме всеки от тях по-подробно.

Решаване на непълни квадратни уравнения

Първо, нека се съсредоточим върху решаването на непълни квадратни уравнения - те са много по-прости!

Има видове непълни квадратни уравнения:

  1. , в това уравнение коефициентът е равен.
  2. , в това уравнение свободният член е равен на.
  3. , в това уравнение коефициентът и свободният член са равни.

1. i. Тъй като знаем как да извадим корен квадратен, нека изразим от това уравнение

Изразът може да бъде както отрицателен, така и положителен. Число на квадрат не може да бъде отрицателно, защото при умножаване на две отрицателни или две положителни числа резултатът винаги ще бъде положително число, така че: ако, тогава уравнението няма решения.

И ако, тогава получаваме два корена. Няма нужда да запомняте тези формули. Основното е, че трябва да знаете и винаги да помните, че не може да бъде по-малко.

Нека се опитаме да решим някои примери.

Пример 5:

Решете уравнението

Сега остава само да извлечете корена от лявата и дясната страна. В крайна сметка помните ли как се извличат корени?

Отговор:

Никога не забравяйте за корените с отрицателен знак!!!

Пример 6:

Решете уравнението

Отговор:

Пример 7:

Решете уравнението

о! Квадратът на число не може да бъде отрицателен, което означава, че уравнението

без корени!

За такива уравнения, които нямат корени, математиците излязоха със специална икона - (празен набор). И отговорът може да бъде написан така:

Отговор:

По този начин това квадратно уравнение има два корена. Тук няма ограничения, тъй като не сме извлекли корена.
Пример 8:

Решете уравнението

Нека извадим общия множител извън скобите:

По този начин,

Това уравнение има два корена.

Отговор:

Най-простият тип непълни квадратни уравнения (въпреки че всички те са прости, нали?). Очевидно това уравнение винаги има само един корен:

Тук ще се откажем от примерите.

Решаване на пълни квадратни уравнения

Напомняме ви, че пълното квадратно уравнение е уравнение от вида уравнение където

Решаването на пълни квадратни уравнения е малко по-трудно (само малко) от тези.

Помня, Всяко квадратно уравнение може да бъде решено с помощта на дискриминант! Дори непълна.

Другите методи ще ви помогнат да го направите по-бързо, но ако имате проблеми с квадратни уравнения, първо овладейте решението с помощта на дискриминанта.

1. Решаване на квадратни уравнения с помощта на дискриминант.

Решаването на квадратни уравнения с помощта на този метод е много просто, основното е да запомните последователността от действия и няколко формули.

Ако, тогава уравнението има корен. Специално вниманиенаправи крачка. Дискриминант () ни казва броя на корените на уравнението.

  • Ако, тогава формулата в стъпката ще бъде намалена до. Така уравнението ще има само корен.
  • Ако, тогава няма да можем да извлечем корена на дискриминанта на стъпката. Това показва, че уравнението няма корени.

Нека се върнем към нашите уравнения и да разгледаме някои примери.

Пример 9:

Решете уравнението

Етап 1прескачаме.

Стъпка 2.

Намираме дискриминанта:

Това означава, че уравнението има два корена.

Стъпка 3.

Отговор:

Пример 10:

Решете уравнението

Уравнението е представено в стандартна форма, така че Етап 1прескачаме.

Стъпка 2.

Намираме дискриминанта:

Това означава, че уравнението има един корен.

Отговор:

Пример 11:

Решете уравнението

Уравнението е представено в стандартна форма, така че Етап 1прескачаме.

Стъпка 2.

Намираме дискриминанта:

Това означава, че няма да можем да извлечем корена на дискриминанта. Няма корени на уравнението.

Сега знаем как правилно да записваме такива отговори.

Отговор:без корени

2. Решаване на квадратни уравнения с помощта на теоремата на Виета.

Ако си спомняте, има вид уравнение, което се нарича намалено (когато коефициентът a е равен на):

Такива уравнения са много лесни за решаване с помощта на теоремата на Vieta:

Сума от корени даденоквадратно уравнение е равно и произведението на корените е равно.

Пример 12:

Решете уравнението

Това уравнение може да бъде решено с помощта на теоремата на Виета, защото .

Сборът от корените на уравнението е равен, т.е. получаваме първото уравнение:

И произведението е равно на:

Нека съставим и решим системата:

  • И. Сумата е равна на;
  • И. Сумата е равна на;
  • И. Сумата е равна.

и са решението на системата:

Отговор: ; .

Пример 13:

Решете уравнението

Отговор:

Пример 14:

Решете уравнението

Дадено е уравнението, което означава:

Отговор:

КВАДРАТНИ УРАВНЕНИЯ. СРЕДНО НИВО

Какво е квадратно уравнение?

С други думи, квадратното уравнение е уравнение от формата, където - неизвестното, - някои числа и.

Числото се нарича най-високото или първи коефициентквадратно уравнение, - втори коефициент, А - безплатен член.

Защо? Защото, ако уравнението веднага стане линейно, защото ще изчезне.

В този случай и може да бъде равно на нула. В този стол уравнението се нарича непълно. Ако всички членове са налице, това означава, че уравнението е пълно.

Решения на различни видове квадратни уравнения

Методи за решаване на непълни квадратни уравнения:

Първо, нека разгледаме методите за решаване на непълни квадратни уравнения - те са по-прости.

Можем да различим следните видове уравнения:

I., в това уравнение коефициентът и свободният член са равни.

II. , в това уравнение коефициентът е равен.

III. , в това уравнение свободният член е равен на.

Сега нека разгледаме решението за всеки от тези подтипове.

Очевидно това уравнение винаги има само един корен:

Числото на квадрат не може да бъде отрицателно, защото когато умножите две отрицателни или две положителни числа, резултатът винаги ще бъде положително число. Ето защо:

ако, тогава уравнението няма решения;

ако имаме два корена

Няма нужда да запомняте тези формули. Основното нещо, което трябва да запомните, е, че не може да бъде по-малко.

Примери:

Решения:

Отговор:

Никога не забравяйте за корените с отрицателен знак!

Квадратът на число не може да бъде отрицателен, което означава, че уравнението

без корени.

За да напишем накратко, че даден проблем няма решения, използваме иконата за празен набор.

Отговор:

И така, това уравнение има два корена: и.

Отговор:

Нека извадим общия множител извън скобите:

Произведението е равно на нула, ако поне един от множителите е равен на нула. Това означава, че уравнението има решение, когато:

И така, това квадратно уравнение има два корена: и.

Пример:

Решете уравнението.

Решение:

Нека разложим лявата страна на уравнението и намерим корените:

Отговор:

Методи за решаване на пълни квадратни уравнения:

1. Дискриминант

Решаването на квадратни уравнения по този начин е лесно, основното е да запомните последователността от действия и няколко формули. Не забравяйте, че всяко квадратно уравнение може да бъде решено с помощта на дискриминант! Дори непълна.

Забелязахте ли корена от дискриминанта във формулата за корените? Но дискриминантът може да бъде отрицателен. Какво да правя? Трябва да обърнем специално внимание на стъпка 2. Дискриминантът ни казва броя на корените на уравнението.

  • Ако, тогава уравнението има корени:
  • Ако, тогава уравнението има едни и същи корени и всъщност един корен:

    Такива корени се наричат ​​двойни корени.

  • Ако, тогава коренът на дискриминанта не се извлича. Това показва, че уравнението няма корени.

Защо е възможно различни количествакорени? Да се ​​обърнем към геометричен смисълквадратно уравнение. Графиката на функцията е парабола:

В специален случай, който е квадратно уравнение, . Това означава, че корените на квадратното уравнение са точките на пресичане с абсцисната ос (ос). Една парабола може изобщо да не пресича оста или да я пресича в една (когато върхът на параболата лежи върху оста) или две точки.

В допълнение, коефициентът е отговорен за посоката на клоновете на параболата. Ако, тогава клоните на параболата са насочени нагоре, а ако - надолу.

Примери:

Решения:

Отговор:

Отговор: .

Отговор:

Това означава, че няма решения.

Отговор: .

2. Теорема на Виета

Много е лесно да използвате теоремата на Vieta: просто трябва да изберете двойка числа, чийто продукт е равен на свободния член на уравнението, а сумата е равна на втория коефициент, взет с обратен знак.

Важно е да запомните, че теоремата на Виета може да се приложи само в редуцирани квадратни уравнения ().

Нека да разгледаме няколко примера:

Пример #1:

Решете уравнението.

Решение:

Това уравнение може да бъде решено с помощта на теоремата на Виета, защото . Други коефициенти: ; .

Сумата от корените на уравнението е:

И произведението е равно на:

Нека изберем двойки числа, чието произведение е равно и проверим дали сборът им е равен:

  • И. Сумата е равна на;
  • И. Сумата е равна на;
  • И. Сумата е равна.

и са решението на системата:

Така и са корените на нашето уравнение.

Отговор: ; .

Пример #2:

Решение:

Нека изберем двойки числа, които дават в произведението, и след това проверим дали сборът им е равен:

и: дават общо.

и: дават общо. За да се получи, е достатъчно просто да се сменят знаците на предполагаемите корени: и в крайна сметка продуктът.

Отговор:

Пример #3:

Решение:

Свободният член на уравнението е отрицателен и следователно произведението на корените е отрицателно число. Това е възможно само ако единият от корените е отрицателен, а другият е положителен. Следователно сумата от корените е равна на разлики в техните модули.

Нека изберем двойки числа, които дават в произведението и чиято разлика е равна на:

и: разликата им е равна - не се вписва;

и: - неподходящи;

и: - неподходящи;

и: - подходящи. Остава само да запомним, че един от корените е отрицателен. Тъй като сборът им трябва да е равен, коренът с по-малкия модул трябва да е отрицателен: . Ние проверяваме:

Отговор:

Пример #4:

Решете уравнението.

Решение:

Дадено е уравнението, което означава:

Свободният член е отрицателен и следователно произведението на корените е отрицателно. И това е възможно само когато единият корен на уравнението е отрицателен, а другият е положителен.

Нека да изберем двойки числа, чийто продукт е равен, и след това да определим кои корени трябва да имат отрицателен знак:

Очевидно само корените и са подходящи за първото условие:

Отговор:

Пример #5:

Решете уравнението.

Решение:

Дадено е уравнението, което означава:

Сборът на корените е отрицателен, което означава, че поне един от корените е отрицателен. Но тъй като техният продукт е положителен, това означава, че и двата корена имат знак минус.

Нека изберем двойки числа, чийто продукт е равен на:

Очевидно корените са числата и.

Отговор:

Съгласете се, много е удобно да излезете с корени устно, вместо да броите този неприятен дискриминант. Опитайте се да използвате теоремата на Vieta възможно най-често.

Но теоремата на Виета е необходима, за да улесни и ускори намирането на корените. За да имате полза от използването му, трябва да доведете действията до автоматизъм. И за това решете още пет примера. Но не изневерявайте: не можете да използвате дискриминант! Само теоремата на Виета:

Решения на задачи за самостоятелна работа:

Задача 1. ((x)^(2))-8x+12=0

Според теоремата на Виета:

Както обикновено, започваме селекцията с парчето:

Не е подходящ, защото количеството;

: количеството е точно това, от което се нуждаете.

Отговор: ; .

Задача 2.

И отново нашата любима теорема на Виета: сборът трябва да е равен и произведението трябва да е равно.

Но тъй като трябва да е не, но, променяме знаците на корените: и (общо).

Отговор: ; .

Задача 3.

Хм... Къде е това?

Трябва да преместите всички условия в една част:

Сборът от корените е равен на произведението.

Добре, спри! Уравнението не е дадено. Но теоремата на Виета е приложима само в дадените уравнения. Така че първо трябва да дадете уравнение. Ако не можете да водите, откажете се от тази идея и я решете по друг начин (например чрез дискриминант). Нека ви напомня, че да се даде квадратно уравнение означава водещият коефициент да бъде равен на:

Страхотен. Тогава сумата от корените е равна на и произведението.

Тук е толкова лесно, колкото да белите круши: все пак това е просто число (съжалявам за тавтологията).

Отговор: ; .

Задача 4.

Безплатният член е отрицателен. Какво е особеното на това? И факт е, че корените ще имат различни знаци. И сега, по време на селекцията, ние проверяваме не сумата на корените, а разликата в техните модули: тази разлика е равна, но продукт.

И така, корените са равни на и, но един от тях е минус. Теоремата на Виета ни казва, че сборът от корените е равен на втория коефициент с противоположен знак, т.е. Това означава, че по-малкият корен ще има минус: и, тъй като.

Отговор: ; .

Задача 5.

Какво трябва да направите първо? Точно така, дайте уравнението:

Отново: избираме факторите на числото и тяхната разлика трябва да бъде равна на:

Корените са равни на и, но един от тях е минус. Който? Сборът им трябва да е равен, което означава, че минусът ще има по-голям корен.

Отговор: ; .

Нека да обобщя:
  1. Теоремата на Vieta се използва само в дадените квадратни уравнения.
  2. Използвайки теоремата на Vieta, можете да намерите корените чрез избор, устно.
  3. Ако уравнението не е дадено или не е намерена подходяща двойка фактори на свободния член, тогава няма цели корени и трябва да го решите по друг начин (например чрез дискриминант).

3. Метод за избор на пълен квадрат

Ако всички членове, съдържащи неизвестното, са представени под формата на членове от съкратени формули за умножение - квадрат на сбора или разликата - тогава след замяна на променливи уравнението може да бъде представено под формата на непълно квадратно уравнение от типа.

Например:

Пример 1:

Решете уравнението: .

Решение:

Отговор:

Пример 2:

Решете уравнението: .

Решение:

Отговор:

IN общ изгледтрансформацията ще изглежда така:

Това предполага: .

Нищо не ти напомня? Това е нещо дискриминационно! Точно така получихме дискриминантната формула.

КВАДРАТНИ УРАВНЕНИЯ. НАКРАТКО ЗА ГЛАВНОТО

Квадратно уравнение- това е уравнение от вида, където - неизвестното, - коефициентите на квадратното уравнение, - свободният член.

Пълно квадратно уравнение- уравнение, в което коефициентите не са равни на нула.

Редуцирано квадратно уравнение- уравнение, в което коефициентът, тоест: .

Непълно квадратно уравнение- уравнение, в което коефициентът и/или свободният член c са равни на нула:

  • ако коефициентът, уравнението изглежда така: ,
  • ако има свободен член, уравнението има формата: ,
  • ако и, уравнението изглежда така: .

1. Алгоритъм за решаване на непълни квадратни уравнения

1.1. Непълно квадратно уравнение от формата, където, :

1) Нека изразим неизвестното: ,

2) Проверете знака на израза:

  • ако, тогава уравнението няма решения,
  • ако, тогава уравнението има два корена.

1.2. Непълно квадратно уравнение от формата, където, :

1) Нека извадим общия множител извън скобите: ,

2) Произведението е равно на нула, ако поне един от множителите е равен на нула. Следователно уравнението има два корена:

1.3. Непълно квадратно уравнение от формата, където:

Това уравнение винаги има само един корен: .

2. Алгоритъм за решаване на пълни квадратни уравнения от вида where

2.1. Решение с помощта на дискриминант

1) Нека редуцираме уравнението до стандартен изглед: ,

2) Нека изчислим дискриминанта по формулата: , която показва броя на корените на уравнението:

3) Намерете корените на уравнението:

  • ако, тогава уравнението има корени, които се намират по формулата:
  • ако, тогава уравнението има корен, който се намира по формулата:
  • ако, тогава уравнението няма корени.

2.2. Решение с помощта на теоремата на Виета

Сумата от корените на редуцираното квадратно уравнение (уравнение от вида където) е равна, а произведението на корените е равно, т.е. , А.

2.3. Решение по метода на избиране на пълен квадрат


Продължаваме да изучаваме темата " решаване на уравнения" Вече се запознахме с линейните уравнения и преминаваме към запознаване квадратни уравнения.

Първо ще разгледаме какво е квадратно уравнение, как се записва в обща форма и ще дадем свързани определения. След това ще използваме примери, за да разгледаме подробно как се решават непълни квадратни уравнения. Да преминем към решението пълни уравнения, ще получим формулата на корена, ще се запознаем с дискриминанта на квадратно уравнение и ще разгледаме решения на типични примери. И накрая, нека проследим връзките между корените и коефициентите.

Навигация в страницата.

Какво е квадратно уравнение? Техните видове

Първо трябва ясно да разберете какво е квадратно уравнение. Следователно е логично да започнем разговор за квадратни уравнения с дефиницията на квадратно уравнение, както и сродни определения. След това можете да разгледате основните видове квадратни уравнения: редуцирани и нередуцирани, както и пълни и непълни уравнения.

Определение и примери за квадратни уравнения

Определение.

Квадратно уравнениее уравнение на формата a x 2 +b x+c=0, където x е променлива, a, b и c са някои числа, а a е различно от нула.

Да кажем веднага, че квадратните уравнения често се наричат ​​уравнения от втора степен. Това се дължи на факта, че квадратното уравнение е алгебрично уравнение втора специалност.

Посоченото определение ни позволява да дадем примери за квадратни уравнения. Така че 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0 и т.н. Това са квадратни уравнения.

Определение.

Числа a, b и c се наричат коефициенти на квадратното уравнение a·x 2 +b·x+c=0 и коефициентът a се нарича първи, или най-високият, или коефициентът на x 2, b е вторият коефициент, или коефициентът на x, а c е свободният член .

Например, нека вземем квадратно уравнение под формата 5 x 2 −2 x −3=0, тук водещият коефициент е 5, вторият коефициент е равен на −2, а свободният член е равен на −3. Обърнете внимание, че когато коефициентите b и/или c са отрицателни, както в току-що дадения пример, тогава кратка формаписане на квадратно уравнение във формата 5 x 2 −2 x−3=0, а не 5 x 2 +(−2) x+(−3)=0.

Заслужава да се отбележи, че когато коефициентите a и/или b са равни на 1 или −1, те обикновено не присъстват изрично в квадратното уравнение, което се дължи на особеностите на записването им. Например в квадратното уравнение y 2 −y+3=0 водещият коефициент е единица, а коефициентът на y е равен на −1.

Редуцирани и нередуцирани квадратни уравнения

В зависимост от стойността на водещия коефициент се разграничават редуцирани и нередуцирани квадратни уравнения. Нека дадем съответните определения.

Определение.

Нарича се квадратно уравнение, в което водещият коефициент е 1 дадено квадратно уравнение. В противен случай квадратното уравнение е недокоснат.

Според това определение, квадратни уравнения x 2 −3·x+1=0, x 2 −x−2/3=0 и т.н. – даден, във всеки от тях първият коефициент равно на едно. A 5 x 2 −x−1=0 и т.н. - нередуцирани квадратни уравнения, техните водещи коефициенти са различни от 1.

От всяко нередуцирано квадратно уравнение, като разделите двете страни на водещия коефициент, можете да отидете до редуцираното. Това действие е еквивалентна трансформация, тоест полученото по този начин редуцирано квадратно уравнение има същите корени като оригиналното нередуцирано квадратно уравнение или, подобно на него, няма корени.

Нека разгледаме пример за това как се извършва преходът от нередуцирано квадратно уравнение към редуцирано.

Пример.

От уравнението 3 x 2 +12 x−7=0 преминете към съответното намалено квадратно уравнение.

Решение.

Просто трябва да разделим двете страни на първоначалното уравнение на водещия коефициент 3, той е различен от нула, така че можем да извършим това действие. Имаме (3 x 2 +12 x−7):3=0:3, което е същото, (3 x 2):3+(12 x):3−7:3=0 и след това (3: 3) x 2 +(12:3) x−7:3=0, от където . Така получихме редуцираното квадратно уравнение, което е еквивалентно на първоначалното.

Отговор:

Пълни и непълни квадратни уравнения

Дефиницията на квадратно уравнение съдържа условието a≠0. Това условие е необходимо, за да може уравнението a x 2 + b x + c = 0 да е квадратно, тъй като когато a = 0 то всъщност се превръща в линейно уравнение във формата b x + c = 0.

Що се отнася до коефициентите b и c, те могат да бъдат равни на нула, както поотделно, така и заедно. В тези случаи квадратното уравнение се нарича непълно.

Определение.

Квадратното уравнение a x 2 +b x+c=0 се нарича непълна, ако поне един от коефициентите b, c е равен на нула.

На свой ред

Определение.

Пълно квадратно уравнениее уравнение, в което всички коефициенти са различни от нула.

Такива имена не са дадени случайно. Това ще стане ясно от следващите дискусии.

Ако коефициентът b е нула, тогава квадратното уравнение приема формата a·x 2 +0·x+c=0 и е еквивалентно на уравнението a·x 2 +c=0. Ако c=0, тоест квадратното уравнение има формата a·x 2 +b·x+0=0, тогава то може да бъде пренаписано като a·x 2 +b·x=0. И с b=0 и c=0 получаваме квадратното уравнение a·x 2 =0. Получените уравнения се различават от пълното квадратно уравнение по това, че техните леви части не съдържат нито член с променливата x, нито свободен член, нито и двете. Оттук и името им - непълни квадратни уравнения.

Така уравненията x 2 +x+1=0 и −2 x 2 −5 x+0.2=0 са примери за пълни квадратни уравнения и x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 са непълни квадратни уравнения.

Решаване на непълни квадратни уравнения

От информацията в предходния параграф следва, че има три вида непълни квадратни уравнения:

  • a·x 2 =0, на него съответстват коефициентите b=0 и c=0;
  • a x 2 +c=0, когато b=0;
  • и a·x 2 +b·x=0, когато c=0.

Нека разгледаме по ред как се решават непълните квадратни уравнения от всеки от тези типове.

a x 2 =0

Нека започнем с решаването на непълни квадратни уравнения, в които коефициентите b и c са равни на нула, тоест с уравнения от вида a x 2 =0. Уравнението a·x 2 =0 е еквивалентно на уравнението x 2 =0, което се получава от оригинала чрез разделяне на двете части на различно от нула число a. Очевидно коренът на уравнението x 2 =0 е нула, тъй като 0 2 =0. Това уравнение няма други корени, което се обяснява с факта, че за всяко ненулево число p е в сила неравенството p 2 >0, което означава, че за p≠0 равенството p 2 =0 никога не се постига.

И така, непълното квадратно уравнение a·x 2 =0 има един корен x=0.

Като пример даваме решението на непълното квадратно уравнение −4 x 2 =0. То е еквивалентно на уравнението x 2 =0, единственият му корен е x=0, следователно оригиналното уравнение има един корен нула.

Кратко решение в този случай може да се напише по следния начин:
−4 x 2 =0,
х 2 =0,
x=0.

a x 2 +c=0

Сега нека да разгледаме как се решават непълни квадратни уравнения, в които коефициентът b е нула и c≠0, тоест уравнения от вида a x 2 +c=0. Знаем, че преместването на член от едната страна на уравнението в другата с противоположен знак, както и разделянето на двете страни на уравнението на ненулево число дава еквивалентно уравнение. Следователно можем да извършим следното еквивалентни трансформациинепълно квадратно уравнение a x 2 +c=0 :

  • преместете c в дясната страна, което дава уравнението a x 2 =−c,
  • и разделяме двете страни на a, получаваме .

Полученото уравнение ни позволява да направим изводи за неговите корени. В зависимост от стойностите на a и c, стойността на израза може да бъде отрицателна (например, ако a=1 и c=2, тогава ) или положителна (например, ако a=−2 и c=6, тогава ), не е нула , тъй като по условие c≠0. Нека разгледаме случаите поотделно.

Ако , тогава уравнението няма корени. Това твърдение следва от факта, че квадратът на всяко число е неотрицателно число. От това следва, че когато , тогава за всяко число p равенството не може да бъде вярно.

Ако , тогава ситуацията с корените на уравнението е различна. В този случай, ако си спомним за , тогава коренът на уравнението веднага става очевиден; това е числото, тъй като . Лесно е да се досетите, че числото също е коренът на уравнението, наистина, . Това уравнение няма други корени, което може да се покаже, например, от противоречие. Хайде да го направим.

Нека означим корените на току-що обявеното уравнение като x 1 и −x 1 . Да предположим, че уравнението има още един корен x 2, различен от посочените корени x 1 и −x 1. Известно е, че заместването на неговите корени в уравнение вместо x превръща уравнението в правилно числово равенство. За x 1 и −x 1 имаме , а за x 2 имаме . Свойствата на числовите равенства ни позволяват да извършваме изваждане член по член на правилни числени равенства, така че изваждането на съответните части от равенствата дава x 1 2 −x 2 2 =0. Свойствата на операциите с числа ни позволяват да пренапишем полученото равенство като (x 1 −x 2)·(x 1 +x 2)=0. Знаем, че произведението на две числа е равно на нула тогава и само ако поне едно от тях е равно на нула. Следователно от полученото равенство следва, че x 1 −x 2 =0 и/или x 1 +x 2 =0, което е едно и също, x 2 =x 1 и/или x 2 =−x 1. Така че стигнахме до противоречие, тъй като в началото казахме, че коренът на уравнението x 2 е различен от x 1 и −x 1. Това доказва, че уравнението няма корени освен и .

Нека обобщим информацията в този параграф. Непълното квадратно уравнение a x 2 +c=0 е еквивалентно на уравнението, което

  • няма корени, ако,
  • има два корена и , ако .

Нека разгледаме примери за решаване на непълни квадратни уравнения от вида a·x 2 +c=0.

Нека започнем с квадратното уравнение 9 x 2 +7=0. След преместване на свободния член в дясната страна на уравнението, той ще приеме формата 9 x 2 =−7. Разделяйки двете страни на полученото уравнение на 9, получаваме . Тъй като дясната страна има отрицателно число, това уравнение няма корени, следователно оригиналното непълно квадратно уравнение 9 x 2 +7 = 0 няма корени.

Нека решим друго непълно квадратно уравнение −x 2 +9=0. Преместваме деветката от дясната страна: −x 2 =−9. Сега разделяме двете страни на −1, получаваме x 2 =9. От дясната страна има положително число, от което заключаваме, че или . След това записваме крайния отговор: непълното квадратно уравнение −x 2 +9=0 има два корена x=3 или x=−3.

a x 2 +b x=0

Остава да разберем решението последен типнепълни квадратни уравнения за c=0. Непълните квадратни уравнения под формата a x 2 + b x = 0 ви позволяват да решите метод на факторизация. Очевидно можем, намирайки се от лявата страна на уравнението, за което е достатъчно да извадим общия множител x извън скоби. Това ни позволява да преминем от първоначалното непълно квадратно уравнение към еквивалентно уравнениеот формата x·(a·x+b)=0. И това уравнение е еквивалентно на набор от две уравнения x=0 и a·x+b=0, последното от които е линейно и има корен x=−b/a.

И така, непълното квадратно уравнение a·x 2 +b·x=0 има два корена x=0 и x=−b/a.

За да консолидираме материала, ще анализираме решението на конкретен пример.

Пример.

Решете уравнението.

Решение.

Изваждането на x извън скобите дава уравнението. Това е еквивалентно на две уравнения x=0 и . Решаваме полученото линейно уравнение: , и извършваме делението смесено числоНа обикновена дроб, намираме . Следователно корените на оригиналното уравнение са x=0 и .

След придобиване на необходимата практика, решенията на такива уравнения могат да бъдат написани накратко:

Отговор:

x=0 , .

Дискриминант, формула за корените на квадратно уравнение

За решаване на квадратни уравнения има формула за корен. Нека го запишем формула за корените на квадратно уравнение: , Където D=b 2 −4 a c- т.нар дискриминант на квадратно уравнение. Вписването по същество означава, че.

Полезно е да знаете как е получена формулата за корен и как се използва при намиране на корените на квадратни уравнения. Нека разберем това.

Извеждане на формулата за корените на квадратно уравнение

Нека трябва да решим квадратното уравнение a·x 2 +b·x+c=0. Нека извършим някои еквивалентни трансформации:

  • Можем да разделим двете страни на това уравнение на ненулево число a, което води до следното квадратно уравнение.
  • Сега нека подчертаем идеален квадрат от лявата му страна: . След това уравнението ще приеме формата.
  • На този етап е възможно последните два термина да се прехвърлят от дясната страна с противоположния знак, имаме .
  • И нека трансформираме израза от дясната страна: .

В резултат на това стигаме до уравнение, което е еквивалентно на оригиналното квадратно уравнение a·x 2 +b·x+c=0.

Вече сме решавали уравнения, подобни по форма в предишните параграфи, когато разглеждахме. Това ни позволява да направим следните заключения относно корените на уравнението:

  • ако , тогава уравнението няма реални решения;
  • ако , тогава уравнението има формата , следователно, , от което се вижда единственият му корен;
  • ако , тогава или , което е същото като или , тоест уравнението има два корена.

По този начин наличието или отсъствието на корени на уравнението и следователно на оригиналното квадратно уравнение зависи от знака на израза от дясната страна. От своя страна знакът на този израз се определя от знака на числителя, тъй като знаменателят 4·a 2 винаги е положителен, тоест от знака на израза b 2 −4·a·c. Този израз b 2 −4 a c беше наречен дискриминант на квадратно уравнениеи обозначени с буквата д. Оттук е ясна същността на дискриминанта - по стойността и знака му правят извод дали квадратното уравнение има реални корени и ако има, какъв е техният брой - един или два.

Нека се върнем към уравнението и го пренапишем, като използваме дискриминантната нотация: . И правим изводи:

  • ако Д<0 , то это уравнение не имеет действительных корней;
  • ако D=0, тогава това уравнение има един корен;
  • накрая, ако D>0, тогава уравнението има два корена или, които могат да бъдат пренаписани във формата или и след разширяване и привеждане на дробите към общ знаменател получаваме.

Така че изведехме формулите за корените на квадратното уравнение, те изглеждат като , където дискриминантът D се изчислява по формулата D=b 2 −4·a·c.

С тяхна помощ, с положителен дискриминант, можете да изчислите и двата реални корена на квадратно уравнение. Когато дискриминантът е равен на нула, и двете формули дават една и съща стойност на корена, съответстваща на уникално решение на квадратното уравнение. И с отрицателен дискриминант, когато се опитваме да използваме формулата за корените на квадратно уравнение, се сблъскваме с извличането корен квадратенот отрицателно число, което ни отвежда отвъд и училищна програма. С отрицателен дискриминант квадратното уравнение няма реални корени, но има двойка комплексно спрегнаткорени, които могат да бъдат намерени с помощта на същите формули за корени, които получихме.

Алгоритъм за решаване на квадратни уравнения с помощта на коренни формули

На практика, когато решавате квадратни уравнения, можете веднага да използвате формулата на корена, за да изчислите техните стойности. Но това е по-скоро свързано с намирането на сложни корени.

Въпреки това, в училищен курсалгебра обикновено ние говорим зане за комплексни, а за реални корени на квадратно уравнение. В този случай е препоръчително, преди да използвате формулите за корените на квадратно уравнение, първо да намерите дискриминанта, да се уверите, че е неотрицателен (в противен случай можем да заключим, че уравнението няма реални корени), и едва след това изчислете стойностите на корените.

Горното разсъждение ни позволява да пишем алгоритъм за решаване на квадратно уравнение. За да решите квадратното уравнение a x 2 +b x+c=0, трябва:

  • използвайки дискриминантната формула D=b 2 −4·a·c, изчислете стойността му;
  • заключават, че квадратното уравнение няма реални корени, ако дискриминантът е отрицателен;
  • изчислете единствения корен на уравнението по формулата, ако D=0;
  • намерете два реални корена на квадратно уравнение, като използвате формулата за корен, ако дискриминантът е положителен.

Тук просто отбелязваме, че ако дискриминантът е равен на нула, можете също да използвате формулата; тя ще даде същата стойност като .

Можете да преминете към примери за използване на алгоритъма за решаване на квадратни уравнения.

Примери за решаване на квадратни уравнения

Нека разгледаме решения на три квадратни уравнения с положителен, отрицателен и нулев дискриминант. След като се справим с тяхното решение, по аналогия ще бъде възможно да се реши всяко друго квадратно уравнение. Нека да започнем.

Пример.

Намерете корените на уравнението x 2 +2·x−6=0.

Решение.

В този случай имаме следните коефициенти на квадратното уравнение: a=1, b=2 и c=−6. Според алгоритъма първо трябва да изчислите дискриминанта; за да направите това, заместваме посочените a, b и c във формулата на дискриминанта, имаме D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Тъй като 28>0, тоест дискриминантът Над нулата, тогава квадратното уравнение има два реални корена. Нека ги намерим с помощта на формулата за корен, получаваме , тук можете да опростите получените изрази, като направите преместване на множителя отвъд знака за коренпоследвано от намаляване на фракцията:

Отговор:

Да преминем към следващия типичен пример.

Пример.

Решете квадратното уравнение −4 x 2 +28 x−49=0 .

Решение.

Започваме с намирането на дискриминанта: D=28 2 −4·(−4)·(−49)=784−784=0. Следователно това квадратно уравнение има един корен, който намираме като , т.е.

Отговор:

х=3,5.

Остава да разгледаме решаването на квадратни уравнения с отрицателен дискриминант.

Пример.

Решете уравнението 5·y 2 +6·y+2=0.

Решение.

Ето коефициентите на квадратното уравнение: a=5, b=6 и c=2. Ние заместваме тези стойности в дискриминантната формула, която имаме D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Дискриминантът е отрицателен, следователно това квадратно уравнение няма реални корени.

Ако трябва да зададете сложни корени, използвайте добре позната формулакорени на квадратно уравнение и изпълнете действия с комплексни числа :

Отговор:

няма истински корени, сложните корени са: .

Нека отбележим още веднъж, че ако дискриминантът на квадратно уравнение е отрицателен, тогава в училище те обикновено незабавно записват отговор, в който посочват, че няма реални корени и сложни корени не се намират.

Коренна формула за четни втори коефициенти

Формулата за корените на квадратно уравнение, където D=b 2 −4·a·c ви позволява да получите формула с по-компактна форма, която ви позволява да решавате квадратни уравнения с четен коефициент за x (или просто с коефициент, имащ формата 2·n, например, или 14· ln5=2·7·ln5 ). Да я измъкнем.

Да кажем, че трябва да решим квадратно уравнение от формата a x 2 +2 n x+c=0. Нека намерим корените му, използвайки формулата, която знаем. За да направим това, изчисляваме дискриминанта D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c)и след това използваме коренната формула:

Нека обозначим израза n 2 −a c като D 1 (понякога се обозначава с D "). Тогава формулата за корените на разглежданото квадратно уравнение с втория коефициент 2 n ще приеме формата , където D 1 =n 2 −a·c.

Лесно се вижда, че D=4·D 1, или D 1 =D/4. С други думи, D 1 е четвъртата част от дискриминанта. Ясно е, че знакът на D 1 е същият като знака на D . Тоест, знакът D 1 също е индикатор за наличието или отсъствието на корени на квадратно уравнение.

И така, за да решите квадратно уравнение с втори коефициент 2·n, трябва

  • Изчислете D 1 =n 2 −a·c ;
  • Ако D 1<0 , то сделать вывод, что действительных корней нет;
  • Ако D 1 =0, тогава изчислете единствения корен на уравнението, като използвате формулата;
  • Ако D 1 >0, тогава намерете два реални корена, като използвате формулата.

Нека разгледаме решаването на примера с помощта на формулата за корен, получена в този параграф.

Пример.

Решете квадратното уравнение 5 x 2 −6 x −32=0 .

Решение.

Вторият коефициент на това уравнение може да бъде представен като 2·(−3) . Това означава, че можете да пренапишете оригиналното квадратно уравнение във формата 5 x 2 +2 (−3) x−32=0, тук a=5, n=−3 и c=−32, и да изчислите четвъртата част от дискриминанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Тъй като стойността му е положителна, уравнението има два реални корена. Нека ги намерим с помощта на подходящата коренна формула:

Имайте предвид, че беше възможно да се използва обичайната формула за корените на квадратно уравнение, но в този случай ще трябва да се извърши повече изчислителна работа.

Отговор:

Опростяване на формата на квадратни уравнения

Понякога, преди да започнете да изчислявате корените на квадратно уравнение с помощта на формули, няма да навреди да зададете въпроса: „Възможно ли е да се опрости формата на това уравнение?“ Съгласете се, че по отношение на изчисленията ще бъде по-лесно да се реши квадратното уравнение 11 x 2 −4 x−6=0, отколкото 1100 x 2 −400 x−600=0.

Обикновено опростяването на формата на квадратно уравнение се постига чрез умножаване или деление на двете страни на определено число. Например, в предишния параграф беше възможно да се опрости уравнението 1100 x 2 −400 x −600=0, като се разделят двете му страни на 100.

Подобна трансформация се извършва с квадратни уравнения, чиито коефициенти не са . В този случай обикновено разделяме двете страни на уравнението на абсолютни стойностинеговите коефициенти. Например, нека вземем квадратното уравнение 12 x 2 −42 x+48=0. абсолютни стойности на неговите коефициенти: НОД(12, 42, 48)= НОД(НОД(12, 42), 48)= НОД(6, 48)=6. Разделяйки двете страни на първоначалното квадратно уравнение на 6, стигаме до еквивалентното квадратно уравнение 2 x 2 −7 x+8=0.

А умножаването на двете страни на квадратно уравнение обикновено се прави, за да се отървем от него дробни коефициенти. В този случай умножението се извършва по знаменателите на неговите коефициенти. Например, ако двете страни на квадратното уравнение се умножат по LCM(6, 3, 1)=6, тогава то ще приеме по-простата форма x 2 +4·x−18=0.

В заключение на тази точка отбелязваме, че те почти винаги се отърват от минуса при най-високия коефициент на квадратно уравнение чрез промяна на знаците на всички членове, което съответства на умножаване (или деление) на двете страни по −1. Например, обикновено се преминава от квадратното уравнение −2 x 2 −3 x+7=0 към решението 2 x 2 +3 x−7=0 .

Връзка между корени и коефициенти на квадратно уравнение

Формулата за корените на квадратно уравнение изразява корените на уравнението чрез неговите коефициенти. Въз основа на формулата за корен можете да получите други връзки между корени и коефициенти.

Най-известните и приложими формули от теоремата на Виета са от вида и . По-специално, за даденото квадратно уравнение сборът от корените е равен на втория коефициент с противоположен знак, а произведението на корените е равно на свободния член. Например, като разгледаме формата на квадратното уравнение 3 x 2 −7 x + 22 = 0, можем веднага да кажем, че сборът от неговите корени е равен на 7/3, а произведението на корените е равно на 22 /3.

Използвайки вече написаните формули, можете да получите редица други връзки между корените и коефициентите на квадратното уравнение. Например, можете да изразите сумата от квадратите на корените на квадратно уравнение чрез неговите коефициенти: .

Библиография.

  • Алгебра:учебник за 8 клас. общо образование институции / [Ю. Н. Макаричев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; редактиран от С. А. Теляковски. - 16-то изд. - М.: Образование, 2008. - 271 с. : аз ще. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г.Алгебра. 8 клас. В 14 ч. Част 1. Учебник за уч образователни институции/ А. Г. Мордкович. - 11-то изд., изтрито. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

Използването на уравнения е широко разпространено в живота ни. Те се използват в много изчисления, изграждане на конструкции и дори спорт. Човекът е използвал уравнения в древни времена и оттогава употребата им само се е увеличила. Дискриминантът ви позволява да решите всяко квадратно уравнение с помощта на обща формула, което изглежда така:

Дискриминантната формула зависи от степента на полинома. Горната формула е подходяща за решаване на квадратни уравнения следния тип:

Дискриминантът има следните свойстванеща, които трябва да знаете:

* "D" е 0, когато полиномът има множество корени (равни корени);

* "D" е симетричен полином по отношение на корените на полинома и следователно е полином в своите коефициенти; освен това коефициентите на този полином са цели числа, независимо от разширението, в което са взети корените.

Да кажем, че ни е дадено квадратно уравнение със следната форма:

1 уравнение

Според формулата имаме:

Тъй като \, уравнението има 2 корена. Нека ги дефинираме:

Къде мога да реша уравнение с помощта на дискриминантен онлайн решаващ инструмент?

Можете да решите уравнението на нашия уебсайт https://site. Безплатният онлайн решаващ инструмент ще ви позволи да решавате онлайн уравнения с всякаква сложност за няколко секунди. Всичко, което трябва да направите, е просто да въведете данните си в решаващия инструмент. Можете също да гледате видео инструкциите и да разберете как да решите уравнението на нашия уебсайт.А ако имате въпроси, можете да ги зададете в нашата група VKontakte http://vk.com/pocketteacher. Присъединете се към нашата група, винаги се радваме да ви помогнем.

В тази статия ще разгледаме решаването на непълни квадратни уравнения.

Но първо, нека повторим кои уравнения се наричат ​​квадратни. Уравнение от вида ax 2 + bx + c = 0, където x е променлива, а коефициентите a, b и c са някои числа и a ≠ 0, се нарича квадрат. Както виждаме, коефициентът за x 2 не е равен на нула и следователно коефициентите за x или свободният член могат да бъдат равни на нула, в който случай получаваме непълно квадратно уравнение.

Има три вида непълни квадратни уравнения:

1) Ако b = 0, c ≠ 0, тогава ax 2 + c = 0;

2) Ако b ≠ 0, c = 0, тогава ax 2 + bx = 0;

3) Ако b = 0, c = 0, тогава ax 2 = 0.

  • Нека да разберем как да решим уравнения от вида ax 2 + c = 0.

За да решим уравнението, преместваме свободния член c в дясната страна на уравнението, получаваме

брадва 2 = ‒s. Тъй като a ≠ 0, разделяме двете страни на уравнението на a, тогава x 2 = ‒c/a.

Ако ‒с/а > 0, то уравнението има два корена

x = ±√(–c/a) .

Ако ‒c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Нека се опитаме да разберем с примери как да решаваме такива уравнения.

Пример 1. Решете уравнението 2x 2 ‒ 32 = 0.

Отговор: x 1 = - 4, x 2 = 4.

Пример 2. Решете уравнението 2x 2 + 8 = 0.

Отговор: уравнението няма решения.

  • Нека да разберем как да го решим уравнения от вида ax 2 + bx = 0.

За да решим уравнението ax 2 + bx = 0, нека го разложим на множители, тоест изваждаме x извън скоби, получаваме x(ax + b) = 0. Продуктът е равен на нула, ако поне един от факторите е равен до нула. Тогава или x = 0, или ax + b = 0. Решавайки уравнението ax + b = 0, получаваме ax = - b, откъдето x = - b/a. Уравнение от вида ax 2 + bx = 0 винаги има два корена x 1 = 0 и x 2 = ‒ b/a. Вижте как изглежда решението на уравнения от този тип на диаграмата.

Нека консолидираме знанията си с конкретен пример.

Пример 3. Решете уравнението 3x 2 ‒ 12x = 0.

x(3x ‒ 12) = 0

x= 0 или 3x – 12 = 0

Отговор: x 1 = 0, x 2 = 4.

  • Уравнения от трети тип ax 2 = 0се решават много просто.

Ако ax 2 = 0, тогава x 2 = 0. Уравнението има две равни корени x 1 = 0, x 2 = 0.

За по-голяма яснота, нека да разгледаме диаграмата.

Нека се уверим, че при решаването на пример 4 уравнения от този тип могат да бъдат решени много просто.

Пример 4.Решете уравнението 7x 2 = 0.

Отговор: x 1, 2 = 0.

Не винаги е веднага ясно какъв тип непълно квадратно уравнение трябва да решим. Помислете за следния пример.

Пример 5.Решете уравнението

Умножете двете страни на уравнението по общ знаменател, тоест до 30

Нека го намалим

5(5x 2 + 9) – 6(4x 2 – 9) = 90.

Нека отворим скобите

25x 2 + 45 – 24x 2 + 54 = 90.

Да дадем подобни

Нека преместим 99 от лявата страна на уравнението вдясно, променяйки знака на противоположния

Отговор: няма корени.

Разгледахме как се решават непълни квадратни уравнения. Надявам се, че сега няма да имате затруднения с подобни задачи. Бъдете внимателни, когато определяте вида на непълното квадратно уравнение, тогава ще успеете.

Ако имате въпроси по тази тема, запишете се за моите уроци, ще решим проблемите, които възникват заедно.

уебсайт, при пълно или частично копиране на материал се изисква връзка към източника.

Формули за корените на квадратно уравнение. Разглеждат се случаите на реални, кратни и комплексни корени. Факторизация квадратен тричлен. Геометрична интерпретация. Примери за определяне на корени и факторизиране.

Основни формули

Разгледайте квадратното уравнение:
(1) .
Корени на квадратно уравнение(1) се определят по формулите:
; .
Тези формули могат да се комбинират по следния начин:
.
Когато корените на квадратно уравнение са известни, тогава полином от втора степен може да бъде представен като произведение на фактори (факторизирани):
.

Освен това приемаме, че - реални числа.
Нека помислим дискриминант на квадратно уравнение:
.
Ако дискриминантът е положителен, тогава квадратното уравнение (1) има два различни реални корена:
; .
Тогава факторизацията на квадратния трином има формата:
.
Ако дискриминантът е равен на нула, тогава квадратното уравнение (1) има два кратни (равни) реални корена:
.
Факторизация:
.
Ако дискриминантът е отрицателен, тогава квадратното уравнение (1) има два комплексно спрегнати корена:
;
.
Ето въображаемата единица, ;
и са реалните и въображаемите части на корените:
; .
Тогава

.

Графична интерпретация

Ако изградите графика на функция
,
което е парабола, тогава точките на пресичане на графиката с оста ще бъдат корените на уравнението
.
При , графиката пресича оста x (ос) в две точки.
Когато , графиката докосва оста x в една точка.
Когато , графиката не пресича оста x.

По-долу са дадени примери за такива графики.

Полезни формули, свързани с квадратно уравнение

(f.1) ;
(f.2) ;
(f.3) .

Извеждане на формулата за корените на квадратно уравнение

Извършваме трансформации и прилагаме формули (f.1) и (f.3):




,
Където
; .

И така, получихме формулата за полином от втора степен във формата:
.
Това показва, че уравнението

извършва при
И .
Това е и са корените на квадратното уравнение
.

Примери за определяне на корените на квадратно уравнение

Пример 1


(1.1) .

Решение


.
Сравнявайки с нашето уравнение (1.1), намираме стойностите на коефициентите:
.
Намираме дискриминанта:
.
Тъй като дискриминантът е положителен, уравнението има два реални корена:
;
;
.

От тук получаваме факторизацията на квадратния трином:

.

Графика на функцията y = 2 х 2 + 7 х + 3пресича оста x в две точки.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Той пресича абсцисната ос (ос) в две точки:
И .
Тези точки са корените на първоначалното уравнение (1.1).

Отговор

;
;
.

Пример 2

Намерете корените на квадратно уравнение:
(2.1) .

Решение

Нека напишем квадратното уравнение в общ вид:
.
Сравнявайки с оригиналното уравнение (2.1), намираме стойностите на коефициентите:
.
Намираме дискриминанта:
.
Тъй като дискриминантът е нула, уравнението има два кратни (равни) корена:
;
.

Тогава факторизацията на тринома има формата:
.

Графика на функцията y = x 2 - 4 х + 4докосва оста x в една точка.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Той докосва оста x (ос) в една точка:
.
Тази точка е коренът на първоначалното уравнение (2.1). Тъй като този корен се разлага два пъти:
,
тогава такъв корен обикновено се нарича кратно. Тоест, те вярват, че има два равни корена:
.

Отговор

;
.

Пример 3

Намерете корените на квадратно уравнение:
(3.1) .

Решение

Нека напишем квадратното уравнение в общ вид:
(1) .
Нека пренапишем оригиналното уравнение (3.1):
.
Сравнявайки с (1), намираме стойностите на коефициентите:
.
Намираме дискриминанта:
.
Дискриминантът е отрицателен, . Следователно няма реални корени.

Можете да намерите сложни корени:
;
;
.

Тогава


.

Графиката на функцията не пресича оста x. Няма истински корени.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Тя не пресича оста x (ос). Следователно няма реални корени.

Отговор

Няма истински корени. Сложни корени:
;
;
.