Биографии Характеристики Анализ

Как да решим уравнение b. Как се решават уравнения с дроби

Инструкции

Забележка:π се записва като pi; квадратен корен като sqrt().

Етап 1.Въведете даден пример, състоящ се от дроби.

Стъпка 2.Щракнете върху бутона „Решаване“.

Стъпка 3.Получете подробни резултати.

За да сте сигурни, че калкулаторът изчислява правилно дробите, въведете дробите, разделени със знака „/“. Например: . Калкулаторът ще изчисли уравнението и дори ще покаже на графиката защо е получен този резултат.

Какво е уравнение с дроби

Дробно уравнение е уравнение, в което коефициентите са дробни числа. Линейните уравнения с дроби се решават по стандартната схема: неизвестните се прехвърлят от едната страна, а известните от другата.

Да разгледаме един пример:

Дроби с неизвестни се прехвърлят отляво, а останалите дроби отдясно. Когато числата се прехвърлят отвъд знака за равенство, тогава знакът на числата се променя на противоположния:

Сега трябва само да извършите действията на двете страни на равенството:

Резултатът е обикновено линейно уравнение. Сега трябва да разделите лявата и дясната страна на коефициента на променливата.

Решавайте уравнения с дроби онлайнактуализиран: 7 октомври 2018 г. от: Научни статии.Ru


Нека анализираме два вида решения на системи от уравнения:

1. Решаване на системата чрез метода на заместване.
2. Решаване на системата чрез почленно събиране (изваждане) на уравненията на системата.

За да се реши системата от уравнения по метода на заместванетрябва да следвате прост алгоритъм:
1. Експресирайте. От всяко уравнение изразяваме една променлива.
2. Заместник. Заместваме получената стойност в друго уравнение вместо изразената променлива.
3. Решете полученото уравнение с една променлива. Ние намираме решение на системата.

Разрешавам система по метода на почленно събиране (изваждане).трябва да:
1. Изберете променлива, за която ще направим еднакви коефициенти.
2. Събираме или изваждаме уравнения, което води до уравнение с една променлива.
3. Решете полученото линейно уравнение. Ние намираме решение на системата.

Решението на системата са пресечните точки на графиките на функциите.

Нека разгледаме подробно решението на системите, използвайки примери.

Пример #1:

Нека решим по метода на заместване

Решаване на система от уравнения чрез метода на заместване

2x+5y=1 (1 уравнение)
x-10y=3 (2-ро уравнение)

1. Експресирайте
Вижда се, че във второто уравнение има променлива x с коефициент 1, което означава, че е най-лесно да изразим променливата x от второто уравнение.
x=3+10y

2. След като сме го изразили, заместваме 3+10y в първото уравнение вместо променливата x.
2(3+10y)+5y=1

3. Решете полученото уравнение с една променлива.
2(3+10y)+5y=1 (отворете скобите)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решението на системата от уравнения са пресечните точки на графиките, следователно трябва да намерим x и y, тъй като пресечната точка се състои от x и y, нека намерим x, в първата точка, където сме го изразили, заместваме y.
x=3+10y
x=3+10*(-0,2)=1

Обичайно е да пишем точки на първо място пишем променливата x, а на второ място променливата y.
Отговор: (1; -0,2)

Пример #2:

Нека решим с помощта на метода на събиране (изваждане) член по член.

Решаване на система от уравнения чрез метода на събиране

3x-2y=1 (1 уравнение)
2x-3y=-10 (2-ро уравнение)

1. Избираме променлива, да кажем, че избираме x. В първото уравнение променливата x има коефициент 3, във второто - 2. Трябва да направим коефициентите еднакви, за това имаме право да умножаваме уравненията или да разделяме на произволно число. Умножаваме първото уравнение по 2, а второто по 3 и получаваме общ коефициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2. Извадете второто от първото уравнение, за да се отървете от променливата x. Решете линейното уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3. Намерете x. Заместваме намереното y във всяко от уравненията, да кажем в първото уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
х=4,6

Пресечната точка ще бъде x=4.6; y=6,4
Отговор: (4,6; 6,4)

Искате ли да се подготвите за изпити безплатно? Учител онлайн безплатно. Без майтап.

Цел на услугата. Матричният калкулатор е предназначен за решаване на системи от линейни уравнения с помощта на матричен метод (вижте пример за решаване на подобни задачи).

Инструкции. За да решите онлайн, трябва да изберете вида на уравнението и да зададете размерността на съответните матрици. където A, B, C са посочените матрици, X е желаната матрица. Матричните уравнения от вида (1), (2) и (3) се решават чрез обратната матрица A -1. Ако е даден изразът A·X - B = C, тогава е необходимо първо да се съберат матриците C + B и да се намери решение за израза A·X = D, където D = C + B. Ако е даден изразът A*X = B 2, тогава матрицата B трябва първо да бъде повдигната на квадрат.

Препоръчително е също така да се запознаете с основните операции върху матрици.

Пример №1. Упражнение. Намерете решението на матричното уравнение
Решение. Да обозначим:
Тогава матричното уравнение ще бъде записано във формата: A·X·B = C.
Детерминантата на матрица A е равна на detA=-1
Тъй като A е неособена матрица, има обратна матрица A -1 . Умножете двете страни на уравнението отляво по A -1: Умножете двете страни на това уравнение отляво по A -1 и отдясно по B -1: A -1 ·A·X·B·B -1 = A -1 ·C·B -1 . Тъй като A A -1 = B B -1 = E и E X = X E = X, тогава X = A -1 C B -1

Обратна матрица A -1:
Нека намерим обратната матрица B -1.
Транспонирана матрица B T:
Обратна матрица B -1:
Търсим матрицата X по формулата: X = A -1 ·C·B -1

Отговор:

Пример №2. Упражнение.Решаване на матрично уравнение
Решение. Да обозначим:
Тогава матричното уравнение ще бъде записано във формата: A·X = B.
Детерминантата на матрица A е detA=0
Тъй като A е сингулярна матрица (детерминантата е 0), следователно уравнението няма решение.

Пример №3. Упражнение. Намерете решението на матричното уравнение
Решение. Да обозначим:
Тогава матричното уравнение ще бъде записано във формата: X A = B.
Детерминантата на матрица A е detA=-60
Тъй като A е неособена матрица, има обратна матрица A -1 . Нека умножим двете страни на уравнението отдясно по A -1: X A A -1 = B A -1, откъдето намираме, че X = B A -1
Нека намерим обратната матрица A -1 .
Транспонирана матрица A T:
Обратна матрица A -1:
Търсим матрицата X по формулата: X = B A -1


Отговор: >

В това видео ще анализираме цял набор от линейни уравнения, които се решават с помощта на същия алгоритъм - затова се наричат ​​най-простите.

Първо, нека дефинираме: какво е линейно уравнение и кое се нарича най-простото?

Линейно уравнение е това, в което има само една променлива и то само на първа степен.

Най-простото уравнение означава конструкцията:

Всички други линейни уравнения се свеждат до най-простите с помощта на алгоритъма:

  1. Разгънете скобите, ако има такива;
  2. Преместете термини, съдържащи променлива от едната страна на знака за равенство, и термини без променлива от другата;
  3. Дайте подобни термини отляво и отдясно на знака за равенство;
  4. Разделете полученото уравнение на коефициента на променливата $x$.

Разбира се, този алгоритъм не винаги помага. Факт е, че понякога след всички тези машинации коефициентът на променливата $x$ се оказва равен на нула. В този случай са възможни два варианта:

  1. Уравнението изобщо няма решения. Например, когато се получи нещо като $0\cdot x=8$, т.е. отляво е нула, а отдясно е число, различно от нула. Във видеото по-долу ще разгледаме няколко причини, поради които тази ситуация е възможна.
  2. Решението е всички числа. Единственият случай, когато това е възможно, е когато уравнението е сведено до конструкцията $0\cdot x=0$. Съвсем логично е, че каквито и $x$ да заместим, пак ще се получи „нула е равна на нула“, т.е. правилно числово равенство.

Сега нека видим как работи всичко това, използвайки примери от реалния живот.

Примери за решаване на уравнения

Днес се занимаваме с линейни уравнения и то само с най-простите. Най-общо линейно уравнение означава всяко равенство, което съдържа точно една променлива и то само на първа степен.

Такива конструкции се решават приблизително по същия начин:

  1. На първо място, трябва да разширите скобите, ако има такива (както в последния ни пример);
  2. След това комбинирайте подобни
  3. Накрая изолирайте променливата, т.е. преместете всичко, свързано с променливата - термините, в които се съдържа - от едната страна и преместете всичко, което остава без нея, от другата страна.

След това, като правило, трябва да донесете подобни от всяка страна на полученото равенство и след това всичко, което остава, е да разделим на коефициента на „x“ и ще получим окончателния отговор.

На теория това изглежда хубаво и просто, но на практика дори опитни гимназисти могат да направят обидни грешки в доста прости линейни уравнения. Обикновено се допускат грешки или при отваряне на скоби, или при изчисляване на „плюсовете“ и „минусите“.

Освен това се случва линейното уравнение изобщо да няма решения или решението да е цялата числова линия, т.е. произволен брой. Ще разгледаме тези тънкости в днешния урок. Но ще започнем, както вече разбрахте, с най-простите задачи.

Схема за решаване на прости линейни уравнения

Първо, позволете ми още веднъж да напиша цялата схема за решаване на най-простите линейни уравнения:

  1. Разгънете скобите, ако има такива.
  2. Ние изолираме променливите, т.е. Преместваме всичко, което съдържа „X“ от едната страна, а всичко без „X“ от другата.
  3. Представяме подобни условия.
  4. Разделяме всичко на коефициента „х“.

Разбира се, тази схема не винаги работи; в нея има някои тънкости и трикове и сега ще се запознаем с тях.

Решаване на реални примери на прости линейни уравнения

Задача No1

Първата стъпка изисква да отворим скобите. Но те не са в този пример, така че пропускаме тази стъпка. Във втората стъпка трябва да изолираме променливите. Моля, обърнете внимание: говорим само за индивидуални условия. Нека го запишем:

Представяме подобни термини отляво и отдясно, но това вече е направено тук. Затова преминаваме към четвъртата стъпка: разделете на коефициента:

\[\frac(6x)(6)=-\frac(72)(6)\]

Така че получихме отговора.

Задача No2

Можем да видим скобите в този проблем, така че нека ги разширим:

И отляво, и отдясно виждаме приблизително същия дизайн, но нека действаме според алгоритъма, т.е. разделяне на променливите:

Ето някои подобни:

В какви корени работи това? Отговор: за всякакви. Следователно можем да напишем, че $x$ е произволно число.

Задача No3

Третото линейно уравнение е по-интересно:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тук има няколко скоби, но те не се умножават по нищо, а просто се предхождат от различни знаци. Нека ги разделим:

Извършваме втората стъпка, която вече ни е известна:

\[-x+x+2x=15-6-12+3\]

Нека направим сметката:

Извършваме последната стъпка - разделяме всичко на коефициента на “x”:

\[\frac(2x)(x)=\frac(0)(2)\]

Неща, които трябва да запомните, когато решавате линейни уравнения

Ако пренебрегнем твърде простите задачи, бих искал да кажа следното:

  • Както казах по-горе, не всяко линейно уравнение има решение - понякога просто няма корени;
  • Дори да има корени, сред тях може да има нула - в това няма нищо лошо.

Нула е същото число като останалите; не трябва да го дискриминирате по никакъв начин или да предполагате, че ако получите нула, значи сте направили нещо нередно.

Друга особеност е свързана с отварянето на скоби. Моля, обърнете внимание: когато има „минус“ пред тях, ние го премахваме, но в скоби променяме знаците на противоположност. И тогава можем да го отворим с помощта на стандартни алгоритми: ще получим това, което видяхме в изчисленията по-горе.

Разбирането на този прост факт ще ви помогне да избегнете глупави и болезнени грешки в гимназията, когато правенето на такива неща се приема за даденост.

Решаване на сложни линейни уравнения

Нека да преминем към по-сложни уравнения. Сега конструкциите ще станат по-сложни и при извършване на различни трансформации ще се появи квадратична функция. Но не трябва да се страхуваме от това, защото ако, според плана на автора, решаваме линейно уравнение, тогава по време на процеса на трансформация всички мономи, съдържащи квадратична функция, задължително ще се отменят.

Пример №1

Очевидно първата стъпка е отварянето на скобите. Нека направим това много внимателно:

Сега нека да разгледаме поверителността:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Ето някои подобни:

Очевидно това уравнение няма решения, така че ще напишем това в отговора:

\[\varnothing\]

или няма корени.

Пример №2

Извършваме същите действия. Първа стъпка:

Нека преместим всичко с променлива наляво, а без нея - надясно:

Ето някои подобни:

Очевидно това линейно уравнение няма решение, така че ще го запишем по следния начин:

\[\varnothing\],

или няма корени.

Нюанси на решението

И двете уравнения са напълно решени. Използвайки тези два израза като пример, ние отново се убедихме, че дори в най-простите линейни уравнения всичко може да не е толкова просто: може да има или един, или нито един, или безкрайно много корени. В нашия случай разгледахме две уравнения, като и двете просто нямат корени.

Но бих искал да обърна внимание на друг факт: как да работите със скоби и как да ги отворите, ако пред тях има знак минус. Помислете за този израз:

Преди да отворите, трябва да умножите всичко по „X“. Моля, обърнете внимание: умножава се всеки отделен термин. Вътре има два термина - съответно два термина и умножени.

И едва след като тези на пръв поглед елементарни, но много важни и опасни трансформации са завършени, можете да отворите скобата от гледна точка на това, че след нея има знак минус. Да, да: едва сега, когато трансформациите са завършени, ние си спомняме, че има знак минус пред скобите, което означава, че всичко по-долу просто променя знаците. В същото време самите скоби изчезват и, най-важното, предният „минус“ също изчезва.

Правим същото с второто уравнение:

Не случайно обръщам внимание на тези дребни, на пръв поглед незначителни факти. Тъй като решаването на уравнения винаги е последователност от елементарни трансформации, където неспособността за ясно и компетентно извършване на прости действия води до факта, че учениците от гимназията идват при мен и отново се учат да решават такива прости уравнения.

Разбира се, ще дойде ден, когато ще усъвършенствате тези умения до степен на автоматизм. Вече няма да се налага да извършвате толкова много трансформации всеки път; ще пишете всичко на един ред. Но докато просто учите, трябва да напишете всяко действие отделно.

Решаване на още по-сложни линейни уравнения

Това, което ще решим сега, трудно може да се нарече най-простата задача, но смисълът остава същият.

Задача No1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Нека умножим всички елементи от първата част:

Нека направим малко поверителност:

Ето някои подобни:

Нека завършим последната стъпка:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Ето нашия окончателен отговор. И въпреки факта, че в процеса на решаване имахме коефициенти с квадратична функция, те взаимно се компенсират, което прави уравнението линейно, а не квадратно.

Задача No2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Нека внимателно изпълним първата стъпка: умножете всеки елемент от първата скоба по всеки елемент от втората. След трансформациите трябва да има общо четири нови термина:

Сега нека внимателно извършим умножението във всеки член:

Нека преместим термините с "X" наляво, а тези без - надясно:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Ето подобни термини:

За пореден път получихме окончателния отговор.

Нюанси на решението

Най-важната бележка за тези две уравнения е следната: веднага щом започнем да умножаваме скоби, които съдържат повече от един член, това се прави съгласно следното правило: вземаме първия член от първия и умножаваме с всеки елемент от секундата; след това вземаме втория елемент от първия и по подобен начин умножаваме с всеки елемент от втория. В резултат на това ще имаме четири мандата.

За алгебричната сума

С този последен пример бих искал да напомня на учениците какво е алгебрична сума. В класическата математика под $1-7$ имаме предвид проста конструкция: извадете седем от едно. В алгебрата под това разбираме следното: към числото „едно“ добавяме друго число, а именно „минус седем“. Ето как алгебричната сума се различава от обикновената аритметична сума.

Веднага щом при извършване на всички трансформации, всяко събиране и умножение започнете да виждате конструкции, подобни на описаните по-горе, просто няма да имате проблеми в алгебрата, когато работите с полиноми и уравнения.

И накрая, нека да разгледаме още няколко примера, които ще бъдат още по-сложни от тези, които току-що разгледахме, и за да ги разрешим, ще трябва леко да разширим нашия стандартен алгоритъм.

Решаване на уравнения с дроби

За да решим такива задачи, ще трябва да добавим още една стъпка към нашия алгоритъм. Но първо, нека ви напомня за нашия алгоритъм:

  1. Отворете скобите.
  2. Отделни променливи.
  3. Донесете подобни.
  4. Разделете на съотношението.

Уви, този прекрасен алгоритъм, въпреки цялата му ефективност, се оказва не съвсем подходящ, когато имаме дроби пред себе си. И в това, което ще видим по-долу, имаме дроб както отляво, така и отдясно и в двете уравнения.

Как да работим в този случай? Да, много е просто! За да направите това, трябва да добавите още една стъпка към алгоритъма, която може да се направи както преди, така и след първото действие, а именно да се отървете от дроби. Така че алгоритъмът ще бъде както следва:

  1. Отървете се от дробите.
  2. Отворете скобите.
  3. Отделни променливи.
  4. Донесете подобни.
  5. Разделете на съотношението.

Какво означава „да се отървете от дроби“? И защо това може да се направи както след, така и преди първата стандартна стъпка? Всъщност в нашия случай всички дроби са числени в знаменателя си, т.е. Навсякъде знаменателят е просто число. Следователно, ако умножим двете страни на уравнението по това число, ще се отървем от дроби.

Пример №1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Нека се отървем от дробите в това уравнение:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Моля, обърнете внимание: всичко се умножава по „четири“ веднъж, т.е. това, че имате две скоби, не означава, че трябва да умножите всяка една по "четири". Нека запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Сега нека разширим:

Изключваме променливата:

Извършваме намаляване на подобни условия:

\[-4x=-1\наляво| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Получихме окончателното решение, нека преминем към второто уравнение.

Пример №2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Тук извършваме всички същите действия:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Проблемът е решен.

Това всъщност е всичко, което исках да ви кажа днес.

Ключови точки

Основните констатации са:

  • Познаване на алгоритъма за решаване на линейни уравнения.
  • Възможност за отваряне на скоби.
  • Не се притеснявайте, ако някъде имате квадратични функции, най-вероятно те ще бъдат намалени в процеса на по-нататъшни трансформации.
  • Има три вида корени в линейните уравнения, дори и най-простите: един единствен корен, цялата числова линия е корен и никакви корени.

Надявам се, че този урок ще ви помогне да овладеете проста, но много важна тема за по-нататъшно разбиране на цялата математика. Ако нещо не е ясно, отидете на сайта и решете представените там примери. Очаквайте още много интересни неща!

Квадратните уравнения се изучават в 8 клас, така че тук няма нищо сложно. Способността да ги решавате е абсолютно необходима.

Квадратно уравнение е уравнение от вида ax 2 + bx + c = 0, където коефициентите a, b и c са произволни числа и a ≠ 0.

Преди да изучавате конкретни методи за решаване, имайте предвид, че всички квадратни уравнения могат да бъдат разделени на три класа:

  1. Те нямат корени;
  2. Имате точно един корен;
  3. Те имат два различни корена.

Това е важна разлика между квадратните уравнения и линейните, където коренът винаги съществува и е уникален. Как да определим колко корена има едно уравнение? Има нещо прекрасно за това - дискриминанта.

Дискриминанта

Нека е дадено квадратното уравнение ax 2 + bx + c = 0. Тогава дискриминантът е просто числото D = b 2 − 4ac.

Трябва да знаете тази формула наизуст. Сега не е важно откъде идва. Друго нещо е важно: по знака на дискриминанта можете да определите колко корена има едно квадратно уравнение. а именно:

  1. Ако Д< 0, корней нет;
  2. Ако D = 0, има точно един корен;
  3. Ако D > 0, ще има два корена.

Моля, обърнете внимание: дискриминантът показва броя на корените, а не изобщо техните знаци, както по някаква причина много хора вярват. Разгледайте примерите и сами ще разберете всичко:

Задача. Колко корена имат квадратните уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Нека напишем коефициентите за първото уравнение и да намерим дискриминанта:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Така че дискриминантът е положителен, така че уравнението има два различни корена. Анализираме второто уравнение по подобен начин:
а = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Дискриминантът е отрицателен, няма корени. Последното останало уравнение е:
а = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Дискриминантът е нула - коренът ще бъде единица.

Моля, обърнете внимание, че коефициентите са записани за всяко уравнение. Да, дълго е, да, досадно е, но няма да объркате шансовете и да направите глупави грешки. Изберете сами: скорост или качество.

Между другото, ако разберете, след известно време няма да е необходимо да записвате всички коефициенти. Ще извършвате такива операции в главата си. Повечето хора започват да правят това някъде след 50-70 решени уравнения - като цяло не толкова много.

Корени на квадратно уравнение

Сега да преминем към самото решение. Ако дискриминантът D > 0, корените могат да бъдат намерени по формулите:

Основна формула за корените на квадратно уравнение

Когато D = 0, можете да използвате всяка от тези формули - ще получите същото число, което ще бъде отговорът. И накрая, ако Д< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Първо уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ уравнението има два корена. Нека ги намерим:

Второ уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; с = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнението отново има два корена. Да ги намерим

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \край (подравняване)\]

И накрая, третото уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; с = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ уравнението има един корен. Всяка формула може да се използва. Например първото:

Както можете да видите от примерите, всичко е много просто. Ако знаете формулите и можете да смятате, няма да има проблеми. Най-често възникват грешки при заместване на отрицателни коефициенти във формулата. Тук отново ще ви помогне описаната по-горе техника: погледнете формулата буквално, запишете всяка стъпка - и много скоро ще се отървете от грешките.

Непълни квадратни уравнения

Случва се квадратното уравнение да е малко по-различно от даденото в дефиницията. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Лесно е да се забележи, че в тези уравнения липсва един от членовете. Такива квадратни уравнения са дори по-лесни за решаване от стандартните: те дори не изискват изчисляване на дискриминанта. И така, нека въведем нова концепция:

Уравнението ax 2 + bx + c = 0 се нарича непълно квадратно уравнение, ако b = 0 или c = 0, т.е. коефициентът на променливата x или свободния елемент е нула.

Разбира се, възможен е много труден случай, когато и двата коефициента са равни на нула: b = c = 0. В този случай уравнението приема формата ax 2 = 0. Очевидно е, че такова уравнение има един корен: x = 0.

Нека разгледаме останалите случаи. Нека b = 0, тогава получаваме непълно квадратно уравнение от формата ax 2 + c = 0. Нека го трансформираме малко:

Тъй като аритметичният квадратен корен съществува само от неотрицателно число, последното равенство има смисъл само за (−c /a) ≥ 0. Заключение:

  1. Ако в непълно квадратно уравнение от формата ax 2 + c = 0 неравенството (−c /a) ≥ 0 е изпълнено, ще има два корена. Формулата е дадена по-горе;
  2. Ако (−c /a)< 0, корней нет.

Както можете да видите, дискриминант не е необходим - изобщо няма сложни изчисления в непълните квадратни уравнения. Всъщност дори не е необходимо да помним неравенството (−c /a) ≥ 0. Достатъчно е да изразим стойността x 2 и да видим какво има от другата страна на знака за равенство. Ако има положително число, ще има два корена. Ако е отрицателен, изобщо няма да има корени.

Сега нека разгледаме уравнения от формата ax 2 + bx = 0, в които свободният елемент е равен на нула. Тук всичко е просто: винаги ще има два корена. Достатъчно е да разложим полинома на множители:

Изваждане на общия множител извън скоби

Продуктът е нула, когато поне един от факторите е нула. От тук идват корените. В заключение, нека разгледаме някои от тези уравнения:

Задача. Решаване на квадратни уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Няма корени, т. к квадрат не може да бъде равен на отрицателно число.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.