Биографии Характеристики Анализ

Что такое рентгеновские лучи – свойства и применение излучения. Применение рентгеновского излучения в медицине

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Современную медицинскую диагностику и лечение некоторых заболеваний невозможно представить без приборов, использующих свойства рентгеновского излучения. Открытие рентгеновских лучей произошло более 100 лет назад, но и сейчас не прекращаются работы над созданием новых методик и аппаратов, позволяющих минимизировать негативное действие излучения на организм человека.

Кто и как открыл Х-лучи

В естественных условиях поток лучей рентгена встречается редко и излучается только некоторыми радиоактивными изотопами. Рентгеновское излучение или Х-лучи были обнаружены только в 1895 году немецким учёным Wilhelm Röntgen. Это открытие произошло случайно, во время проведения опыта по исследованию поведения лучей света в условиях, приближающихся к вакууму. В эксперименте были задействованы катодная газоразрядная трубка с пониженным давлением и флуоресцентный экран, который всякий раз начинал светиться в момент когда трубка начинала действовать.

Заинтересовавшись странным эффектом, Рентген провёл серию исследований, показывающих что возникающее не видимое глазу излучение способно проникать сквозь различные преграды: бумагу, дерево, стекло, некоторые металлы, и даже через человеческое тело. Несмотря на отсутствие понимания самой природы происходящего, вызвано ли такое явление генерацией потока неизвестных частиц или волнами, была отмечена следующая закономерность – излучение легко проходит через мягкие ткани организма, и гораздо тяжелее сквозь твёрдые живые ткани и неживые вещества.

Рентген был не первым кто изучал подобное явление. В середине XIX столетия, схожие возможности изучал француз Антуан Масон и англичанин Уильям Крукс. Тем не менее, именно Рентген первым изобрёл катодную трубку и индикатор, который можно было применить в медицине. Он первым опубликовал научный труд, принёсший ему звание первого нобелевского лауреата среди физиков.

В 1901 году началось плодотворное сотрудничество трёх учёных, ставших отцами-основателями радиологии и рентгенологии.

Свойства рентгеновского излучения

Рентгеновские лучи – это составная часть общего спектра электромагнитного излучения. Длина волны расположена между гамма- и ультрафиолетовым лучами. Для Х-лучей характерны все обычные волновые свойства:

  • дифракция;
  • преломление;
  • интерференция;
  • скорость распространения (она равна световой).

Для искусственного генерирования потока рентгеновских лучей применяют специальные приборы – рентгеновские трубки. Рентген-излучение возникает из-за контакта быстрых электронов вольфрама с веществами, испаряющимися из раскалённого анода. На фоне взаимодействия возникают электромагнитные волны малой длины, находящиеся в спектре от 100 до 0,01 нм и в энергетическом диапазоне 100-0,1 МэВ. Если длина волны лучей меньше чем 0,2 нм – это жёсткое излучение, если длина волны больше указанной величины, их называют мягкими рентгеновскими лучами.

Показательно то, что кинетическая энергия, возникающая от соприкосновения электронов и анодного вещества, на 99% превращается в энергию тепла и только 1% является Х-лучами.

Рентгеновское излучение – тормозное и характеристическое

Х-излучение представляет собой наложение двух видов лучей – тормозных и характеристических. Они генерируются в трубке одновременно. Поэтому облучение рентгеном и характеристика каждой конкретной рентгеновской трубки – спектр её излучения, зависит от этих показателей, и представляет собой их наложение.

Тормозные или непрерывные рентгеновские лучи – это результат торможения электронов, испаряемых из вольфрамовой спирали.

Характеристические или линейчатые лучи рентгена образуются в момент перестройки атомов вещества анода рентгеновской трубки. Длина волны характеристических лучей непосредственно зависит от атомного номера химического элемента, применяемого для изготовления анода трубки.

Перечисленные свойства рентгеновских лучей позволяют применять их на практике:

  • невидимость для обычного взгляда;
  • высокая проникающая способность сквозь живые ткани и неживые материалы, которые не пропускают лучи видимого спектра;
  • ионизационное воздействие на молекулярные структуры.

Принципы получения рентген-изображения

Свойства рентгеновских лучей, на которых основано получение изображения – это способность либо разлагать, либо вызвать свечение некоторых веществ.

Рентген облучение вызывает флуоресцентное свечение у сульфидов кадмия и цинка – зелёным, а у вольфрамата кальция – голубым цветом. Это свойство используется в методике медицинского рентгенологического просвечивания, а также повышает функциональность рентгенологических экранов.

Фотохимическое воздействие рентгеновских лучей на светочувствительные галогенсеребряные материалы (засвечивание) позволяет осуществлять диагностику – делать рентгенологические снимки. Это свойство также используется при измерении величины суммарной дозы, которую получают лаборанты в рентген-кабинетах. В нательных дозиметрах вставлены специальные чувствительные ленты и индикаторы. Ионизирующее действие рентгеновского излучения позволяет определять и качественную характеристику полученных рентген-лучей.

Однократное облучение при выполнении обычной рентгенографии повышает риск возникновения рака всего лишь на 0,001%.

Области, где применяют рентгеновское излучение

Применение рентгеновских лучей допустимо в следующих отраслях:

  1. Безопасность. Стационарные и переносные приборы для обнаружения опасных и запрещённых предметов в аэропортах, таможнях или в местах большого скопления людей.
  2. Химическая промышленность, металлургия, археология, архитектура, строительство, реставрационные работы – для обнаружения дефектов и проведения химического анализа веществ.
  3. Астрономия. Помогает проводить наблюдение за космическими телами и явлениями при помощи рентгеновских телескопов.
  4. Военная отрасль. Для разработки лазерного оружия.

Главное применение рентгеновского излучения- медицинская сфера. Сегодня в раздел медицинской радиологии входят: радиодиагностика, радиотерапия (рентгенотерапия), радиохирургия. Медицинские вузы выпускают узкопрофильных специалистов – врачей-радиологов.

Х-Излучение - вред и польза, влияние на организм

Высокая проникающая способность и ионизирующее воздействие рентгеновских лучей может вызвать изменение структуры ДНК клетки, поэтому представляет опасность для человека. Вред от рентгеновского излучения прямо пропорционален полученной дозе облучения. Разные органы реагируют на облучение в различной степени. К самым восприимчивым относят:

  • костный мозг и костная ткань;
  • хрусталик глаза;
  • щитовидная железа;
  • молочные и половые железы;
  • ткани лёгких.

Бесконтрольное использование рентгеновского облучения может стать причиной обратимых и необратимых патологий.

Последствия рентгеновского облучения:

  • поражение костного мозга и возникновение патологий кроветворной системы – эритроцитопении, тромбоцитопении, лейкемии;
  • повреждение хрусталика, с последующим развитием катаракты;
  • клеточные мутации, передающиеся по наследству;
  • развитие онкологических заболеваний;
  • получение лучевых ожогов;
  • развитие лучевой болезни.

Важно! В отличие от радиоактивных веществ, рентгеновские лучи не накапливаются в тканях тела, а это значит, что и выводить рентгеновские лучи из организма не нужно. Вредное действие рентгеновского излучения заканчивается вместе с выключением медицинского прибора.

Применение рентгеновского излучения в медицине допустимо не только в диагностических (травматология, стоматология), но и в терапевтических целях:

  • от рентгена в малых дозах стимулируется обмен веществ в живых клетках и тканях;
  • определённые граничные дозы используются для лечения онкологических и доброкачественных новообразований.

Способы диагностики патологий с помощью Х-лучей

Радиодиагностика включает следующие методики:

  1. Рентгеноскопия – исследование, в ходе которого получают изображение на флуоресцентном экране в режиме реального времени. Наряду с классическим получением изображения части тела в реальном времени, сегодня существуют технологии рентгенотелевизионного просвечивания – изображение переносится с флуоресцентного экрана на телевизионный монитор, находящийся в другом помещении. Разработано несколько цифровых способов обработки полученного изображения, с последующим переносом его с экрана на бумагу.
  2. Флюорография – самый дешёвый метод исследования органов грудной клетки, заключающий в изготовлении уменьшенного снимка 7х7 см. Несмотря на вероятность погрешности, является единственным способом массового ежегодного обследования населения. Метод не представляет опасности и не требует вывода полученной дозы облучения из организма.
  3. Рентгенография – получение суммарного изображения на плёнку или бумагу для уточнения формы органа, его положения или тонуса. Может использоваться для оценки перистальтики и состояния слизистых оболочек. Если существует возможность выбора, то среди современных рентгенографических приборов предпочтение следует отдавать ни цифровым аппаратам, где поток х-лучей может быть выше чем у старых приборов, а малодозовым – рентген-аппараты с прямыми плоскими полупроводниковыми детекторами. Они позволяют снизить нагрузку на организм в 4 раза.
  4. Компьютерная рентгеновская томография – методика, использующая рентгеновские лучи для получения нужного количества снимков срезов выбранного органа. Среди множества разновидностей современных аппаратов КТ, для серии повторных исследований используют низкодозные компьютерные томографы высокого разрешения.

Радиотерапия

Терапия при помощи рентгеновских лучей относится к методам местного лечения. Чаще всего метод используется для уничтожения клеток раковых опухолей. Поскольку эффект воздействия сопоставим с хирургическим удалением, то этот метод лечения часто называют радиохирургией.

Сегодня лечение х-лучами проводится такими способами:

  1. Наружный (протонная терапия) – пучок излучения попадает на тело пациента извне.
  2. Внутренний (брахиотерапия) – использование радиоактивных капсул путём их имплантации в тело, с помещением ближе к раковой опухоли. Недостаток этого метода лечения состоит в том, что пока капсулу не извлекут из организма, больной нуждается в изоляции.

Эти методы являются щадящими, а их применение предпочтительнее химиотерапии в ряде случаев. Такая популярность связана с тем, что лучи не скапливаются и не требуют выведения из организма, они оказывают выборочное действие, не воздействуя на другие клетки и ткани.

Безопасная норма облучения Х-лучами

У этого показателя нормы допустимого годового облучения есть своё название – генетически значимая эквивалентная доза (ГЗД). Чётких количественных значений у этого показателя нет.

  1. Этот показатель зависит от возраста и желания пациентом в дальнейшем иметь детей.
  2. Зависит от того какие именно органы были подвергнуты исследованию или лечению.
  3. На ГЗД влияет уровень естественного радиоактивного фона региона проживания человека.

Сегодня действую следующие усреднённые нормативы ГЗД:

  • уровень облучения от всех источников, за исключением медицинских, и без учёта природного фона радиации – 167 мБэр в год;
  • норма для ежегодного медицинского обследования – не выше 100 мБэр в год;
  • суммарная безопасная величина – 392 мБэр в год.

Рентгеновское излучение не требует выведения из организма, и является опасным только в случае интенсивного и длительного воздействия. Современная медицинская аппаратура использует низкоэнергетическое облучение малой длительности, поэтому её применение считается относительно безвредным.

Рентгенология - раздел радиологии, изучающий воздействие на организм животных и человека рентгеновского излучения, возникающие от этого заболевания, их лечение и профилактику, а также методы диагностики различных патологий при помощи рентгеновских лучей (рентгенодиагностика). В состав типового рентгенодиагностического аппарата входит питающее устройство (трансформаторы), высоковольтный выпрямитель, преобразующий переменный ток электрической сети в постоянный, пульт управления, штатив и рентгеновская трубка.

Рентгеновские лучи - это вид электромагнитных колебаний, которые образуются в рентгеновской трубке при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода. В настоящее время общепризнанной считается точка зрения, что рентгеновские лучи по своей физической природе являются одним из видов лучистой энергии, спектр которых включает также радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи и гамма-лучи радиоактивных элементов. Рентгеновское излучение можно характеризовать как совокупность его наименьших частиц - квантов или фотонов.

Рис. 1 - передвижной рентгеновский аппарат:

A - рентгеновская трубка;
Б - питающее устройство;
В - регулируемый штатив.


Рис. 2 - пульт управления рентгеновским аппаратом (механический - слева и электронный - справа):

A - панель для регулирования экспозиции и жёсткости;
Б - кнопка подачи высокого напряжения.


Рис. 3 - блок-схема типичного рентгенаппарата

1 - сеть;
2 - автотрансформатор;
3 - повышающий трансформатор;
4 - рентгеновская трубка;
5 - анод;
6 - катод;
7 - понижающий трансформатор.

Механизм образования рентгеновского излучения

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1% - в рентгеновское излучение.

Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума (10 -7 –10 -8 мм. рт. ст.). На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка - небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны, - это и есть место образования рентгеновских лучей.


Рис. 4 - устройство рентгеновской трубки:

А - катод;
Б - анод;
В - вольфрамовая нить накала;
Г - фокусирующая чашечка катода;
Д - поток ускоренных электронов;
Е - вольфрамовая мишень;
Ж - стеклянная колба;
З - окно из бериллия;
И - образованные рентгеновские лучи;
К - алюминиевый фильтр.

К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5-15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20–140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию.

После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс - на анод, и отрицательный - на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду - за счёт такой разности потенциалов достигается высокая скорость движения - 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия.

Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.


Рис. 5 - принцип образования тормозного рентгеновского излучения.
Рис. 6 - принцип образования характеристического рентгеновского излучения.

Основные свойства рентгеновского излучения

  1. Рентгеновские лучи невидимы для визуального восприятия.
  2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света.
  3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.
  • Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,
  • Кристаллы вольфрамата кальция - фиолетово-голубым.
  • Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.
  • Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие.
  • Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших - может привести к развитию лучевых поражений, а также острой лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.
  • Шкала электромагнитных колебаний

    Рентгеновские лучи имеют определённую длину волны и частоту колебаний. Длина волны (λ) и частота колебаний (ν) связаны соотношением: λ ν = c, где c - скорость света, округлённо равная 300 000 км в секунду. Энергия рентгеновских лучей определяется формулой E = h ν, где h - постоянная Планка, универсальная постоянная, равная 6,626 10 -34 Дж⋅с. Длина волны лучей (λ) связана с их энергией (E) соотношением: λ = 12,4 / E.

    Рентгеновское излучение отличается от других видов электромагнитных колебаний длиной волны (см. таблицу) и энергией кванта. Чем короче длина волны, тем выше её частота, энергия и проникающая способность. Длина волны рентгеновского излучения находится в интервале

    . Изменяя длину волны рентгеновского излучения, можно регулировать его проникающую способность. Рентгеновские лучи имеют очень малую длину волны, но большую частоту колебаний, поэтому невидимы человеческим глазом. Благодаря огромной энергии кванты обладают большой проникающей способностью, что является одним из главных свойств, обеспечивающих использование рентгеновского излучения в медицине и других науках.

    Характеристики рентгеновского излучения

    Интенсивность - количественная характеристика рентгеновского излучения, которая выражается количеством лучей, испускаемых трубкой в единицу времени. Интенсивность рентгеновского излучения измеряется в миллиамперах. Сравнивая её с интенсивностью видимого света от обычной лампы накаливания, можно провести аналогию: так, лампа на 20 Ватт будет светить с одной интенсивностью, или силой, а лампа на 200 Ватт - с другой, при этом качество самого света (его спектр) является одинаковым. Интенсивность рентгеновского излучения, по сути, это его количество. Каждый электрон создаёт на аноде один или несколько квантов излучения, следовательно, количество рентгеновских лучей при экспонировании объекта регулируется путём изменения количества электронов, стремящихся к аноду, и количества взаимодействий электронов с атомами вольфрамовой мишени, что можно осуществить двумя путями:

    1. Изменяя степень накала спирали катода при помощи понижающего трансформатора (количество электронов, образующихся при эмиссии, будет зависеть от того, насколько сильно раскалена вольфрамовая спираль, а количество квантов излучения будет зависеть от количества электронов);
    2. Изменяя величину высокого напряжения, подводимого повышающим трансформатором к полюсам трубки - кадоду и аноду (чем выше напряжение подаётся на полюса трубки, тем большую кинетическую энергию получают электроны, которые за счёт своей энергии могут взаимодействовать с несколькими атомами вещества анода поочерёдно - см. рис. 5 ; электроны с низкой энергией смогут вступить в меньшее число взаимодействий).

    Интенсивность рентгеновского излучения (анодный ток), помноженная на выдержку (время работы трубки), соответствует экспозиции рентгеновского излучения, которая измеряется в мАс (миллиамперах в секунду). Экспозиция - это параметр, который, также как и интенсивность, характеризует количество лучей, испускаемых рентгеновской трубкой. Разница состоит лишь в том, что экспозиция учитывает ещё и время работы трубки (так, например, если трубка работает 0,01 сек., то количество лучей будет одним, а если 0,02 сек, то количество лучей будет другим - в два раза больше). Экспозиция излучения устанавливается рентгенологом на контрольной панели рентгеновского аппарата в зависимости от вида исследования, размеров исследуемого объекта и диагностической задачи.

    Жёсткость - качественная характеристика рентгеновского излучения. Измеряется величиной высокого напряжения на трубке - в киловольтах. Определяет проникающую способность рентгеновских лучей. Регулируется величиной высокого напряжения, подводимого к рентгеновской трубке повышающим трансформатором. Чем выше разность потенциалов создаётся на электродах трубки, тем с большей силой электроны отталкиваются от катода и устремляются к аноду и тем сильнее их столкновение с анодом. Чем сильнее их столкновение, тем короче длина волны у возникающего рентгеновского излучения и выше проникающая способность данной волны (или жёсткость излучения, которая, так же как и интенсивность, регулируется на контрольной панели параметром напряжением на трубке - киловольтажем).

    Рис. 7 - Зависимость длины волны от энергии волны:

    λ - длина волны;
    E - энергия волны

    • Чем выше кинетическая энергия движущихся электронов, тем сильнее их удар об анод и меньше длина волны образующегося рентгеновского излучения. Рентгеновское излучение с большой длиной волны и малой проникающей способностью называется «мягким», с малой длиной волны и высокой проникающей способностью - «жёстким».
    Рис. 8 - Соотношение напряжения на рентгеновской трубке и длины волны образующегося рентгеновского излучения:
    • Чем выше напряжение подаётся на полюса трубки, тем сильнее на них возникает разность потенциалов, следовательно, кинетическая энергия движущихся электронов будет выше. Напряжение на трубке определяет скорость движения электронов и силу их столкновения с веществом анода, следовательно, напряжение определяет длину волны возникающего рентгеновского излучения.

    Классификация рентгеновских трубок

    1. По назначению
      1. Диагностические
      2. Терапевтические
      3. Для структурного анализа
      4. Для просвечивания
    2. По конструкции
      1. По фокусности
    • Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)
    • Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)
    1. По типу анода
    • Стационарный (неподвижный)
    • Вращающийся

    Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

    В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода - чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

    Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно - участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12 ). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.


    Рис. 9 - рентгеновская трубка со стационарным анодом.
    Рис. 10 - рентгеновская трубка с вращающимся анодом.
    Рис. 11 - устройство рентгеновской трубки с вращающимся анодом.
    Рис. 12 - схема образования реального и эффективного фокусного пятна.

    В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. В. Рентген стал автором своего открытия в возрасте 50 лет, занимая пост ректора Вюрцбургского Университета и имея репутацию одного из лучших экспериментаторов своего времени. Одним из первых нашел техническое применение открытию Рентгена американец Эдисон. Он создал удобный демонстрационный аппарат и уже в мае 1896 года организовал в Нью-Йорке рентгеновскую выставку, на которой посетители могли разглядывать собственную руку на светящемся экране. После того, как помощник Эдисона умер от тяжелых ожогов, которые он получил при постоянных демонстрациях, изобретатель прекратил дальнейшие опыты с рентгеновскими лучами.

    Рентгеновское излучение стали применять в медицине в связи с его большой проникающей способностью. Поначалу, рентгеновское излучение использовалось для исследования переломов костей и определения местоположения инородных тел в теле человека. В настоящее время существует несколько методов, основанных на рентгеновском излучении. Но у данных методов есть свои недостатки: излучение может вызвать глубокие повреждения кожи. Появлявшиеся язвы нередко переходили в рак. Во многих случаях приходилось ампутировать пальцы или руки. Рентгеноскопия (синоним просвечивание) — один из основных методов рентгенологического исследования, состоящий в получении на просвечивающем (флюоресцирующем) экране плоскостного позитивного изображения исследуемого объекта. При рентгеноскопии исследуемый находится между просвечивающим экраном и рентгеновской трубкой. На современных рентгеновских просвечивающих экранах изображение возникает в момент включения рентгеновской трубки и исчезает сразу же после ее выключения. Рентгеноскопия дает возможность изучить функцию органа - пульсацию сердца, дыхательные движения ребер, легких, диафрагмы, перистальтику органов пищеварительного тракта и т.д. Рентгеноскопия используется при лечении заболеваний желудка, желудочно-кишечного тракта, 12-перстной кишки, заболеваний печени, желчного пузыря и желчевыводящих путей. При этом медицинский зонд и манипуляторы вводят без повреждения тканей, а действия в процессе операции контролируются рентгеноскопией и видны на мониторе.
    Рентгенография - метод рентгенодиагностики с регистрацией неподвижного изображения на светочувствительном материале - спец. фотоплёнке (рентгеновской плёнке) или фотобумаге с последующей фотообработкой; при цифровой рентгенографии изображение фиксируется в памяти компьютера. Выполняется на рентгенодиагностических аппаратах - стационарных, установленных в специально оборудованных рентгеновских кабинетах, или передвижных и переносных - у постели больного или в операционной. На рентгенограммах значительно отчетливей, чем на флюоресцирующем экране, отображаются элементы структур различных органов. Рентгенографию выполняют в целях выявления и профилактики различных заболеваний, основная цель её помочь врачам разных специальностей правильно и быстро поставить диагноз. Рентгеновский снимок фиксирует состояние органа или ткани лишь в момент съемки. Однако однократная рентгенограмма фиксирует только анатомические изменения в определенный момент, она дает статику процесса; посредством серии рентгенограмм, произведенных через определенные промежутки времени, можно изучить динамику процесса, то есть функциональные изменения. Томография. Слово томография можно перевести с греческого как «изображение среза». Это означает, что назначение томографии - получение послойного изображения внутренней структуры объекта исследования. Компьютерная томогарфия характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.
    Флюорография - диагностический метод, позволяющий получить изображение органов и тканей, был разработан еще в конце 20-го столетия, спустя год после того, как были обнаружены рентгеновские лучи. На снимках можно разглядеть склероз, фиброз, инородные предметы, новообразования, воспаления, имеющие развитую степень, присутствие в полостях газов и инфильтрата, абсцессы, кисты и так далее. Чаще всего производится флюорография грудной клетки, позволяющая выявить туберкулез, злокачественную опухоль в легких или груди и иные патологии.
    Рентгенотерапия — это современный метод, с помощью которого производится лечение некоторых патологий суставов. Основными направлениями лечения ортопедических заболеваний данным методом, являются: Хронические. Воспалительные процессы суставов (артрит, полиартрит); Дегенеративные (остеоартроз, остеохондроз, деформирующий спондилез). Целью рентгенотерапии является угнетение жизнедеятельности клеток патологически изменённых тканей или полное их разрушение. При неопухолевых заболеваниях рентгенотерапия направлена на подавление воспалительной реакции, угнетение пролиферативных процессов, снижение болевой чувствительности и секреторной активности желёз. Следует учитывать, что наиболее чувствительны к рентгеновским лучам половые железы, кроветворные органы, лейкоциты, клетки злокачественных опухолей. Дозу облучения в каждом конкретном случае определяют индивидуально.

    За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия.
    Таким образом, рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 105 - 102 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т.п.

    Основные свойства рентгеновского излучения

    1. Большая проникающая и ионизирующая способность.

    2. Не отклоняются электрическим и магнитным полем.

    3. Обладают фотохимическим действием.

    4. Вызывают свечение веществ.

    5. Отражение, преломление и дифракция как у видимого излучения.

    6. Оказывают биологическое действие на живые клетки.

    1. Взаимодействие с веществом

    Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз.

    Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z³λ³, Z - атомный номер элемента, λ - длина волны).

    Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

    Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

    Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах - т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.

    В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения - за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ). Однако при другом подходе, когда "ренгеновским" называется излучение, возникшее при взаимодействии электрона и ядра или только электронов, такой процесс имеет место быть. Кроме того, очень жесткое рентгеновское излучение с энергией кванта более 1 МэВ, способно вызвать Ядерный фотоэффект.

    [править]

    2. Биологическое воздействие

    Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

    [править]

    3. Регистрация

    Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.

    Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30-100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.

    В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.

    Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

    Применение

    При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

    Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

    В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.



    Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

    В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

    Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20-60 кв и кожно-фокусном расстоянии 3-7 см (короткодистанционная рентгенотерапия) или при напряжении 180-400 кв и кожно-фокусном расстоянии 30-150 см (дистанционная рентгенотерапия).

    Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

    [править]

    Естественное рентгеновское излучение

    На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.