Биографии Характеристики Анализ

Что такое замороженное магнитное поле солнца. Астрофизики нашли самое сильное магнитное поле на солнце за всю историю измерений

Наличие у Солнца общего дипольного магнитного поля (как и у планет) – твёрдо установленный факт. Так же известно, что оно изменяется и по величине напряжённости, и по направлению. Эти изменения синхронизированы с изменением солнечной активности, характеризуемой количеством солнечных пятен на видимой поверхности Солнца, но сдвинутой по фазе на 90?. Смена полярности его общего магнитного поля, регистрируемой на его полюсах, когда напряжённость равна 0, происходит в эпохи максимума солнечной активности, а его максимальная напряжённость – около 1 Гаусса – регистрируется в эпохи минимума солнечной активности. Существование указанной взаимосвязи не вызывает сомнений из-за своей очевидности, но не ясна её физическая сущность. Как пишет американский астрофизик Э. Гибсон в своей книге «Спокойное Солнце»: «Из-за предательской запутанности физической картины здесь трудно отличить причины от следствия … Общее магнитное поле Солнца не имеет вполне определённой (постоянной) оси и не симметрично. Следовательно, нельзя считать, что его создаёт какой-то диполь, находящийся в Солнце». Это мнение имеет основание, так как часто имели место случаи, когда в течение целого года на обоих гелиографических полюсах Солнца одновременно регистрируется наличие или только южных, или только северных магнитных полюсов его общего магнитного поля. На основе выясненного механизма дифференциального вращения Солнца, в основе которого лежит падение на Солнце космических тел, позволяет раскрыть природу его общего магнитного поля. Доводом следует считать выяснение физической сущности взаимосвязи общего магнитного поля Солнца с солнечной активностью посредством возникновения дифференциального характера его вращения. Известный английский физик Ампер утверждал, что магнитное поле Земли создано электрическим током, идущим в объёме Земли вокруг оси её вращения. До сих пор неизвестно, так ли это и как это происходит, учитывая то обстоятельство, что и магнитное поле Земли меняется и по величине, и по направлению. Теперь вернёмся к магнитному полю Солнца, опираясь на утверждение Ампера относительно Земли. Наличие синхронизации процессов солнечной активности, его дифференциального вращения и характера изменения магнитного поля позволяет утверждать следующее. Угловая скорость видимой поверхности Солнца изменяется с периодичностью изменения солнечной активности. Она увеличивается, когда направление движения падающих на него крупных космических тел совпадает с направлением вращения Солнца, и уменьшается, когда эти тела падают навстречу его вращению. Такие изменения угловой скорости происходят не во всём объёме вещества Солнца, а только в той его части, которая примыкает к видимой поверхности, где происходит взаимодействие с этой частью вещества Солнца вещества падающих на него космических тел. Исходя из этого можно утверждать, что часть солнечного вещества, располагающаяся ближе к центру Солнца, сохраняет свою угловую скорость неизменной, поскольку она не испытывает внешнего воздействия, без чего не может измениться величина её момента количества движения. Следовательно, примыкающая к видимой поверхности Солнца часть его вещества, включая расположенную выше солнечную хромосферу, то опережает, то отстаёт в движении от остальной части вещества Солнца. Наличие мощного потока радиационного излучения Солнца из его объёма в направлении наружной поверхности приводит к смещению (под воздействие излучения) в том же направлении части свободных электронов. Наличие постоянного смещения электронов и его величина (в состоянии динамического равновесия) обусловлены возникновением компенсационной излучению силы, возникающей при смещении электронов электрического поля. Избыток электронов в наружной области атмосферы Солнца при таком же по величине избытке положительных электрических зарядов во внутренней части солнечного вещества приводит к возникновению кругового электрического тока, обусловленного отличием угловых скоростей их движения. При этом в случае, когда угловая скорость внешней части Солнца будет больше угловой скорости его внутренней части, направление движения электрического тока будет соответствовать движению электронов, а в противоположном случае – движению положительных электрических зарядов. Соответственно будет меняться и направление силовых линий создаваемого электрическим током общего магнитного поля Солнца. Учитывая то обстоятельство, что число и суммарная масса космических тел, упавших за одно и то же время (месяц, год) на северное и южное полушария как правило не совпадают, то и степень дифференциальности их вращения отличаются. Например, за 11 лет 21-го цикла солнечной активности на северное полушарие упало 1777 космических тел, а на южное – 1886, каждое из которых привело к возникновению одной группы солнечных пятен. Разницей суммарных масс и количества выпавших на оба полушария космических тел и обусловлены и отсутствие у общего магнитного поля вполне определённой (постоянной) оси, и его несимметричность, и возможность возникновения одновременной одинаковой магнитной полярности на обоих полюсах Солнца, поскольку по существу в каждом его полушарии создаётся собственное магнитное поле. Факт изменения полярности общего магнитного поля с переходом его напряжённости через 0 обусловлен тем обстоятельством, что в эпоху максимума активности Солнца текущего цикла достигается полная компенсация ускорения или торможения угловой скорости вращения внешней части атмосферы Солнца, которые были достигнуты в предшествующем ему цикле активности в результате соответствующего торможения или ускорения её вращения в текущем цикле. Это и приводит к отмеченному в начале статьи факту сдвига синхронизации изменения этих двух явлений на 90?. Таким образом, гипотеза Ампера об электрической природе магнитного поля Земли нашла своё подтверждение в отношении магнитного поля Солнца. Есть все основания считать этот механизм общим и для планет. Нет никакого сомнения, что и на всех четырёх больших планетах (Юпитер, Сатурн, Уран, Нептун), вещество которых находится в газообразном состоянии и на поверхность которых, как и на Солнце, падают космические тела, их дипольные магнитные поля создаются в результате различной угловой скорости внутренней и наружной частей их вещества. Сложнее механизма формирования дипольного магнитного поля планет, вещество которых в основной своей массе находится в твёрдом состоянии – Марс, Земля, Венера и Меркурий. Но и у них физическая природа магнетизма электрическая.Владимиров Е.А. и Владимиров А.Е.

Магнитное поле есть, по – видимому, у всех звезд. На Солнце оно обнаружено в 1908г Дж. Хейлом (США) по зеемановскому расщеплению фраунгоферовых линий в солнечных пятнах. По современным представлениям оно ≈ 4000 Э (напряженность), или 0,4 Тл (магнитная индукция). Поле в пятнах есть проявление общего азимутального поля Солнца, силовые линии которого имеют различное направление в северном и южном полушарии.

Рисунок 56.Дипольная осесимметричная составляющая крупномасштабного магнитного поля Солнца. Наиболее

выражена у полюсов.

Слабую дипольную составляющую магнитного поля обнаружил в 1953г Бэбкок (США) (≈1Э или 10ˉ 4 Тл)

В 70 –х годах 20 века обнаружена такая же слабая неосесимметричная крупномасштабная составляющая магнитного поля. Она оказалась связанной с межпланетным магнитным полем, имеющим различные направления в радиальных составляющих в разных пространственных секторах. Это соответствует квадруполю, ось которого лежит в плоскости солнечного экватора. Наблюдаются и двухсекторная структура, соответствующая магнитному диполю.

В целом крупномасштабное поле Солнца сложно. Еще сложнее структура поля, обнаруженного в мягких масштабах. Наблюдения указывают на существование мелкомасштабных иглоподобных полей напряженностью до 2*10 3 Э (индукция 0,2 Тл). Магнитное поле Солнца изменяется. Осесимметричное крупномасштабное поле изменяется с периодом ≈ 22 года. Каждые 11 лет происходит обращение дипольной составляющей и смена направления азимутального поля.

Неосеммитричная составляющая, (секторная) изменяется приблизительно с периодом вращения Солнца вокруг своей оси. Мелкомасштабные поля изменяются нерегулярно, хаотично.

Магнитное поле несущественно для равновесия Солнца. Равновесное состояние определяет баланс сил тяготения и градиента давления. Но все проявления солнечной активности (пятна, вспышки, протуберанцы и др.) связаны с магнитными полями. Магнитное поле играет определяющую роль в создании солнечной хромосферы и в нагреве до миллиона градусов солнечной короны. Высвечиваемая в ультрафиолетовом и рентгеновском диапазонах энергия выделяется в многочисленных локализованных областях, отождествляемых с петлями магнитного поля. Области, в которых излучение ослаблено (корональные дыры) отождествляются с открытыми во внешнее пространство конфигурациями магнитных силовых линий. Считается, что в этих областях берут начало потоки солнечного ветра.

  1. Модель внутреннего строения Солнца. Источники солнечной энергии.

Рисунок 57. Схема строения солнца.

Внешние слои Солнца (атмосферы) непосредственно доступны наблюдениям. Поэтому теоретические модели их строения проверены. Модели внутреннего строения в основном теоретические. Они получены на экстраполяции физических условий, на поверхности и характеристиках: размеры, масса, светимость, вращение, химический состав.

По геологическим данным возраст Солнца около 5 млрд лет. Последние 3 млрд лет светимость его мало изменилась. За эти 3 млрд. лет Солнце излучило 3,6*10 44 Дж, то есть каждый килограмм массы Солнца выделил ~1,8*10 13 Дж энергии. Такое количество энергии, как показали расчеты, не могут обеспечить химические процессы и гравитация. (гравитационная энергия Солнца = 4*10 41 Дж).

Единственным возможным, посовременным представлением, источником энергии может быть ядерная энергия. Если на Солнце идут ядерные реакции и вначале все вещество – водород, то при современной светимости Солнца ядерной энергии хватило бы на 170 млрд. лет. Для протекания ядерных реакций нужна температура порядка десяти млн. градусов. Следовательно, из высокой светимости следует высокая температура внутри Солнца. По наблюдениям в фотосфере температура с глубиной растет с градиентом 20 К на 1 км. Это дает в центре ~1,4*10 6 К. Температуру можно оценить по условию гидростатического равновесия, считая солнечное вещество идеальным газом: газовое давление уравновешивают силы тяготения. Получается ≈ 14*10 6 К в центре, что в 3 раза выше средней.

Наиболее существенной в недрах Солнца является протон – протонная реакция . Она начинается с крайне редкого события – β – распада одного из двух протонов в момент особенно тесного их сближения (14 * 10 9 лет).

При β – распаде протон превращается в нейтрон с испусканием позитрона и нейтрино. Объединяясь со вторым протоном, нейтрон дает ядро тяжелого водорода – дейтерия. Для каждой пары протонов процесс, в среднем осуществляется за 14 миллиардов лет, что и определяет медленность термоядерных реакций на Солнце и общую протяженность его эволюции. Дальнейшие ядерные превращения протекают значительно быстрее. Возможны несколько вариантов, из которых чаще всего должны происходить столкновения дейтерия с третьим протоном и образование ядер изотопа гелия которые, объединяясь и испуская два протона, дают ядро обычного гелия.

Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете, она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит название углеродного цикла.

При термоядерных реакциях в недрах Солнца выделяется в виде жестких гамма-квантов. При движении к поверхности они многократно переизлучаются, дробятся на кванты меньшей энергии. Процесс занимает миллионы лет. Из одного γ – кванта образуется несколько миллионов квантов видимого света, которые и покидают поверхность Солнца.

При термоядерных реакциях выделятся нейтрино. Из –за ничтожно малой массы и отсутствия электрического заряда нейтрино очень слабо взаимодействует с веществом. Почти свободно проходит Солнце и со скоростью света вылетает в межпланетное пространство. Его регистрация сложна, но нейтрино может жать важную информацию о внутреннем строении и условиях внутри Солнца и звезд.

Рисунок 58. Схематический разрез Солнца и его

Люди, посвятившие себя изучению Солнца, неизбежно встречаются с одной проблемой. Их наблюдения проводятся издалека. Они полагаются на изображения и данные, полученные с расстояния в 140 миллионов километров. Как ни крути, такие данные не позволяют создать точную картину магнитных полей, существующих и, главное, постоянно меняющихся, около Солнца.

Но оставить эту проблему нельзя. Напротив, ученым следует уделить ей максимальное внимание. Понимание структуры и динамики этих полей позволит разобраться в том, как корональные выбросы путешествуют в пространстве, в том числе, в направлении Земли, где они могут нанести серьезный ущерб спутникам. Группа американских специалистов разработала подход, объединяющий старые, испробованные во многих областях знания математические методы и новые теории и экспериментальные техники наблюдения за динамикой корональных масс для того, чтобы создать новую, достаточно точную модель магнитных полей около Солнца. В первую очередь - в верхних слоях его атмосферы, в короне.

«Магнитное поле - своеобразный скелет всей гелиосферы, оно определяет, как частицы и корональные массы движутся в сторону Земли», - говорит специалист по Солнцу, физик из Центра космических полетов имени Годдарда Нэт Гопалсуами . По его словам, измерение магнитных полей около поверхности Солнца стало для физиков рутинной работой, но вот подняться выше и проводить измерения в атмосфере, особенно в ее верхних слоях, пока толком не научились. «До недавнего времени мы могли измерять магнитное поле только в верхней части короны и при определенных условиях. Новая методика позволит проводить более общие исследования».

Для использования нового метода нужно лишь иметь хорошие измерения коронального выброса. Метод основывается на взаимодействии между объектом, движущимся через газ и самим газом. При этом возникает ударная волна, вокруг объекта возникает область сжатого, неравновесного газа, примерно как при движении реактивного самолета. Это было открыто еще в 1960-х годах. Если же объект движется через электризованный газ, плазму, его взаимодействие с газом обуславливается также магнитным полем, в особенности его напряженностью. Такую ударную волну с магнитном поле называют головной.

Проблема заключается в том, чтобы в верхней короне засечь головную ударную волну. В верхней части короны ученым пока не удавалось заметить тех явлений, по которым обычно и различают ударную волну в областях, которые ближе к поверхности Солнца. Однако 25 марта 2008 года Солнце предоставило ученым шанс проникнуть в свои секреты. Образовался корональный выброс, двигавшийся со скоростью почти в 5 миллионов километров в час. Он был замечен многими космическими аппаратами, занимающимися наблюдением за Солнцем. За счет этого было получено трехмерное изображение движения корональных масс. Оказалось, что в лимбе (в крайних областях Солнца) хорошо заметно движение корональных масс. Все явления, наблюдаемые в лимбе, чрезвычайно удобны для наблюдения и анализа. Ученые получили отличные данные о динамике коронального выброса.

Гопалсуани предположил, что ударная волна может быть видна на стандартных изображениях в белом цвете. Она действительно была видно, но не так, как он предполагал. Траектории ударных волн были на удивление неточны, что особенно странно в тонкой атмосфере Солнца. Вместо того, чтобы быть вблизи самих корональных масс, ударные волны вырывались с границ движущейся массы.

Во время выброса 25 марта ученым удалось заметить контуры своего рода диффузионного кольца около границ коронального выброса. Их структура позволила определить силу магнитного поля, приводящего к смещению ударных волн. Расстояние между корональными массами и фронтом ударной волны, а также радиус искривления траектории выброса дают исчерпывающую информацию для определения магнитных свойств среды, через которую они движутся. Можно сказать, аналогично по волнам можно определить, движутся ли они в воде или, например, в масле.

Скорость распространения ударной волны может быть использована для того, что определить так называемую скорость Альфвена - скорость распространения волны Альфвена. Эта скорость определяет, как быстро волна может проходить через магнитную среду. Это - аналог скорости распространения звуковой волны в воздухе. По этой скорости можно определить, до какой степени может дойти скорости объекта до того, как он создаст ударную волну. Определив эту волну, можно затем вычислить напряженность магнитного поля в среде.

Математические модели, используемые при этих преобразованиях, были объединены с более привычными моделями распространения ударных волн и позволили создать новую теорию движения корональных масс и их воздействия на Землю. Это - свидетельство того, как математические методы, применяемые в различных областях знания могут использоваться совместно. В данном случае используется метод, изначально разработанный для изучения геомагнитного поля. Затем он был расширен для анализа движения корональных масс в межпланетном пространстве, затем - около Солнца и, наконец, для определения магнитного поля в короне.

Для верификации нового метода ученые провели измерения напряженности магнитного поля на разных расстояниях от Солнца. Эти данные хорошо совпали с предсказаниями новой модели, что позволяет надеяться, что новая разработка скоро будет активно применяться для измерения напряженности магнитного поля в короне. Совместно с другими данными, которые в настоящее время доступны измерению человеком, такими как плотность, температура и направление линий магнитного поля, измерения напряженности магнитного поля позволят получить полную картину магнитного поля в короне Солнца.

Знание магнитного поля совершенно необходимо для предсказания космической погоды.

Солнечные пятна дают нам наиболее наглядные образцы нестационарных процессов на Солнце. Прежде всего это их бурное развитие. Иной раз бывает достаточно двух-трех дней, чтобы на «чистом» месте фотосферы развилось большое пятно или большая группа пятен. Как правило, впрочем, развитие их идет медленнее и у больших групп достигает максимума через 2-3 недели. Малые пятна и группы появляются и исчезают в течение недели, в то время как крупные существуют по нескольку месяцев. Известно одно пятно, существовавшее 1,5 года. При возникновении пятна, когда его полутень еще мала, в ней видна та же фотосферная грануляция (Ганский, Тиссен), которая при дальнейшем развитии принимает волокнистый вид; волокна гораздо более стойки, чем гранулы. Когда округлое пятно правильной формы приближается к солнечному краю, оно наблюдается нами в проекции и его поперечник в направлении радиуса солнечного диска сильно сокращен (пропорционально ; см. рис. 8). При этом нередко наблюдается так называемый эффект Вильсона, заключающийся в том, что полутень пятна со стороны края диска видна хорошо, а со стороны, обращенной к центру диска, сильно сокращена. Такое явление допускает геометрическое уподобление солнечного пятна гигантскому углублению с конически суживающимися стенками. Но далеко не все пятна обнаруживают это.

Обычно группа пятен бывает растянута по гелиографической долготе (в исключительных случаях - до 20° и больше). При этом часто в группе намечаются два самых крупных пятна с отдельными полутенями, которые имеют слегка различные движения по поверхности Солнца. Восточное пятно называют ведущим, западное - следующим. Часто такая склонность образовываться парами наблюдается и у отдельных пятен, не образующих групп с большим количеством мелких пятен-спутников.

Рис. 38. Вихревая структура пятен в биполярной группе. Направления вихрей противоположны. (Спектрограмма в лучах На)

Наблюдения лучевых скоростей по разным спектральным линиям в разных местах пятна и под разным углом зрения к нему показывают наличие сильных (до 3 км/с) движений в полутени пятна - растекание вещества в глубинных частях его и втекание вещества внутрь на большой высоте. Последнее подтверждается вихревой структурой, заметной над пятнами на спектрогелиограммах в лучах . Направления этих вихрей противоположны в южном и северном полушариях Солнца и указывают в одиночных пятнах на втекание вещества в соответствии с тем, как его должна отклонять сила Кориолиса.

Обычно на внешнем краю полутени систематические движения уже не наблюдаются.

Как уже было сказано выше, солнечные пятна обладают сильными магнитными полями. Напряженность в 1000-2000 Э является обычной, а в одной группе в конце февраля 1942 г. была измерена напряженность 5100 Э. Детальные исследования распределения направления и напряженности магнитного поля внутри пятна показали, что в центре пятна магнитные силовые линии идут по оси пятна (вверх или вниз), а по мере удаления к периферии пятна они все более уклоняются от нормали к поверхности, почти до 90° на краю полутени. При этом напряженность магнитного поля убывает от максимума почти до нуля.

Рис. 39. Изменение средней широты и магнитной полярности солнечных пятен в последовательных циклах солнечной активности

Чем больше пятно, тем, как правило, сильнее его магнитное поле, но когда большое пятно, достигнув максимальных размеров, начинает уменьшаться, напряженность его магнитного поля остается неизменной, а полный магнитный поток уменьшается пропорционально площади пятна. Это можно истолковать так, как будто пятно лишь способствует выносу наружу магнитного поля, существующего длительно под поверхностью. Сказанное подтверждается также тем, что часто магнитное поле не исчезает после исчезновения пятна, но продолжает существовать там и вновь усиливается при новом появлении пятна в той же области. Наличие здесь перманентных факельных полей позволяет говорить, что в этих местах существуют устойчивые активные области.

В группах с двумя большими пятнами пятна ведущее и следующее имеют противоположную магнитную полярность (рис. 38 и 39), что оправдывает название таких групп - биполярные, в противоположность униполярным группам, включающим в себя одиночные пятна. Бывают сложные группы, в которых пятна той и другой полярности беспорядочно перемешаны. В каждом цикле солнечной деятельности полярности ведущего и следующего пятна в северном и южном полушариях противоположны друг другу.

Так, если в северном полушарии Солнца полярность ведущего пятна северная (N), а следующего - южная (S), то в это же время в южном полушарии полярность ведущего пятна - S, а следующего - N. У тех редких пятен, которые пересекаются экватором, полярность северной и южной половин противоположна. Но с окончанием цикла солнечной деятельности, когда проходит ее минимум, в каждом полушарии распределение магнитной полярности у пятен биполярной группы изменяется на то, которое было в предыдущем цикле на противоположном полушарии. Этот важный факт был установлен Хэйлом с сотрудниками в 1913 г.

Хотя местные магнитные поля Солнца бывают очень сильны, его общее магнитное поле весьма слабое и лишь с трудом выделяется на фоне местных полей только в годы минимумов солнечных пятен. Кроме того, оно изменчиво. В годы 1953-1957 его напряженность соответствовала диполю с индукцией в 1 Гс, знак был противоположен знаку магнитного поля Земли, а ось диполя совпадала с осью вращения. В 1957 г. знак поля изменился на обратный в южных полярных областях Солнца, а в конце 1958 г. - и в северных. Последнее изменение знака поля наблюдалось в 1970-1971 гг.

Смена магнитной полярности пятен с окончанием цикла солнечной активности не является единственным признаком конца цикла. Солнечные пятна редко образуются вдали от экватора. Их предпочтительная зона заключена в пределах гелиографических широт от 1-2° до 30° в обоих полушариях. На самом экваторе пятна встречаются редко, как и на широтах свыше 30°. Но у этой картины есть особенность ее изменения во времени: первые пятна нового цикла (после мнимума) появляются вдали от экватора (например, пятно с было зарегистрировано 15 марта 1914 г., с мая 1943 г. и с октября 1954 г.), в то время как последние пятна уходящего цикла еще наблюдаются вблизи экватора. Во время же расцвета цикла вблизи его максимума пятна можно встретить на всех гелиографических широтах между - 45° и +45° (известна группа пятен даже с широтой +50°, наблюдавшаяся в июне 1957 г. во время максимума солнечной активности), но главным образом между 5 и 20°. Таким образом, средняя гелиографическая широта пятен по мере развития 11-летнего цикла солнечной активности неуклонно уменьшается, и новые пятна появляются все ближе и ближе к экватору (рис. 39). Эта закономерность была установлена впервые в 1858 г. Кэррингтоном и иногда называется законом Шпёрера (хотя последний установил ее на 10 лет позже).

Таким образом, если под периодом понимать промежуток времени, в течение которого изменяются и возвращаются к исходному состоянию все свойства, то истинный период солнечной деятельности есть не 11 лет, а 22 года. Интересно, что некоторое чередование высоты максимума через цикл также подтверждает 22-летнюю периодичность. Намечается и 80-летний цикл солнечной деятельности. По каким-то внутренним причинам солнечная активность меняется в широких пределах с характерным временем около столетия.

Так, между 1645 и 1715 гг. на Солнце почти не было пятен, а группа появлялась только» один раз. Это так называемый минимум Маундера. Другой минимум, минимум Шпёрера, был между 1410 и 1510 гг. Наоборот, средневековый максимум между 1120 и 1280 гг. был очень энергичен, подобно переживаемому нами сейчас. Описанные вариации сопровождались колебаниями средней годовой температуры в Англии в пределах 1 °С.

Комбинируя прямые наблюдения с компьютерным моделированием, гелиофизики НАСА создали модель движения плазмы в короне Солнца, которая позволит лучше понять природу магнитного поля Солнца

Поверхность Солнца непрерывно бурлит и танцует. Удаляющиеся от нее струи плазмы изгибаются, взметаются петлями, закручиваются в циклоны и достигают верхних слоев солнечной атмосферы - короны, имеющей температуру в миллионы градусов.

Результаты моделирования. Магнитное поле Солнца в 2011 гораздо больше сосредоточено вблизи полюсов. Пятен мало. (Изображение NASA"s Goddard Space Flight Center/Bridgman)

Магнитное поле Солнца в 2014 стало более запутанным и беспорядочным, создавая условия для вспышек и выбросов корональной массы. (Изображение NASA"s Goddard Space Flight Center/Bridgman)

Поверхность Солнца (изображение http://www.nasa.gov)

Это вечное движение, которое нельзя наблюдать в видимом свете, впервые заметили в 1950-х годах, и с тех пор физики пытаются понять, почему оно происходит. Сейчас уже известно, что вещество, из которого состоит Солнце, движется в соответствии с законами электромагнетизма.

Изучая магнитное поле Солнца, можно лучше понять природу космоса во всей Солнечной системе: оно влияет как на межпланетное магнитное поле и радиацию, сквозь которую приходится двигаться космическим кораблям, так и на космическую погоду на Земле (полярные сияния, магнитные бури и т.п. зависят от солнечных вспышек).

Но, несмотря на многолетние исследования, окончательного понимания природы магнитного поля Солнца еще нет. Предполагается, что оно возникает от движений заряженных частиц, которые перемещаются по сложным траекториям из-за вращения Солнца (солнечное динамо) и тепловой конвекции, поддерживаемой теплом от термоядерного синтеза в центре Солнца. Однако все детали процесса до сих пор не известны. В частности, неизвестно, где именно создается магнитное поле: близко к солнечной поверхности, глубоко внутри Солнца, или в широком диапазоне глубин.

Как можно увидеть невидимое магнитное поле? По движению солнечной плазмы. И вот, чтобы больше узнать о «магнитной жизни» Солнца, ученые НАСА решили проанализировать движение плазмы через его корону, комбинируя результаты компьютерного моделирования и данные, полученные при наблюдении в реальном времени.

Магнитное поле управляет движением заряженных частиц, электронов и ионов, из которых состоит плазма. Образующиеся при этом петли и прочие плазменные структуры ярко светятся на снимках, сделанных в крайнем ультрафиолетовом диапазоне. Кроме того, их следы на поверхности Солнца, или фотосфере, можно достаточно точно измерить с помощью инструмента, называемого магнитографом, который измеряет силу и направление магнитных полей.

Результаты наблюдений, которые описывают напряженность магнитного поля и его направление, затем объединяют с моделью движущейся солнечной плазмы в магнитном поле. Вместе они дают хорошее представление о том, как выглядит магнитное поле в короне Солнца и как оно там колеблется.

В периоды максимальной солнечной активности магнитное поле имеет очень сложную форму с большим количеством повсюду мелких структур, представляющих собой активные регионы. В минимуме солнечной активности поле слабее и концентрируется на полюсах. Образуется очень гладкая структура без пятен.

По материалам НАСА
Там же можно посмотреть анимацию по результатам моделирования.