Биографии Характеристики Анализ

Что значит пульсар. Нейтронная звезда пульсар

Пульсары – это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Пульсар - это маленькая вращающаяся звезда. На поверхности звезды есть участок, который излучает в пространство узконаправленный пучок радиоволн. Наши радиотелескопы принимают это излучение тогда, когда источник повернут в сторону Земли. Звезда вращается, и поток излучения прекращается. Следующий оборот звезды - и мы снова принимаем ее радио послание.


Так же действует маяк с вращающимся фонарем. Издали мы воспринимаем его свет как пульсирующий. То же самое происходит и с пульсаром. Мы воспринимаем его излучение, как пульсирующий с определенной частотой источник радио волнового излучения. Пульсары относятся к семейству нейтронных звезд. Нейтронная звезда - это звезда, которая остается после катастрофического взрыва гигантской звезды.


Пульсар – нейтронная звезда

Звезда средней величины, например Солнце, размерами в миллион раз превосходит такую планету, как Земля. Гигантские звезды в поперечнике в 10, а иногда и в 1000 раз больше Солнца. Нейтронная звезда - это гигантская звезда, сжатая до размера крупного города. Это обстоятельство и делает поведение нейтронной звезды очень странным. Каждая такая звезда равна по массе гигантской звезде, но эта масса стиснута в чрезвычайно малом объеме. Одна чайная ложка вещества нейтронной звезды весит миллиард тонн.

Нейтронная звезда - весьма странный объект при диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Что же это за объекты? О них и пойдет речь в статье.

Состав нейтронных звёзд

Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов. Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды - самые плотные объекты во вселенной. Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.

Магнитное поле

Нейтронные звёзды имеют скорости вращения до 1000 оборотов в секунду. При этом электропроводящие плазма и ядерное вещество вырабатывают магнитные поля гигантских величин. Для примера магнитное поле Земли 1 гаусс, нейтронной звезды 10 000 000 000 000 гаусс. Самое сильное поле, созданное человеком, будет в миллиарды раз слабее.

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной».

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров

Экзопланеты у нейтронных звезд

Первую экзопланету открыли при исследовании радиопульсара. Так как нейтронные звезды очень стабильны, возможно очень точно отслеживать находящиеся рядом планеты с массами, намного меньшими массы Юпитера.

Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.

На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

– это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Поэтому по виду излучения их разделяют на радиопульсары, оптические пульсары, рентгеновские и/или гамма-пульсары. Природа излучения пульсаров пока полностью не раскрыта, модели пульсаров и механизмов излучения ими энергии изучаются теоретически. На сегодняшний день преобладает мнение о пульсарах как о вращающихся нейтронных звездах с сильным магнитным полем.

Открытие пульсаров

Это произошло в 1967 г. Английский радиоастроном Э. Хьюиш и его сотрудники обнаружили идущие как бы из пустого места в космосе короткие радиоимпульсы, повторяющиеся стабильно с периодом не менее секунды. Сначала результаты наблюдений за этим явлением хранились в тайне, т.к. можно было предположить, что эти импульсы радиоизлучения имеют искусственное происхождение – возможно, это сигналы какой-нибудь внеземной цивилизации? Но источника излучения, совершающего орбитальное движение, обнаружено не было, зато группа Хьюиша нашла еще 3 источника подобных сигналов. Таким образом, надежда на сигналы внеземной цивилизации исчезла, и в феврале 1968 г. в появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой.

Это сообщение вызвало настоящую сенсацию, а в 1974 г. за это открытие Хьюиш получил Нобелевскую премию. Пульсар этот называется PSR J1921+2153. В настоящее время известно около 2 тысяч радиопульсаров, они обычно обозначаются буквами PSR и цифрами, которые выражают их экваториальные координаты.

Что представляет собой радиопульсар?

Астрофизики пришли к общему мнению, что радиопульсар представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени - так образуются импульсы пульсара. Большинство астрономов уверены в том, что пульсары - это крохотные нейтронные звезды с диаметром в несколько километров, вращающиеся с периодами в доли секунды. Их даже называют иногда «звездными волчками». Из-за магнитного поля излучение пульсара похоже на луч прожектора: когда из-за вращения нейтронной звезды луч попадает на антенну радиотелескопа, видны всплески излучения. Сигналы пульсаров на разных радиочастотах распространяются в межзвездной плазме с разной скоростью. По взаимному запаздыванию сигналов определяют расстояние до пульсара, определяют их расположение в Галактике. Распределение пульсаров приблизительно соответствует распределению остатков сверхновых звезд.

Рентгеновские пульсары

Рентгеновский пульсар представляет собой тесную двойную систему , одним из компонентов которой является нейтронная звезда , а вторым - нормальная звезда , в результате чего происходит перетекание материи с обычной звезды на нейтронную. Нейтронные звезды - это звезды с очень малыми размерами (20-30 км в диаметре) и чрезвычайно высокими плотностями, превышающими плотность атомного ядра. Астрономы считают, что нейтронные звёзды появляются в результате взрывов сверхновых. При взрыве сверхновой происходит стремительный коллапс ядра нормальной звезды, которое затем и превращается в нейтронную звезду. Во время сжатия в силу закона сохранения момента импульса, а также сохранения магнитного потока происходит резкое увеличение скорости вращения и магнитного поля звезды. Таким образом, для рентгеновского пульсара важны именно два этих признака: быстрая скорость вращения и чрезвычайно высокие магнитные поля. Материя, ударяясь о твердую поверхность нейтронной звезды, сильно разогревается и начинает излучать в рентгене. Близкими родственниками рентгеновских пульсаров являются поляры и промежуточные поляры . Различие между пульсарами и полярами заключается в том, что пульсар - это нейтронная звезда, а поляр - белый карлик. Соответственно, у них ниже магнитные поля и скорость вращения.

Оптические пульсары

В январе 1969 г. район пульсара в Крабовидной туманности был обследован оптическим телескопом с фотоэлектрической аппаратурой, способной регистрировать быстрые колебания блеска. Было отмечено существование оптического объекта с колебаниями блеска, имеющими такой же период, как и радиопульсар в этой туманности. Этим объектом оказалась звездочка 16-й величины в центре туманности. Она имела какой-то неразборчивый спектр без спектральных линий. Исследуя в 1942 г. Крабовидную туманность, В. Бааде указал на нее как на возможный звездный остаток сверхновой, а И.С. Шкловский в более поздние годы предполагал, что она является источником релятивистских частиц и фотонов высокой энергии. Но все это были лишь предположения. И вот звезда оказалась оптическим пульсаром , имеющим одинаковые с радиопульсаром период и интеримпульсы, а физически она должна быть нейтронной звездой, расход энергии которой достаточен для поддержания свечения и всех видов излучений Крабовидной туманности. После открытия оптического пульсара были проведены поиски и в других остатках сверхновых, особенно в тех, где уже найдены радиопульсары. Но только в 1977 г. австралийским астрономам с помощью специальной техники удалось нащупать пульсацию в оптическом диапазоне исключительно слабой звездочки 25-й величины в остатке сверхновой Паруса X. Третий оптический пульсар нашли в 1982 г. в созвездии Лисички по радиоизлучению. Остатка сверхновой не найдено.

Что же собой представляет оптический пульсар? Центральные компоненты спектральных линий SS 433 показывают перемещения с периодом 13 суток и изменения скорости движения от -73 до +73 км/с. Видимо, здесь также присутствует тесная двойная система, состоящая из оптически наблюдаемого горячего сверхгиганта классов О или В и невидимого в оптике рентгеновского компонента. Сверхгигант имеет массу более десяти солнечных, он раздулся до предельных границ собственной зоны тяготения, пополняет своим газом диск, окружающий по экватору вращения рентгеновский компонент. Плоскость диска перпендикулярна оси вращения компактного объекта, каким является рентгеновский компонент, а не лежит в орбитальной плоскости двойной системы. Поэтому диск и обе газовые струи ведут себя как наклонно вращающийся волчок, причем ось их вращения прецессирует (описывает конус), совершая один оборот за 164 суток (это известное явление прецессии вращающихся тел). Рентгеновский компонент, пожирающий газ диска и выбрасывающий струи, может быть нейтронной звездой.

Относятся к числу самых мощных космических источников гамма-излучения. Астрофизики очень хотят выяснить, каким образом эти нейтронные звезды ухитряются так сильно светить в гамма-диапазоне. До запуска телескопа Ферми было известно лишь около десятка гамма-пульсаров, в то время как общее число пульсаров составило примерно 1800. Теперь новая обсерватория стала открывать гамма-пульсары десятками. Ученые надеются, что ее работа дастмножество ценных сведений, которые помогут лучше понять природу гамма-пульсаров и других космическихгенераторов гамма-квантов.

В 2012 г. астрономы обнаружили при помощи орбитального гамма-телескопа "Ферми" быстрейший на сегодня гамма-пульсар в созвездии Центавра, совершающий один оборот за 2,5 миллисекунды и пожирающий при этом останки звезды-компаньона размером с Юпитер. (Га́мма-излуче́ние (гамма-лучи , γ-лучи ) - вид электромагнитного излучения с чрезвычайно малой длиной волны - < 5·10 −3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. На картинке гамма-излучение показано фиолетовым цветом.

Подытожим…

Нейтронные звезды – удивительные объекты. Их в последнее время наблюдают с особенным интересом, т.к. загадку представляет не только их строение, но и огромная их плотность, сильнейшие магнитные и гравитационные поля. Материя там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно воспроизвести в земных лабораториях.
Пульсар - это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита . Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, а вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 1010-1014 гаусс. Сравним: земное поле составляет 1 гаусс, солнечное - 10-50 гаусс). Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары, оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка - лишь на миг прорезая окружающую мглу.

Слишком уж необычным был. Главная его особенность, за что он и получил свое название – периодические вспышки излучения, причем со строго определенным периодом. Этакий радиомаяк в космосе. Сначала предполагали, что это пульсирующая звезда, которая меняет свои размеры – такие давно известны. А обнаружила его Джоселин Белл, аспирантка Кембриджского университета, с помощью радиотелескопа.
Что интересно, первый пульсар назвали LGM-1, что на английском означает «маленькие зеленые человечки». Однако постепенно выяснилось, что пульсары – естественные объекты нашей Вселенной, да и открыто их уже довольно много – под две тысячи. Самый близкий от нас находится на расстоянии 390 световых лет.

Итак, что же представляет собой пульсар? Это очень маленькая, но очень плотная нейтронная звезда. Такие звезды образуются после взрыва звезды – гиганта, гораздо большей, чем наше Солнце – карлик. В результате прекращения термоядерной реакции вещество звезды сжимается в очень плотный объект – это называется коллапсом, а во время этого электроны – отрицательные частицы, вдавливаются внутрь ядер и соединяются с протонами – положительными частицами. В конце концов, все вещество звезды оказывается состоящим из одних нейтронов, что и дает огромную плотность – нейтроны не имеют заряда и могут располагаться очень тесно, практически друг на друге.

Так вот, вся материя огромной звезды умещается в одной нейтронной звезде, которая имеет размеры всего в несколько километров. Плотность ее такова, что чайная ложка вещества этой звезды весит миллиард тонн.

Первый пульсар, открытый Джоселин Белл, посылал в космос электромагнитные вспышки с частотой 1.33733 секунды. Другие пульсары имеют другие периоды, но частота их излучения остается постоянной, хотя и может лежать в различных диапазонах – от радиоволн до рентгеновского излучения. Почему так происходит?

Дело в том, что нейтронная звезда размером с город очень быстро вращается. Она может совершить тысячу оборотов вокруг своей оси за одну секунду. При этом она имеет очень мощное магнитное поле. По силовым полям этого поля движутся протоны и электроны, а около полюсов, где магнитное поле особенно сильное и где эти частицы достигают очень больших скоростей, они выделяют кванты энергии в различных диапазонах. Получается как бы естественный синхрофазотрон – ускоритель частиц, только в природе. Вот так на поверхности звезды образуется две области, из которых идет очень мощное излучение.

Положите на стол фонарик и начните его вращать. Луч света вращается вместе с ним, освещая все по кругу. Так и пульсар, вращаясь, посылает свое излучение с периодом своего вращения, а оно у него очень быстрое. Когда на пути луча оказывается Земля, мы видим всплеск радиоизлучения. Притом идет этот луч из пятна на звезде, размер которого всего-навсего 250 метров! Это какая же мощность, если мы можем обнаружить сигнал за сотни и тысячи световых лет! Магнитные полюса и ось вращения у пульсара не совпадают, поэтому излучающие пятна вращаются, а не стоят на месте.

Остаток сверхновой Корма-А, в центре которой находится нейтронная звезда

Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.

Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.

После такого взрыва внешние слои выбрасываются в космос, ядро остается, но она больше не в состоянии поддерживать ядерный синтез. Без внешнего давления от вышележащих слоев, она коллапсирует и катастрофически сжимается.

Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.

Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны - этот процесс называется нейтронизацией.

Состав

Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.
Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.

Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.

Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.

Радиопульсары

Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.

Схематическое изображение вращения нейтронной звезды

Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.

После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.

Радиопульсар в Крабовидной туманности

Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.

Ветер от Пульсара, видео телескопа Чандра

Радиопульсар в Крабовидной туманности, сфотографированный с помощью космического телескопа Хаббла через фильтр 547nm (зеленый свет) с 7 августа 2000 года по 17 апреля 2001 года.

Магнетары

Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.

Планеты у нейтронных звезд

На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.

Двойные системы

Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.

Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.