Biographies Characteristics Analysis

How the oxygen atmosphere of the earth was formed. Oxygen disaster

After the end of World War II, the countries of the anti-Hitler coalition rapidly tried to get ahead of each other in the development of a more powerful nuclear bomb.

The first test, carried out by the Americans on real objects in Japan, heated the situation between the USSR and the USA to the limit. Powerful explosions that thundered through Japanese cities and practically destroyed all life in them forced Stalin to abandon many claims on the world stage. Most Soviet physicists were urgently “thrown” into the development of nuclear weapons.

When and how did nuclear weapons appear?

The year 1896 can be considered the year of birth of the atomic bomb. It was then that the French chemist A. Becquerel discovered that uranium is radioactive. The chain reaction of uranium creates powerful energy, which serves as the basis for a terrible explosion. It is unlikely that Becquerel imagined that his discovery would lead to the creation of nuclear weapons - the most terrible weapon in the whole world.

The end of the 19th and beginning of the 20th century was a turning point in the history of the invention of nuclear weapons. It was during this time period that scientists from around the world were able to discover the following laws, rays and elements:

  • Alpha, gamma and beta rays;
  • Many isotopes of chemical elements with radioactive properties were discovered;
  • The law of radioactive decay was discovered, which determines the time and quantitative dependence of the intensity of radioactive decay, depending on the number of radioactive atoms in the test sample;
  • Nuclear isometry was born.

In the 1930s, they were able to split the atomic nucleus of uranium for the first time by absorbing neutrons. At the same time, positrons and neurons were discovered. All this gave a powerful impetus to the development of weapons that used atomic energy. In 1939, the world's first atomic bomb design was patented. This was done by a physicist from France, Frederic Joliot-Curie.

As a result of further research and development in this area, a nuclear bomb was born. The power and range of destruction of modern atomic bombs is so great that a country that has nuclear potential practically does not need a powerful army, since one atomic bomb can destroy an entire state.

How does an atomic bomb work?

An atomic bomb consists of many elements, the main ones being:

  • Atomic bomb body;
  • Automation system that controls the explosion process;
  • Nuclear charge or warhead.

The automation system is located in the body of the atomic bomb, along with the nuclear charge. The design of the housing must be reliable enough to protect the warhead from various external factors and influences. For example, various mechanical, temperature or similar influences, which can lead to an unplanned explosion of enormous power that can destroy everything around.

The task of automation is full control over ensuring that the explosion occurs at the right time, so the system consists of the following elements:

  • A device responsible for emergency detonation;
  • Automation system power supply;
  • Detonation sensor system;
  • Cocking device;
  • Safety device.

When the first tests were carried out, nuclear bombs were delivered on airplanes that managed to leave the affected area. Modern atomic bombs are so powerful that they can only be delivered using cruise, ballistic or at least anti-aircraft missiles.

Atomic bombs use various detonation systems. The simplest of them is a conventional device that is triggered when a projectile hits a target.

One of the main characteristics of nuclear bombs and missiles is their division into calibers, which are of three types:

  • Small, the power of atomic bombs of this caliber is equivalent to several thousand tons of TNT;
  • Medium (explosion power – several tens of thousands of tons of TNT);
  • Large, the charge power of which is measured in millions of tons of TNT.

It is interesting that most often the power of all nuclear bombs is measured precisely in TNT equivalent, since atomic weapons do not have their own scale for measuring the power of the explosion.

Algorithms for the operation of nuclear bombs

Any atomic bomb operates on the principle of using nuclear energy, which is released during a nuclear reaction. This procedure is based on either the division of heavy nuclei or the synthesis of light ones. Since during this reaction a huge amount of energy is released, and in the shortest possible time, the radius of destruction of a nuclear bomb is very impressive. Because of this feature, nuclear weapons are classified as weapons of mass destruction.

During the process that is triggered by the explosion of an atomic bomb, there are two main points:

  • This is the immediate center of the explosion, where the nuclear reaction takes place;
  • The epicenter of the explosion, which is located at the site where the bomb exploded.

The nuclear energy released during the explosion of an atomic bomb is so strong that seismic tremors begin on the earth. At the same time, these tremors cause direct destruction only at a distance of several hundred meters (although if you take into account the force of the explosion of the bomb itself, these tremors no longer affect anything).

Factors of damage during a nuclear explosion

The explosion of a nuclear bomb does not only cause terrible instant destruction. The consequences of this explosion will be felt not only by people caught in the affected area, but also by their children born after the atomic explosion. Types of destruction by atomic weapons are divided into the following groups:

  • Light radiation that occurs directly during an explosion;
  • The shock wave propagated by the bomb immediately after the explosion;
  • Electromagnetic pulse;
  • Penetrating radiation;
  • Radioactive contamination that can last for decades.

Although at first glance a flash of light appears to be the least threatening, it is actually the result of the release of enormous amounts of heat and light energy. Its power and strength far exceeds the power of the sun's rays, so damage from light and heat can be fatal at a distance of several kilometers.

The radiation released during an explosion is also very dangerous. Although it does not act for long, it manages to infect everything around, since its penetrating power is incredibly high.

The shock wave during an atomic explosion acts similarly to the same wave during conventional explosions, only its power and radius of destruction are much greater. In a few seconds, it causes irreparable damage not only to people, but also to equipment, buildings and the surrounding environment.

Penetrating radiation provokes the development of radiation sickness, and the electromagnetic pulse poses a danger only to equipment. The combination of all these factors, plus the power of the explosion, makes the atomic bomb the most dangerous weapon in the world.

The world's first nuclear weapons tests

The first country to develop and test nuclear weapons was the United States of America. It was the US government that allocated huge financial subsidies for the development of new promising weapons. By the end of 1941, many outstanding scientists in the field of atomic development were invited to the United States, who by 1945 were able to present a prototype atomic bomb suitable for testing.

The world's first tests of an atomic bomb equipped with an explosive device were carried out in the desert in New Mexico. The bomb, called "Gadget", was detonated on July 16, 1945. The test result was positive, although the military demanded that the nuclear bomb be tested in real combat conditions.

Seeing that there was only one step left before the victory of the Nazi coalition, and such an opportunity might not arise again, the Pentagon decided to launch a nuclear strike on the last ally of Hitler Germany - Japan. In addition, the use of a nuclear bomb was supposed to solve several problems at once:

  • To avoid the unnecessary bloodshed that would inevitably occur if US troops set foot on Imperial Japanese soil;
  • With one blow, bring the unyielding Japanese to their knees, forcing them to accept terms favorable to the United States;
  • Show the USSR (as a possible rival in the future) that the US Army has a unique weapon capable of wiping out any city from the face of the earth;
  • And, of course, to see in practice what nuclear weapons are capable of in real combat conditions.

On August 6, 1945, the world's first atomic bomb, which was used in military operations, was dropped on the Japanese city of Hiroshima. This bomb was called "Baby" because it weighed 4 tons. The dropping of the bomb was carefully planned, and it hit exactly where it was planned. Those houses that were not destroyed by the blast wave burned down, as stoves that fell in the houses sparked fires, and the entire city was engulfed in flames.

The bright flash was followed by a heat wave that burned all life within a radius of 4 kilometers, and the subsequent shock wave destroyed most of the buildings.

Those who suffered heatstroke within a radius of 800 meters were burned alive. The blast wave tore off the burnt skin of many. A couple of minutes later a strange black rain began to fall, consisting of steam and ash. Those caught in the black rain suffered incurable burns to their skin.

Those few who were lucky enough to survive suffered from radiation sickness, which at that time was not only unstudied, but also completely unknown. People began to develop fever, vomiting, nausea and attacks of weakness.

On August 9, 1945, the second American bomb, called “Fat Man,” was dropped on the city of Nagasaki. This bomb had approximately the same power as the first, and the consequences of its explosion were just as destructive, although half as many people died.

The two atomic bombs dropped on Japanese cities were the first and only cases in the world of the use of atomic weapons. More than 300,000 people died in the first days after the bombing. About 150 thousand more died from radiation sickness.

After the nuclear bombing of Japanese cities, Stalin received a real shock. It became clear to him that the issue of developing nuclear weapons in Soviet Russia was a matter of security for the entire country. Already on August 20, 1945, a special committee on atomic energy issues began to work, which was urgently created by I. Stalin.

Although research in nuclear physics was carried out by a group of enthusiasts back in Tsarist Russia, it was not given due attention during Soviet times. In 1938, all research in this area was completely stopped, and many nuclear scientists were repressed as enemies of the people. After nuclear explosions in Japan, the Soviet government abruptly began to restore the nuclear industry in the country.

There is evidence that the development of nuclear weapons was carried out in Nazi Germany, and it was German scientists who modified the “raw” American atomic bomb, so the US government removed from Germany all nuclear specialists and all documents related to the development of nuclear weapons.

The Soviet intelligence school, which during the war was able to bypass all foreign intelligence services, transferred secret documents related to the development of nuclear weapons to the USSR back in 1943. At the same time, Soviet agents were infiltrated into all major American nuclear research centers.

As a result of all these measures, already in 1946, technical specifications for the production of two Soviet-made nuclear bombs were ready:

  • RDS-1 (with plutonium charge);
  • RDS-2 (with two parts of uranium charge).

The abbreviation “RDS” stood for “Russia does it itself,” which was almost completely true.

The news that the USSR was ready to release its nuclear weapons forced the US government to take drastic measures. In 1949, the Trojan plan was developed, according to which it was planned to drop atomic bombs on 70 of the largest cities of the USSR. Only fears of a retaliatory strike prevented this plan from coming true.

This alarming information coming from Soviet intelligence officers forced scientists to work in emergency mode. Already in August 1949, tests of the first atomic bomb produced in the USSR took place. When the United States learned about these tests, the Trojan plan was postponed indefinitely. The era of confrontation between two superpowers began, known in history as the Cold War.

The most powerful nuclear bomb in the world, known as the Tsar Bomba, belongs specifically to the Cold War period. USSR scientists created the most powerful bomb in human history. Its power was 60 megatons, although it was planned to create a bomb with a power of 100 kilotons. This bomb was tested in October 1961. The diameter of the fireball during the explosion was 10 kilometers, and the blast wave circled the globe three times. It was this test that forced most countries of the world to sign an agreement to stop nuclear testing not only in the earth’s atmosphere, but even in space.

Although atomic weapons are an excellent means of intimidating aggressive countries, on the other hand they are capable of nipping out any military conflicts in the bud, since an atomic explosion can destroy all parties to the conflict.

An atomic bomb is a projectile designed to produce a high-power explosion as a result of a very rapid release of nuclear (atomic) energy.

The principle of operation of atomic bombs

The nuclear charge is divided into several parts to critical sizes so that in each of them a self-developing uncontrolled chain reaction of fission of atoms of the fissile substance cannot begin. Such a reaction will occur only when all parts of the charge are quickly connected into one whole. The completeness of the reaction and, ultimately, the power of the explosion greatly depends on the speed of convergence of the individual parts. To impart high speed to parts of the charge, an explosion of a conventional explosive can be used. If parts of a nuclear charge are placed in radial directions at a certain distance from the center, and TNT charges are placed on the outside, then it is possible to carry out an explosion of conventional charges directed towards the center of the nuclear charge. All parts of the nuclear charge will not only combine into a single whole with enormous speed, but will also find themselves for some time compressed on all sides by the enormous pressure of the explosion products and will not be able to separate immediately as soon as a nuclear chain reaction begins in the charge. As a result of this, significantly greater fission will occur than without such compression, and, consequently, the power of the explosion will increase. A neutron reflector also contributes to an increase in the explosion power for the same amount of fissile material (the most effective reflectors are beryllium< Be >, graphite, heavy water< H3O >). The first fission, which would start a chain reaction, requires at least one neutron. It is impossible to count on the timely start of a chain reaction under the influence of neutrons appearing during the spontaneous fission of nuclei, because it occurs relatively rarely: for U-235 - 1 decay per hour per 1 g. substances. There are also very few neutrons existing in free form in the atmosphere: through S = 1 cm/sq. On average, about 6 neutrons fly by per second. For this reason, an artificial source of neutrons is used in a nuclear charge - a kind of nuclear detonator capsule. It also ensures that many fissions begin simultaneously, so the reaction proceeds in the form of a nuclear explosion.

Detonation options (Gun and implosion schemes)

There are two main schemes for detonating a fissile charge: cannon, otherwise called ballistic, and implosive.

The "cannon design" was used in some first generation nuclear weapons. The essence of the cannon circuit is to shoot a charge of gunpowder from one block of fissile material of subcritical mass (“bullet”) into another stationary one (“target”). The blocks are designed so that when connected, their total mass becomes supercritical.

This detonation method is possible only in uranium ammunition, since plutonium has a two orders of magnitude higher neutron background, which sharply increases the likelihood of premature development of a chain reaction before the blocks are connected. This leads to an incomplete release of energy (the so-called “fizzy”, English). To implement the cannon circuit in plutonium ammunition, it is necessary to increase the speed of connection of the charge parts to a technically unattainable level. In addition, uranium withstands mechanical overloads better than plutonium.

Implosive scheme. This detonation scheme involves achieving a supercritical state by compressing the fissile material with a focused shock wave created by the explosion of a chemical explosive. To focus the shock wave, so-called explosive lenses are used, and the detonation is carried out simultaneously at many points with precision accuracy. The creation of such a system for the placement of explosives and detonation was at one time one of the most difficult tasks. The formation of a converging shock wave was ensured by the use of explosive lenses from “fast” and “slow” explosives - TATV (Triaminotrinitrobenzene) and baratol (a mixture of trinitrotoluene with barium nitrate), and some additives)

1. ATOMIC BOMB: COMPOSITION, COMBAT CHARACTERISTICS AND PURPOSE OF CREATION

Before you begin studying the structure of an atomic bomb, you need to understand the terminology on this problem. So, in scientific circles, there are special terms that reflect the characteristics of atomic weapons. Among them, we especially note the following:

Atomic bomb is the original name of an aircraft nuclear bomb, the action of which is based on an explosive chain nuclear fission reaction. With the advent of the so-called hydrogen bomb, based on the thermonuclear fusion reaction, a common term for them was established - nuclear bomb.

A nuclear bomb is an aircraft bomb with a nuclear charge that has great destructive power. The first two nuclear bombs, with a TNT equivalent of about 20 kt each, were dropped by American aircraft on the Japanese cities of Hiroshima and Nagasaki, respectively, on August 6 and 9, 1945, and caused enormous casualties and destruction. Modern nuclear bombs have a TNT equivalent of tens to millions of tons.

Nuclear or atomic weapons are explosive weapons based on the use of nuclear energy released during a nuclear chain reaction of the fission of heavy nuclei or a thermonuclear fusion reaction of light nuclei.

Refers to weapons of mass destruction (WMD) along with biological and chemical ones.

Nuclear weapons are a set of nuclear weapons, means of delivering them to the target and control means. Refers to weapons of mass destruction; has enormous destructive power. For the above reason, the USA and the USSR invested huge amounts of money in the development of nuclear weapons. Based on the power of charges and range, nuclear weapons are divided into tactical, operational-tactical and strategic. The use of nuclear weapons in war is disastrous for all humanity.

A nuclear explosion is a process of instantaneous release of a large amount of intranuclear energy in a limited volume.

The action of atomic weapons is based on the fission reaction of heavy nuclei (uranium-235, plutonium-239 and, in some cases, uranium-233).

Uranium-235 is used in nuclear weapons because, unlike the most common isotope uranium-238, a self-sustaining nuclear chain reaction is possible in it.

Plutonium-239 is also called "weapon-grade plutonium" because it is intended for the creation of nuclear weapons and the content of the 239Pu isotope must be at least 93.5%.

To reflect the structure and composition of an atomic bomb, as a prototype we will analyze the plutonium bomb “Fat Man” (Fig. 1) dropped on August 9, 1945 on the Japanese city of Nagasaki.

atomic nuclear bomb explosion

Figure 1 - Atomic bomb "Fat Man"

The layout of this bomb (typical of plutonium single-phase munitions) is approximately as follows:

The neutron initiator is a ball with a diameter of about 2 cm made of beryllium, coated with a thin layer of yttrium-polonium alloy or metal polonium-210 - the primary source of neutrons for sharply reducing the critical mass and accelerating the onset of the reaction. It is triggered at the moment the combat core is transferred to a supercritical state (during compression, polonium and beryllium are mixed with the release of a large number of neutrons). Currently, in addition to this type of initiation, thermonuclear initiation (TI) is more common. Thermonuclear initiator (TI). It is located in the center of the charge (similar to NI) where a small amount of thermonuclear material is located, the center of which is heated by a converging shock wave and during the thermonuclear reaction, against the background of the resulting temperatures, a significant number of neutrons are produced, sufficient for the neutron initiation of a chain reaction (Fig. 2).

Plutonium. The purest isotope of plutonium-239 is used, although to increase the stability of physical properties (density) and improve charge compressibility, plutonium is doped with a small amount of gallium.

A shell (usually made of uranium) that serves as a neutron reflector.

Aluminum compression shell. Provides greater uniformity of compression by the shock wave, while at the same time protecting the internal parts of the charge from direct contact with the explosive and the hot products of its decomposition.

An explosive with a complex detonation system that ensures synchronized detonation of the entire explosive. Synchronicity is necessary to create a strictly spherical compressive (directed inside the ball) shock wave. A non-spherical wave leads to the ejection of ball material through inhomogeneity and the impossibility of creating a critical mass. The creation of such a system for the placement of explosives and detonation was at one time one of the most difficult tasks. A combined scheme (lens system) of “fast” and “slow” explosives is used.

The body is made of stamped duralumin elements - two spherical covers and a belt, connected by bolts.

Figure 2 - Operating principle of a plutonium bomb

The center of a nuclear explosion is the point at which the flash occurs or the center of the fireball is located, and the epicenter is the projection of the center of the explosion onto the earth or water surface.

Nuclear weapons are the most powerful and dangerous type of weapon of mass destruction, threatening all of humanity with unprecedented destruction and the extermination of millions of people.

If an explosion occurs on the ground or quite close to its surface, then part of the explosion energy is transferred to the Earth's surface in the form of seismic vibrations. A phenomenon occurs that resembles an earthquake in its characteristics. As a result of such an explosion, seismic waves are formed, which propagate through the thickness of the earth over very long distances. The destructive effect of the wave is limited to a radius of several hundred meters.

As a result of the extremely high temperature of the explosion, a bright flash of light is created, the intensity of which is hundreds of times greater than the intensity of sunlight falling on the Earth. A flash produces a huge amount of heat and light. Light radiation causes spontaneous combustion of flammable materials and skin burns in people within a radius of many kilometers.

A nuclear explosion produces radiation. It lasts about a minute and has such a high penetrating power that powerful and reliable shelters are required to protect against it at close ranges.

A nuclear explosion can instantly destroy or disable unprotected people, openly standing equipment, structures and various material assets. The main damaging factors of a nuclear explosion (NFE) are:

shock wave;

light radiation;

penetrating radiation;

radioactive contamination of the area;

electromagnetic pulse (EMP).

During a nuclear explosion in the atmosphere, the distribution of released energy between PFYVs is approximately the following: about 50% for the shock wave, 35% for light radiation, 10% for radioactive contamination and 5% for penetrating radiation and EMR.

Radioactive contamination of people, military equipment, terrain and various objects during a nuclear explosion is caused by fission fragments of the charge substance (Pu-239, U-235) and the unreacted part of the charge falling out of the explosion cloud, as well as radioactive isotopes formed in the soil and other materials under the influence of neutrons - induced activity. Over time, the activity of fission fragments decreases rapidly, especially in the first hours after the explosion. For example, the total activity of fission fragments in the explosion of a nuclear weapon with a power of 20 kT after one day will be several thousand times less than one minute after the explosion.

Analysis of the effectiveness of the integrated application of noise protection measures to increase the stability of the functioning of communications equipment in conditions of enemy radio countermeasures

Taking into account the level of technical equipment, an analysis of electronic warfare forces and means will be carried out for the reconnaissance and electronic warfare battalion (R and EW) of the mechanized division (md) of the Army. The reconnaissance and electronic warfare battalion of the US Department of Defense includes)