Biographies Characteristics Analysis

Sin is an even or odd function. Even and odd functions

Even function.

A function whose sign does not change when the sign changes is called even. x.

x equality holds f(–x) = f(x). Sign x does not affect the sign y.

The graph of an even function is symmetrical about the coordinate axis (Fig. 1).

Examples of an even function:

y=cos x

y = x 2

y = –x 2

y = x 4

y = x 6

y = x 2 + x

Explanation:
Let's take the function y = x 2 or y = –x 2 .
For any value x the function is positive. Sign x does not affect the sign y. The graph is symmetrical about the coordinate axis. This is an even function.

Odd function.

A function whose sign changes when the sign changes is called odd. x.

In other words, for any value x equality holds f(–x) = –f(x).

The graph of an odd function is symmetrical with respect to the origin (Fig. 2).

Examples of odd function:

y= sin x

y = x 3

y = –x 3

Explanation:

Let's take the function y = – x 3 .
All meanings at it will have a minus sign. That is a sign x influences the sign y. If the independent variable is a positive number, then the function is positive, if the independent variable is a negative number, then the function is negative: f(–x) = –f(x).
The graph of the function is symmetrical about the origin. This is an odd function.

Properties of even and odd functions:

NOTE:

Not all functions are even or odd. There are functions that do not obey such gradation. For example, the root function at = √X does not apply to either even or odd functions (Fig. 3). When listing the properties of such functions, an appropriate description should be given: neither even nor odd.

Periodic functions.

As you know, periodicity is the repetition of certain processes at a certain interval. Functions that describe these processes are called periodic functions. That is, these are functions in whose graphs there are elements that repeat at certain numerical intervals.

How to insert mathematical formulas on a website?

If you ever need to add one or two mathematical formulas to a web page, then the easiest way to do this is as described in the article: mathematical formulas are easily inserted onto the site in the form of pictures that are automatically generated by Wolfram Alpha. In addition to simplicity, this universal method will help improve the visibility of the site in search engines. It has been working for a long time (and, I think, will work forever), but is already morally outdated.

If you regularly use mathematical formulas on your site, then I recommend that you use MathJax - a special JavaScript library that displays mathematical notation in web browsers using MathML, LaTeX or ASCIIMathML markup.

There are two ways to start using MathJax: (1) using a simple code, you can quickly connect a MathJax script to your website, which will be automatically loaded from a remote server at the right time (list of servers); (2) download the MathJax script from a remote server to your server and connect it to all pages of your site. The second method - more complex and time-consuming - will speed up the loading of your site's pages, and if the parent MathJax server becomes temporarily unavailable for some reason, this will not affect your own site in any way. Despite these advantages, I chose the first method as it is simpler, faster and does not require technical skills. Follow my example, and in just 5 minutes you will be able to use all the features of MathJax on your site.

You can connect the MathJax library script from a remote server using two code options taken from the main MathJax website or on the documentation page:

One of these code options needs to be copied and pasted into the code of your web page, preferably between tags and or immediately after the tag. According to the first option, MathJax loads faster and slows down the page less. But the second option automatically monitors and loads the latest versions of MathJax. If you insert the first code, it will need to be updated periodically. If you insert the second code, the pages will load more slowly, but you will not need to constantly monitor MathJax updates.

The easiest way to connect MathJax is in Blogger or WordPress: in the site control panel, add a widget designed to insert third-party JavaScript code, copy the first or second version of the download code presented above into it, and place the widget closer to the beginning of the template (by the way, this is not at all necessary , since the MathJax script is loaded asynchronously). That's all. Now learn the markup syntax of MathML, LaTeX, and ASCIIMathML, and you are ready to insert mathematical formulas into your site's web pages.

Any fractal is constructed according to a certain rule, which is consistently applied an unlimited number of times. Each such time is called an iteration.

The iterative algorithm for constructing a Menger sponge is quite simple: the original cube with side 1 is divided by planes parallel to its faces into 27 equal cubes. One central cube and 6 cubes adjacent to it along the faces are removed from it. The result is a set consisting of the remaining 20 smaller cubes. Doing the same with each of these cubes, we get a set consisting of 400 smaller cubes. Continuing this process endlessly, we get a Menger sponge.

The dependence of a variable y on a variable x, in which each value of x corresponds to a single value of y is called a function. For designation use the notation y=f(x). Each function has a number of basic properties, such as monotonicity, parity, periodicity and others.

Take a closer look at the parity property.

A function y=f(x) is called even if it satisfies the following two conditions:

2. The value of the function at point x, belonging to the domain of definition of the function, must be equal to the value of the function at point -x. That is, for any point x, from the domain of definition of the function the following equality must be satisfied: f(x) = f(-x).

Graph of an even function

If you plot a graph of an even function, it will be symmetrical about the Oy axis.

For example, the function y=x^2 is even. Let's check it out. The domain of definition is the entire numerical axis, which means it is symmetrical about point O.

Let's take an arbitrary x=3. f(x)=3^2=9.

f(-x)=(-3)^2=9. Therefore f(x) = f(-x). Thus, both conditions are met, which means the function is even. Below is a graph of the function y=x^2.

The figure shows that the graph is symmetrical about the Oy axis.

Graph of an odd function

A function y=f(x) is called odd if it satisfies the following two conditions:

1. The domain of definition of a given function must be symmetrical with respect to point O. That is, if some point a belongs to the domain of definition of the function, then the corresponding point -a must also belong to the domain of definition of the given function.

2. For any point x, the following equality must be satisfied from the domain of definition of the function: f(x) = -f(x).

The graph of an odd function is symmetrical with respect to point O - the origin of coordinates. For example, the function y=x^3 is odd. Let's check it out. The domain of definition is the entire numerical axis, which means it is symmetrical about point O.

Let's take an arbitrary x=2. f(x)=2^3=8.

f(-x)=(-2)^3=-8. Therefore f(x) = -f(x). Thus, both conditions are met, which means the function is odd. Below is a graph of the function y=x^3.

The figure clearly shows that the odd function y=x^3 is symmetrical about the origin.

Converting graphs.

Verbal description of the function.

Graphic method.

The graphical method of specifying a function is the most visual and is often used in technology. In mathematical analysis, the graphical method of specifying functions is used as an illustration.

The graph of a function f is the set of all points (x;y) of the coordinate plane, where y=f(x), and x “runs through” the entire domain of definition of this function.

A subset of the coordinate plane is a graph of a function if it has no more than one common point with any straight line parallel to the Oy axis.

Example. Are the figures shown below graphs of functions?

The advantage of a graphic task is its clarity. You can immediately see how the function behaves, where it increases and where it decreases. From the graph you can immediately find out some important characteristics of the function.

In general, analytical and graphical methods of defining a function go hand in hand. Working with the formula helps to build a graph. And the graph often suggests solutions that you wouldn’t even notice in the formula.

Almost any student knows the three ways to define a function that we just looked at.

Let's try to answer the question: "Are there other ways to specify a function?"

There is such a way.

The function can be quite unambiguously specified in words.

For example, the function y=2x can be specified by the following verbal description: each real value of the argument x is associated with its double value. The rule is established, the function is specified.

Moreover, you can verbally specify a function that is extremely difficult, if not impossible, to define using a formula.

For example: each value of the natural argument x is associated with the sum of the digits that make up the value of x. For example, if x=3, then y=3. If x=257, then y=2+5+7=14. And so on. It is problematic to write this down in a formula. But the sign is easy to make.

The method of verbal description is a rather rarely used method. But sometimes it does.

If there is a law of one-to-one correspondence between x and y, then there is a function. What law, in what form it is expressed - a formula, a tablet, a graph, words - does not change the essence of the matter.

Let us consider functions whose domains of definition are symmetrical with respect to the origin, i.e. for anyone X from the domain of definition number (- X) also belongs to the domain of definition. Among such functions, even and odd are distinguished.

Definition. A function f is called even if for any X from its domain of definition

Example. Consider the function

It is even. Let's check it out.



For anyone X equalities are satisfied

Thus, both conditions are met, which means the function is even. Below is a graph of this function.

Definition. A function f is called odd if for any X from its domain of definition

Example. Consider the function

It is odd. Let's check it out.

The domain of definition is the entire numerical axis, which means it is symmetrical about the point (0;0).

For anyone X equalities are satisfied

Thus, both conditions are met, which means the function is odd. Below is a graph of this function.

The graphs shown in the first and third figures are symmetrical about the ordinate axis, and the graphs shown in the second and fourth figures are symmetrical about the origin.

Which of the functions whose graphs are shown in the figures are even and which are odd?

Evenness and oddness of a function are one of its main properties, and parity takes up an impressive part of the school mathematics course. It largely determines the behavior of the function and greatly facilitates the construction of the corresponding graph.

Let's determine the parity of the function. Generally speaking, the function under study is considered even if for opposite values ​​of the independent variable (x) located in its domain of definition, the corresponding values ​​of y (function) turn out to be equal.

Let's give a more strict definition. Consider some function f (x), which is defined in the domain D. It will be even if for any point x located in the domain of definition:

  • -x (opposite point) also lies in this scope,
  • f(-x) = f(x).

From the above definition follows the condition necessary for the domain of definition of such a function, namely, symmetry with respect to the point O, which is the origin of coordinates, since if some point b is contained in the domain of definition of an even function, then the corresponding point b also lies in this domain. From the above, therefore, the conclusion follows: the even function has a form symmetrical with respect to the ordinate axis (Oy).

How to determine the parity of a function in practice?

Let it be specified using the formula h(x)=11^x+11^(-x). Following the algorithm that follows directly from the definition, we first examine its domain of definition. Obviously, it is defined for all values ​​of the argument, that is, the first condition is satisfied.

The next step is to substitute the opposite value (-x) for the argument (x).
We get:
h(-x) = 11^(-x) + 11^x.
Since addition satisfies the commutative (commutative) law, it is obvious that h(-x) = h(x) and the given functional dependence is even.

Let's check the parity of the function h(x)=11^x-11^(-x). Following the same algorithm, we get that h(-x) = 11^(-x) -11^x. Taking out the minus, in the end we have
h(-x)=-(11^x-11^(-x))=- h(x). Therefore, h(x) is odd.

By the way, it should be recalled that there are functions that cannot be classified according to these criteria; they are called neither even nor odd.

Even functions have a number of interesting properties:

  • as a result of adding similar functions, they get an even one;
  • as a result of subtracting such functions, an even one is obtained;
  • even, also even;
  • as a result of multiplying two such functions, an even one is obtained;
  • as a result of multiplying odd and even functions, an odd one is obtained;
  • as a result of dividing odd and even functions, an odd one is obtained;
  • the derivative of such a function is odd;
  • If you square an odd function, you get an even one.

The parity of a function can be used to solve equations.

To solve an equation like g(x) = 0, where the left side of the equation is an even function, it will be quite enough to find its solutions for non-negative values ​​of the variable. The resulting roots of the equation must be combined with the opposite numbers. One of them is subject to verification.

This is also successfully used to solve non-standard problems with a parameter.

For example, is there any value of the parameter a for which the equation 2x^6-x^4-ax^2=1 will have three roots?

If we take into account that the variable enters the equation in even powers, then it is clear that replacing x with - x will not change the given equation. It follows that if a certain number is its root, then the opposite number is also the root. The conclusion is obvious: the roots of an equation that are different from zero are included in the set of its solutions “in pairs”.

It is clear that the number itself is not 0, that is, the number of roots of such an equation can only be even and, naturally, for any value of the parameter it cannot have three roots.

But the number of roots of the equation 2^x+ 2^(-x)=ax^4+2x^2+2 can be odd, and for any value of the parameter. Indeed, it is easy to check that the set of roots of a given equation contains solutions “in pairs”. Let's check if 0 is a root. When we substitute it into the equation, we get 2=2. Thus, in addition to “paired” ones, 0 is also a root, which proves their odd number.