Biographies Characteristics Analysis

Degree with natural indicators and their sum. Let's go back to the example

§ 1 Degree c natural indicator

Let us recall such a well-known operation as the addition of several identical terms. For example, 5 + 5 + 5. The mathematician will replace this notation with a shorter one:

5 ∙ 3. Or 7 + 7 + 7 + 7 + 7 + 7 will be written as 7 ∙ 6

But writing a + a + a + …+ a (where n terms a) will not work at all, but will write a ∙ n. In the same way, a mathematician will not write at length the product of several identical multipliers. The product 2 ∙ 2 ∙ 2 will be written as 23 (2 to the third power). And the product 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 is like 46 (4 to the sixth power). But if necessary, you can replace a short entry with a longer one. For example, 74 (7 to the fourth power) is written as 7∙7∙7∙7. Now let's give a definition.

Under the entry an (where n is natural number) understand the product of n factors, each of which is equal to a.

The entry an itself is called the power of the number a, the number a is the base of the power, and the number n is the exponent.

The entry an can be read as “a to the nth power” or as “a to the enth power.” The entries a2 (a to the second power) can be read as “a squared,” and the entry a3 (a to the third power) can be read as “a cubed.” Another a special case- this is a degree with an index of 1. The following should be noted here:

The power of a number a with exponent 1 is called the number itself. Those. a1 = a.

Any power of 1 is equal to 1.

Now let's look at some powers with a base of 10.

Have you noticed that powers of ten are one followed by so many zeros, what is the exponent? In general, 10n = 100..0 (where there are n zeros in the entry).

§ 2 Examples on the topic of the lesson

Example 1. Write the product (-2)∙(-2)∙(-2)∙(-2) as a power.

Since there are 4 identical factors here, each of which is equal to -2, we have the entry (-2)4.

Example 2. Calculate 1.52.

Exponent 2 says that we need to find the product of two identical factors, each of which is equal to 1.5. Those. calculate the product 1.5∙1.5 = 2.25.

Example 3. Calculate the product 102 ∙ (-1)3.

First we calculate 102 = 100. Then we calculate (-1)3 = -1. Finally, let's multiply 100 and -1. We get -100.

List of used literature:

  1. Mordkovich A.G., Algebra 7th grade in 2 parts, Part 1, Textbook for educational institutions/A.G. Mordkovich. – 10th ed., revised – Moscow, “Mnemosyne”, 2007
  2. Mordkovich A.G., Algebra 7th grade in 2 parts, Part 2, Problem book for general education institutions/[A.G. Mordkovich and others]; edited by A.G. Mordkovich - 10th edition, revised - Moscow, “Mnemosyne”, 2007
  3. HER. Tulchinskaya, Algebra 7th grade. Blitz survey: a manual for students of general education institutions, 4th edition, revised and expanded, Moscow, Mnemosyne, 2008
  4. Alexandrova L.A., Algebra 7th grade. Thematic testing work V new form for students of general education institutions, edited by A.G. Mordkovich, Moscow, “Mnemosyne”, 2011
  5. Alexandrova L.A. Algebra 7th grade. Independent work for students of general education institutions, edited by A.G. Mordkovich - 6th edition, stereotypical, Moscow, “Mnemosyne”, 2010

In this article we will figure out what it is degree of. Here we will give definitions of the power of a number, while we will consider in detail all possible exponents, starting with the natural exponent and ending with the irrational one. In the material you will find a lot of examples of degrees, covering all the subtleties that arise.

Page navigation.

Power with natural exponent, square of a number, cube of a number

Let's start with . Looking ahead, let's say that the definition of the power of a number a with natural exponent n is given for a, which we will call degree basis, and n, which we will call exponent. We also note that a degree with a natural exponent is determined through a product, so to understand the material below you need to have an understanding of multiplying numbers.

Definition.

Power of a number with natural exponent n is an expression of the form a n, the value of which is equal to the product of n factors, each of which is equal to a, that is, .
In particular, the power of a number a with exponent 1 is the number a itself, that is, a 1 =a.

It’s worth mentioning right away about the rules for reading degrees. Universal method reading the entry a n is: “a to the power of n”. In some cases, the following options are also acceptable: “a to the nth power” and “nth power of a”. For example, let's take the power 8 12, this is “eight to the power of twelve”, or “eight to the twelfth power”, or “twelfth power of eight”.

The second power of a number, as well as the third power of a number, have their own names. The second power of a number is called square the number, for example, 7 2 is read as “seven squared” or “the square of the number seven.” The third power of a number is called cubed numbers, for example, 5 3 can be read as “five cubed” or you can say “cube of the number 5”.

It's time to bring examples of degrees with natural exponents. Let's start with the degree 5 7, here 5 is the base of the degree, and 7 is the exponent. Let's give another example: 4.32 is the base, and the natural number 9 is the exponent (4.32) 9 .

Please note that in last example The base of the degree 4.32 is written in parentheses: to avoid discrepancies, we will put in brackets all bases of the degree that are different from natural numbers. As an example, we give the following degrees with natural exponents , their bases are not natural numbers, so they are written in parentheses. Well, for complete clarity, at this point we will show the difference contained in records of the form (−2) 3 and −2 3. The expression (−2) 3 is a power of −2 with a natural exponent of 3, and the expression −2 3 (it can be written as −(2 3) ) corresponds to the number, the value of the power 2 3 .

Note that there is a notation for the power of a number a with an exponent n of the form a^n. Moreover, if n is a multi-valued natural number, then the exponent is taken in brackets. For example, 4^9 is another notation for the power of 4 9 . And here are some more examples of writing degrees using the symbol “^”: 14^(21) , (−2,1)^(155) . In what follows, we will primarily use degree notation of the form a n .

One of the problems inverse to raising to a power with a natural exponent is the problem of finding the base of the power by known value degree and known indicator. This task leads to .

It is known that the set of rational numbers consists of integers and fractions, and each a fractional number can be represented as positive or negative common fraction. We defined the degree with an integer exponent in the previous paragraph, therefore, to complete the definition of the degree with rational indicator, we need to give meaning to the power of the number a with fractional indicator m/n , where m is an integer and n is a natural number. Let's do it.

Let's consider a degree with a fractional exponent of the form . For the power-to-power property to remain valid, the equality must hold . If we take into account the resulting equality and how we determined , then it is logical to accept it provided that for given m, n and a the expression makes sense.

It is easy to check that for all properties of a degree with an integer exponent are valid (this was done in the section properties of a degree with a rational exponent).

The above reasoning allows us to make the following conclusion: if given m, n and a the expression makes sense, then the power of a with a fractional exponent m/n is called the nth root of a to the power of m.

This statement brings us close to the definition of a degree with a fractional exponent. All that remains is to describe at what m, n and a the expression makes sense. Depending on the restrictions placed on m, n and a, there are two main approaches.

    The easiest way is to impose a constraint on a by taking a≥0 for positive m and a>0 for negative m (since for m≤0 the degree 0 of m is not defined). Then we get the following definition of a degree with a fractional exponent.

    Definition.

    Power of a positive number a with fractional exponent m/n, where m is an integer and n is a natural number, is called the nth root of the number a to the power of m, that is, .

    The fractional power of zero is also determined with the only caveat that the indicator must be positive.

    Definition.

    Power of zero with fractional positive exponent m/n, where m is a positive integer and n is a natural number, is defined as .
    When the degree is not determined, that is, the degree of the number zero with a fraction negative indicator doesn't make sense.

    It should be noted that with this definition of a degree with a fractional exponent, there is one caveat: for some negative a and some m and n, the expression makes sense, and we discarded these cases by introducing the condition a≥0. For example, the entries make sense or , and the definition given above forces us to say that powers with a fractional exponent of the form do not make sense, since the base should not be negative.

    Another approach to determining a degree with a fractional exponent m/n is to separately consider even and odd exponents of the root. This approach requires an additional condition: the power of the number a, the exponent of which is , is considered to be the power of the number a, the exponent of which is the corresponding irreducible fraction (we will explain the importance of this condition below). That is, if m/n is an irreducible fraction, then for any natural number k the degree is first replaced by .

    For even n and positive m, the expression makes sense for any non-negative a (an even root of a negative number does not make sense); for negative m, the number a must still be different from zero (otherwise there will be division by zero). And for odd n and positive m, the number a can be any (the root of an odd degree is defined for any real number), and for negative m, the number a must be non-zero (so that there is no division by zero).

    The above reasoning leads us to this definition of a degree with a fractional exponent.

    Definition.

    Let m/n be an irreducible fraction, m an integer, and n a natural number. For any reducible fraction, the degree is replaced by . The power of a number with an irreducible fractional exponent m/n is for

    Let us explain why a degree with a reducible fractional exponent is first replaced by a degree with an irreducible exponent. If we simply defined the degree as , and did not make a reservation about the irreducibility of the fraction m/n, then we would be faced with situations similar to the following: since 6/10 = 3/5, then the equality must hold , But , A .

First level

Degree and its properties. The Comprehensive Guide (2019)

Why are degrees needed? Where will you need them? Why should you take the time to study them?

To learn everything about degrees, what they are for, how to use your knowledge in Everyday life read this article.

And, of course, knowledge of degrees will bring you closer to success passing the OGE or the Unified State Exam and admission to the university of your dreams.

Let's go... (Let's go!)

Important note! If you see gobbledygook instead of formulas, clear your cache. To do this, press CTRL+F5 (on Windows) or Cmd+R (on Mac).

FIRST LEVEL

Raising to a power is the same mathematical operation like addition, subtraction, multiplication or division.

Now I'll explain everything human language very simple examples. Be careful. The examples are elementary, but explain important things.

Let's start with addition.

There is nothing to explain here. You already know everything: there are eight of us. Everyone has two bottles of cola. How much cola is there? That's right - 16 bottles.

Now multiplication.

The same example with cola can be written differently: . Mathematicians are cunning and lazy people. They first notice some patterns, and then figure out a way to “count” them faster. In our case, they noticed that each of the eight people had the same number of cola bottles and came up with a technique called multiplication. Agree, it is considered easier and faster than.


So, to count faster, easier and without errors, you just need to remember multiplication table. Of course, you can do everything slower, more difficult and with mistakes! But…

Here is the multiplication table. Repeat.

And another, more beautiful one:

What other clever counting tricks have lazy mathematicians come up with? Right - raising a number to a power.

Raising a number to a power

If you need to multiply a number by itself five times, then mathematicians say that you need to raise that number to the fifth power. For example, . Mathematicians remember that two to the fifth power is... And they solve such problems in their heads - faster, easier and without mistakes.

All you need to do is remember what is highlighted in color in the table of powers of numbers. Believe me, this will make your life a lot easier.

By the way, why is it called the second degree? square numbers, and the third - cube? What does it mean? Very good question. Now you will have both squares and cubes.

Real life example #1

Let's start with the square or the second power of the number.

Imagine a square pool measuring one meter by one meter. The pool is at your dacha. It's hot and I really want to swim. But... the pool has no bottom! You need to cover the bottom of the pool with tiles. How many tiles do you need? In order to determine this, you need to know the bottom area of ​​the pool.

You can simply calculate by pointing your finger that the bottom of the pool consists of meter by meter cubes. If you have tiles one meter by one meter, you will need pieces. It's easy... But where have you seen such tiles? The tile will most likely be cm by cm. And then you will be tortured by “counting with your finger.” Then you have to multiply. So, on one side of the bottom of the pool we will fit tiles (pieces) and on the other, too, tiles. Multiply by and you get tiles ().

Did you notice that to determine the area of ​​the pool bottom we multiplied the same number by itself? What does it mean? Since we are multiplying the same number, we can use the “exponentiation” technique. (Of course, when you only have two numbers, you still need to multiply them or raise them to a power. But if you have a lot of them, then raising them to a power is much easier and there are also fewer errors in calculations. For the Unified State Exam, this is very important).
So, thirty to the second power will be (). Or we can say that thirty squared will be. In other words, the second power of a number can always be represented as a square. And vice versa, if you see a square, it is ALWAYS the second power of some number. A square is an image of the second power of a number.

Real life example #2

Here's a task for you: count how many squares there are on the chessboard using the square of the number... On one side of the cells and on the other too. To calculate their number, you need to multiply eight by eight or... if you notice that a chessboard is a square with a side, then you can square eight. You will get cells. () So?

Real life example #3

Now the cube or the third power of a number. The same pool. But now you need to find out how much water will have to be poured into this pool. You need to calculate the volume. (Volumes and liquids, by the way, are measured in cubic meters. Unexpected, right?) Draw a pool: a bottom measuring a meter and a depth of a meter and try to count how many cubes measuring a meter by a meter will fit into your pool.

Just point your finger and count! One, two, three, four...twenty-two, twenty-three...How many did you get? Not lost? Is it difficult to count with your finger? So that! Take an example from mathematicians. They are lazy, so they noticed that in order to calculate the volume of the pool, you need to multiply its length, width and height by each other. In our case, the volume of the pool will be equal to cubes... Easier, right?

Now imagine how lazy and cunning mathematicians are if they simplified this too. We reduced everything to one action. They noticed that the length, width and height are equal and that the same number is multiplied by itself... What does this mean? This means you can take advantage of the degree. So, what you once counted with your finger, they do in one action: three cubed is equal. It is written like this: .

All that remains is remember the table of degrees. Unless, of course, you are as lazy and cunning as mathematicians. If you like to work hard and make mistakes, you can continue to count with your finger.

Well, to finally convince you that degrees were invented by quitters and cunning people to solve their own life problems, and not to create problems for you, here are a couple more examples from life.

Real life example #4

You have a million rubles. At the beginning of each year, for every million you make, you make another million. That is, every million you have doubles at the beginning of each year. How much money will you have in years? If you are sitting now and “counting with your finger,” then you are a very hardworking person and... stupid. But most likely you will give an answer in a couple of seconds, because you are smart! So, in the first year - two multiplied by two... in the second year - what happened, by two more, in the third year... Stop! You noticed that the number is multiplied by itself times. So two to the fifth power is a million! Now imagine that you have a competition and the one who can count the fastest will get these millions... It’s worth remembering the powers of numbers, don’t you think?

Real life example #5

You have a million. At the beginning of each year, you earn two more for every million. Great isn't it? Every million is tripled. How much money will you have in a year? Let's count. The first year - multiply by, then the result by another... It’s already boring, because you already understood everything: three is multiplied by itself times. So to the fourth power it is equal to a million. You just have to remember that three to the fourth power is or.

Now you know that by raising a number to a power you will make your life a lot easier. Let's take a look further at what you can do with degrees and what you need to know about them.

Terms and concepts... so as not to get confused

So, first, let's define the concepts. What do you think, what is an exponent? It's very simple - it's the number that is "at the top" of the power of the number. Not scientific, but clear and easy to remember...

Well, at the same time, what such a degree basis? Even simpler - this is the number that is located below, at the base.

Here's a drawing for good measure.

Well in general view, in order to generalize and better remember... A degree with a base “ ” and an exponent “ ” is read as “to the degree” and is written as follows:

Power of a number with natural exponent

You probably already guessed: because the exponent is a natural number. Yes, but what is it natural number? Elementary! Natural numbers are those numbers that are used in counting when listing objects: one, two, three... When we count objects, we do not say: “minus five,” “minus six,” “minus seven.” We also do not say: “one third”, or “zero point five”. These are not natural numbers. What numbers do you think these are?

Numbers like “minus five”, “minus six”, “minus seven” refer to whole numbers. In general, integers include all natural numbers, numbers opposite to natural numbers (that is, taken with a minus sign), and number. Zero is easy to understand - it is when there is nothing. What do negative (“minus”) numbers mean? But they were invented primarily to indicate debts: if you have a balance on your phone in rubles, this means that you owe the operator rubles.

All fractions are rational numbers. How did they arise, do you think? Very simple. Several thousand years ago, our ancestors discovered that they lacked natural numbers to measure length, weight, area, etc. And they came up with rational numbers... Interesting, isn't it?

Is there some more irrational numbers. What are these numbers? In short, endless decimal. For example, if you divide the circumference of a circle by its diameter, you get an irrational number.

Summary:

Let us define the concept of a degree whose exponent is a natural number (i.e., integer and positive).

  1. Any number to the first power is equal to itself:
  2. To square a number means to multiply it by itself:
  3. To cube a number means to multiply it by itself three times:

Definition. Raising a number to a natural power means multiplying the number by itself times:
.

Properties of degrees

Where did these properties come from? I will show you now.

Let's see: what is it And ?

A-priory:

How many multipliers are there in total?

It’s very simple: we added multipliers to the factors, and the result is multipliers.

But by definition, this is a power of a number with an exponent, that is: , which is what needed to be proven.

Example: Simplify the expression.

Solution:

Example: Simplify the expression.

Solution: It is important to note that in our rule Necessarily there must be the same reasons!
Therefore, we combine the powers with the base, but it remains a separate factor:

only for the product of powers!

Under no circumstances can you write that.

2. that's it th power of a number

Just as with the previous property, let us turn to the definition of degree:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total:

Let's remember the abbreviated multiplication formulas: how many times did we want to write?

But this is not true, after all.

Power with negative base

Up to this point, we have only discussed what the exponent should be.

But what should be the basis?

In powers of natural indicator the basis may be any number. Indeed, we can multiply any numbers by each other, be they positive, negative, or even.

Let's think about which signs ("" or "") will have degrees of positive and negative numbers?

For example, is the number positive or negative? A? ? The first one is clear: no matter how much positive numbers We didn’t multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by, it works.

Determine for yourself what sign the following expressions will have:

1) 2) 3)
4) 5) 6)

Did you manage?

Here are the answers: In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive.

Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple!

6 examples to practice

Analysis of the solution 6 examples

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares! We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, the rule could apply.

But how to do that? It turns out that it’s very easy: the even degree of the denominator helps us here.

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses.

But it's important to remember: all signs change at the same time!

Let's go back to the example:

And again the formula:

Whole we call the natural numbers, their opposites (that is, taken with the " " sign) and the number.

positive integer, and it is no different from natural, then everything looks exactly like in the previous section.

Now let's look at new cases. Let's start with an indicator equal to.

Any number to the zero power is equal to one:

As always, let us ask ourselves: why is this so?

Let's consider some degree with a base. Take, for example, and multiply by:

So, we multiplied the number by, and we got the same thing as it was - . What number should you multiply by so that nothing changes? That's right, on. Means.

We can do the same with an arbitrary number:

Let's repeat the rule:

Any number to the zero power is equal to one.

But there are exceptions to many rules. And here it is also there - this is a number (as a base).

On the one hand, it must be equal to any degree - no matter how much you multiply zero by itself, you will still get zero, this is clear. But on the other hand, like any number to the zero power, it must be equal. So how much of this is true? The mathematicians decided not to get involved and refused to raise zero to the zero power. That is, now we cannot not only divide by zero, but also raise it to the zero power.

Let's move on. In addition to natural numbers and numbers, integers also include negative numbers. To understand what a negative degree is, let's do as in last time: multiply some normal number by the same number to a negative power:

From here it’s easy to express what you’re looking for:

Now let’s extend the resulting rule to an arbitrary degree:

So, let's formulate a rule:

A number to a negative power is the reciprocal of the same number to positive degree. But at the same time The base cannot be null:(because you can’t divide by).

Let's summarize:

I. The expression is not defined in the case. If, then.

II. Any number to the zero power is equal to one: .

III. A number not equal to zero to a negative power is the inverse of the same number to a positive power: .

Tasks for independent solution:

Well, as usual, examples for independent solutions:

Analysis of problems for independent solution:

I know, I know, the numbers are scary, but on the Unified State Exam you have to be prepared for anything! Solve these examples or analyze their solutions if you couldn’t solve them and you will learn to cope with them easily in the exam!

Let's continue to expand the range of numbers “suitable” as an exponent.

Now let's consider rational numbers. What numbers are called rational?

Answer: everything that can be represented as a fraction, where and are integers, and.

To understand what it is "fractional degree", consider the fraction:

Let's raise both sides of the equation to a power:

Now let's remember the rule about "degree to degree":

What number must be raised to a power to get?

This formulation is the definition of the root of the th degree.

Let me remind you: the root of the th power of a number () is a number that, when raised to a power, is equal to.

That is, the root of the th power is the inverse operation of raising to a power: .

It turns out that. Obviously this special case can be expanded: .

Now we add the numerator: what is it? The answer is easy to obtain using the power-to-power rule:

But can the base be any number? After all, the root cannot be extracted from all numbers.

None!

Remember the rule: any number raised to even degree- the number is positive. That is, it is impossible to extract even roots from negative numbers!

This means that such numbers cannot be raised to fractional power with an even denominator, that is, the expression does not make sense.

What about the expression?

But here a problem arises.

The number can be represented in the form of other, reducible fractions, for example, or.

And it turns out that it exists, but does not exist, but these are just two different records of the same number.

Or another example: once, then you can write it down. But if we write down the indicator differently, we will again get into trouble: (that is, we got a completely different result!).

To avoid such paradoxes, we consider only positive base exponent with fractional exponent.

So if:

  • - natural number;
  • - integer;

Examples:

Rational exponents are very useful for transforming expressions with roots, for example:

5 examples to practice

Analysis of 5 examples for training

Well, now comes the hardest part. Now we'll figure it out degree with irrational exponent.

All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception

After all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational ones).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms.

For example, a degree with a natural exponent is a number multiplied by itself several times;

...number to the zeroth power- this is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number;

...negative integer degree- it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number.

But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

WHERE WE ARE SURE YOU WILL GO! (if you learn to solve such examples :))

For example:

Decide for yourself:

Analysis of solutions:

1. Let's start with the usual rule for raising a power to a power:

Now look at the indicator. Doesn't he remind you of anything? Let us recall the formula for abbreviated multiplication of difference of squares:

In this case,

It turns out that:

Answer: .

2. We reduce fractions in exponents to same look: either both decimal or both regular. We get, for example:

Answer: 16

3. Nothing special, we use the usual properties of degrees:

ADVANCED LEVEL

Determination of degree

A degree is an expression of the form: , where:

  • degree basis;
  • - exponent.

Degree with natural indicator (n = 1, 2, 3,...)

Raising a number to the natural power n means multiplying the number by itself times:

Degree with an integer exponent (0, ±1, ±2,...)

If the exponent is positive integer number:

Construction to the zero degree:

The expression is indefinite, because, on the one hand, to any degree is this, and on the other hand, any number to the th degree is this.

If the exponent is negative integer number:

(because you can’t divide by).

Once again about zeros: the expression is not defined in the case. If, then.

Examples:

Power with rational exponent

  • - natural number;
  • - integer;

Examples:

Properties of degrees

To make it easier to solve problems, let’s try to understand: where did these properties come from? Let's prove them.

Let's see: what is and?

A-priory:

So, on the right side of this expression we get the following product:

But by definition it is a power of a number with an exponent, that is:

Q.E.D.

Example : Simplify the expression.

Solution : .

Example : Simplify the expression.

Solution : It is important to note that in our rule Necessarily there must be the same reasons. Therefore, we combine the powers with the base, but it remains a separate factor:

Another important note: this rule is - only for product of powers!

Under no circumstances can you write that.

Just as with the previous property, let us turn to the definition of degree:

Let's regroup this work like this:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total: !

Let's remember the abbreviated multiplication formulas: how many times did we want to write? But this is not true, after all.

Power with a negative base.

Up to this point we have only discussed what it should be like index degrees. But what should be the basis? In powers of natural indicator the basis may be any number .

Indeed, we can multiply any numbers by each other, be they positive, negative, or even. Let's think about which signs ("" or "") will have degrees of positive and negative numbers?

For example, is the number positive or negative? A? ?

With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by (), we get - .

And so on ad infinitum: with each subsequent multiplication the sign will change. We can formulate the following simple rules:

  1. even degree, - number positive.
  2. Negative number raised to odd degree, - number negative.
  3. A positive number to any degree is a positive number.
  4. Zero to any power is equal to zero.

Determine for yourself what sign the following expressions will have:

1. 2. 3.
4. 5. 6.

Did you manage? Here are the answers:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive. Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple. Here you need to find out which is less: or? If we remember that, it becomes clear that, which means the base is less than zero. That is, we apply rule 2: the result will be negative.

And again we use the definition of degree:

Everything is as usual - we write down the definition of degrees and divide them by each other, divide them into pairs and get:

Before you take it apart last rule, let's solve a few examples.

Calculate the expressions:

Solutions :

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares!

We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, rule 3 could apply. But how? It turns out that it’s very easy: the even degree of the denominator helps us here.

If you multiply it by, nothing changes, right? But now it turns out like this:

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses. But it's important to remember: All signs change at the same time! You can’t replace it with by changing only one disadvantage we don’t like!

Let's go back to the example:

And again the formula:

So now the last rule:

How will we prove it? Of course, as usual: let’s expand on the concept of degree and simplify it:

Well, now let's open the brackets. How many letters are there in total? times by multipliers - what does this remind you of? This is nothing more than a definition of the operation multiplication: There were only multipliers there. That is, this, by definition, is a power of a number with an exponent:

Example:

Degree with irrational exponent

In addition to information about degrees for the average level, we will analyze the degree with an irrational exponent. All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception - after all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational numbers).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms. For example, a degree with a natural exponent is a number multiplied by itself several times; a number to the zero power is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number; a degree with an integer negative exponent - it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

It is extremely difficult to imagine a degree with an irrational exponent (just as it is difficult to imagine a 4-dimensional space). It is rather a purely mathematical object that mathematicians created to extend the concept of degree to the entire space of numbers.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number. But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

So what do we do if we see irrational indicator degrees? We are trying our best to get rid of it! :)

For example:

Decide for yourself:

1) 2) 3)

Answers:

  1. Let's remember the difference of squares formula. Answer: .
  2. We reduce the fractions to the same form: either both decimals or both ordinary ones. We get, for example: .
  3. Nothing special, we use the usual properties of degrees:

SUMMARY OF THE SECTION AND BASIC FORMULAS

Degree called an expression of the form: , where:

Degree with an integer exponent

a degree whose exponent is a natural number (i.e., integer and positive).

Power with rational exponent

degree, the exponent of which is negative and fractional numbers.

Degree with irrational exponent

a degree whose exponent is an infinite decimal fraction or root.

Properties of degrees

Features of degrees.

  • Negative number raised to even degree, - number positive.
  • Negative number raised to odd degree, - number negative.
  • A positive number to any degree is a positive number.
  • Zero is equal to any power.
  • Any number to the zero power is equal.

NOW YOU HAVE THE WORD...

How do you like the article? Write below in the comments whether you liked it or not.

Tell us about your experience using degree properties.

Perhaps you have questions. Or suggestions.

Write in the comments.

And good luck on your exams!


After the power of a number has been determined, it is logical to talk about degree properties. In this article we will give basic properties powers of a number, and we will touch upon all possible exponents. Here we will provide proofs of all properties of degrees, and also show how these properties are used when solving examples.

Page navigation.

Properties of degrees with natural exponents

By definition of a power with a natural exponent, the power a n is the product of n factors, each of which is equal to a. Based on this definition, and also using properties of multiplication real numbers , we can obtain and justify the following properties of degree with natural exponent:

  1. the main property of the degree a m ·a n =a m+n, its generalization;
  2. property of quotient powers with on the same grounds a m:a n =a m−n ;
  3. product power property (a·b) n =a n ·b n , its extension;
  4. property of a quotient in natural degree(a:b) n =a n:b n ;
  5. raising a degree to a power (a m) n =a m·n, its generalization (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k;
  6. comparison of degree with zero:
    • if a>0, then a n>0 for any natural number n;
    • if a=0, then a n =0;
    • if a<0 и показатель степени является четным числом 2·m , то a 2·m >0 if a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. if a and b are positive numbers and a
  8. if m and n are natural numbers such that m>n , then at 0 0 the inequality a m >a n is true.

Let us immediately note that all written equalities are identical subject to the specified conditions, both their right and left parts can be swapped. For example, the main property of the fraction a m ·a n =a m+n with simplifying expressions often used in the form a m+n =a m ·a n .

Now let's look at each of them in detail.

    Let's start with the property of the product of two powers with the same bases, which is called the main property of the degree: for any real number a and any natural numbers m and n, the equality a m ·a n =a m+n is true.

    Let us prove the main property of the degree. By the definition of a power with a natural exponent, the product of powers with the same bases of the form a m ·a n can be written as a product. Due to the properties of multiplication, the resulting expression can be written as , and this product is a power of the number a with a natural exponent m+n, that is, a m+n. This completes the proof.

    Let us give an example confirming the main property of the degree. Let's take degrees with the same bases 2 and natural powers 2 and 3, using the basic property of degrees we can write the equality 2 2 ·2 3 =2 2+3 =2 5. Let's check its validity by calculating the values ​​of the expressions 2 2 · 2 3 and 2 5 . Performing exponentiation, we have 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 and 2 5 =2·2·2·2·2=32, since equal values ​​are obtained, then the equality 2 2 ·2 3 =2 5 is correct, and it confirms the main property of the degree.

    The basic property of a degree, based on the properties of multiplication, can be generalized to the product of three or more powers with the same bases and natural exponents. So for any number k of natural numbers n 1, n 2, …, n k the following equality is true: a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k.

    For example, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    We can move on to the next property of powers with a natural exponent – property of quotient powers with the same bases: for any non-zero real number a and arbitrary natural numbers m and n satisfying the condition m>n, the equality a m:a n =a m−n is true.

    Before presenting the proof of this property, let us discuss the meaning of the additional conditions in the formulation. The condition a≠0 is necessary in order to avoid division by zero, since 0 n =0, and when we became acquainted with division, we agreed that we cannot divide by zero. The condition m>n is introduced so that we do not go beyond the natural exponents. Indeed, for m>n the exponent a m−n is a natural number, otherwise it will be either zero (which happens for m−n) or a negative number (which happens for m

    Proof. The main property of a fraction allows us to write the equality a m−n ·a n =a (m−n)+n =a m. From the resulting equality a m−n ·a n =a m and it follows that a m−n is a quotient of the powers a m and a n . This proves the property of quotient powers with identical bases.

    Let's give an example. Let's take two degrees with the same bases π and natural exponents 5 and 2, the equality π 5:π 2 =π 5−3 =π 3 corresponds to the considered property of the degree.

    Now let's consider product power property: the natural power n of the product of any two real numbers a and b is equal to the product of the powers a n and b n , that is, (a·b) n =a n ·b n .

    Indeed, by the definition of a degree with a natural exponent we have . Based on the properties of multiplication, the last product can be rewritten as , which is equal to a n · b n .

    Here's an example: .

    This property extends to the power of the product of three or more factors. That is, the property of natural degree n of the product of k factors is written as (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n.

    For clarity, we will show this property with an example. For the product of three factors to the power of 7 we have .

    The following property is property of a quotient in kind: the quotient of real numbers a and b, b≠0 to the natural power n is equal to the quotient of powers a n and b n, that is, (a:b) n =a n:b n.

    The proof can be carried out using the previous property. So (a:b) n b n =((a:b) b) n =a n, and from the equality (a:b) n ·b n =a n it follows that (a:b) n is the quotient of a n divided by b n .

    Let's write this property using specific numbers as an example: .

    Now let's voice it property of raising a power to a power: for any real number a and any natural numbers m and n, the power of a m to the power of n is equal to the power of the number a with exponent m·n, that is, (a m) n =a m·n.

    For example, (5 2) 3 =5 2·3 =5 6.

    The proof of the power-to-degree property is the following chain of equalities: .

    The property considered can be extended to degree to degree to degree, etc. For example, for any natural numbers p, q, r and s, the equality . For greater clarity, here is an example with specific numbers: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    It remains to dwell on the properties of comparing degrees with a natural exponent.

    Let's start by proving the property of comparing zero and power with a natural exponent.

    First, let's prove that a n >0 for any a>0.

    The product of two positive numbers is a positive number, as follows from the definition of multiplication. This fact and the properties of multiplication suggest that the result of multiplying any number of positive numbers will also be a positive number. And the power of a number a with natural exponent n, by definition, is the product of n factors, each of which is equal to a. These arguments allow us to state that for any positive base a, the degree a n is a positive number. Due to the proven property 3 5 >0, (0.00201) 2 >0 and .

    It is quite obvious that for any positive integer n with a=0 the degree of a n is zero. Indeed, 0 n =0·0·…·0=0 . For example, 0 3 =0 and 0 762 =0.

    Let's move on to negative reasons degrees.

    Let's start with the case when the exponent is an even number, let's denote it as 2·m, where m is a natural number. Then . For each of the products of the form a·a is equal to the product of the moduli of the numbers a and a, which means it is a positive number. Therefore, the product will also be positive and degree a 2·m. Let's give examples: (−6) 4 >0 , (−2,2) 12 >0 and .

    Finally, when the base a is a negative number and the exponent is an odd number 2 m−1, then . All products a·a are positive numbers, the product of these positive numbers is also positive, and its multiplication by the remaining a negative number a results in a negative number. Due to this property (−5) 3<0 , (−0,003) 17 <0 и .

    Let's move on to the property of comparing powers with the same natural exponents, which has the following formulation: of two powers with the same natural exponents, n is less than the one whose base is smaller, and greater is the one whose base is greater. Let's prove it.

    Inequality a n properties of inequalities a provable inequality of the form a n is also true .

    It remains to prove the last of the listed properties of powers with natural exponents. Let's formulate it. Of two powers with natural exponents and identical positive bases less than one, the one whose exponent is smaller is greater; and of two powers with natural exponents and identical bases greater than one, the one whose exponent is greater is greater. Let us proceed to the proof of this property.

    Let us prove that for m>n and 0 0 due to the initial condition m>n, which means that at 0

    It remains to prove the second part of the property. Let us prove that for m>n and a>1 a m >a n is true. The difference a m −a n after taking a n out of brackets takes the form a n ·(a m−n −1) . This product is positive, since for a>1 the degree a n is a positive number, and the difference a m−n −1 is a positive number, since m−n>0 due to the initial condition, and for a>1 the degree a m−n is greater than one . Consequently, a m −a n >0 and a m >a n , which is what needed to be proved. This property is illustrated by the inequality 3 7 >3 2.

Properties of powers with integer exponents

Since positive integers are natural numbers, then all the properties of powers with positive integer exponents coincide exactly with the properties of powers with natural exponents listed and proven in the previous paragraph.

We defined a degree with an integer negative exponent, as well as a degree with a zero exponent, in such a way that all properties of degrees with natural exponents, expressed by equalities, remained valid. Therefore, all these properties are valid for both zero exponents and negative exponents, while, of course, the bases of the powers are different from zero.

So, for any real and non-zero numbers a and b, as well as any integers m and n, the following are true: properties of powers with integer exponents:

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. if n is a positive integer, a and b are positive numbers, and a b−n ;
  7. if m and n are integers, and m>n, then at 0 1 the inequality a m >a n holds.

When a=0, the powers a m and a n make sense only when both m and n are positive integers, that is, natural numbers. Thus, the properties just written down are also valid for the cases when a=0 and the numbers m and n are positive integers.

Proving each of these properties is not difficult; to do this, it is enough to use the definitions of degrees with natural and integer exponents, as well as the properties of operations with real numbers. As an example, let us prove that the power to power property holds for both positive integers and non-positive integers. To do this, you need to show that if p is zero or a natural number and q is zero or a natural number, then the equalities (a p) q =a p·q, (a −p) q =a (−p)·q, (a p ) −q =a p·(−q) and (a −p) −q =a (−p)·(−q). Let's do it.

For positive p and q, the equality (a p) q =a p·q was proven in the previous paragraph. If p=0, then we have (a 0) q =1 q =1 and a 0·q =a 0 =1, whence (a 0) q =a 0·q. Similarly, if q=0, then (a p) 0 =1 and a p·0 =a 0 =1, whence (a p) 0 =a p·0. If both p=0 and q=0, then (a 0) 0 =1 0 =1 and a 0·0 =a 0 =1, whence (a 0) 0 =a 0·0.

Now we prove that (a −p) q =a (−p)·q . By definition of a power with a negative integer exponent, then . By the property of quotients to powers we have . Since 1 p =1·1·…·1=1 and , then . The last expression, by definition, is a power of the form a −(p·q), which, due to the rules of multiplication, can be written as a (−p)·q.

Likewise .

AND .

Using the same principle, you can prove all other properties of a degree with an integer exponent, written in the form of equalities.

In the penultimate of the recorded properties, it is worth dwelling on the proof of the inequality a −n >b −n, which is valid for any negative integer −n and any positive a and bfor which the condition a is satisfied . Since by condition a 0 . The product a n · b n is also positive as the product of positive numbers a n and b n . Then the resulting fraction is positive as the quotient of the positive numbers b n −a n and a n ·b n . Therefore, whence a −n >b −n , which is what needed to be proved.

The last property of powers with integer exponents is proved in the same way as a similar property of powers with natural exponents.

Properties of powers with rational exponents

We defined a degree with a fractional exponent by extending the properties of a degree with an integer exponent to it. In other words, powers with fractional exponents have the same properties as powers with integer exponents. Namely:

The proof of the properties of degrees with fractional exponents is based on the definition of a degree with a fractional exponent, and on the properties of a degree with an integer exponent. Let us provide evidence.

By definition of a power with a fractional exponent and , then . The properties of the arithmetic root allow us to write the following equalities. Further, using the property of a degree with an integer exponent, we obtain , from which, by the definition of a degree with a fractional exponent, we have , and the indicator of the degree obtained can be transformed as follows: . This completes the proof.

The second property of powers with fractional exponents is proved in an absolutely similar way:

The remaining equalities are proved using similar principles:

Let's move on to proving the next property. Let us prove that for any positive a and b, a b p . Let's write the rational number p as m/n, where m is an integer and n is a natural number. Conditions p<0 и p>0 in this case the conditions m<0 и m>0 accordingly. For m>0 and a

Similarly, for m<0 имеем a m >b m , from where, that is, and a p >b p .

It remains to prove the last of the listed properties. Let us prove that for rational numbers p and q, p>q at 0 0 – inequality a p >a q . We can always reduce rational numbers p and q to a common denominator, even if we get ordinary fractions and , where m 1 and m 2 are integers, and n is a natural number. In this case, the condition p>q will correspond to the condition m 1 >m 2, which follows from. Then, by the property of comparing powers with the same bases and natural exponents at 0 1 – inequality a m 1 >a m 2 . These inequalities in the properties of the roots can be rewritten accordingly as And . And the definition of a degree with a rational exponent allows us to move on to inequalities and, accordingly. From here we draw the final conclusion: for p>q and 0 0 – inequality a p >a q .

Properties of powers with irrational exponents

From the way a degree with an irrational exponent is defined, we can conclude that it has all the properties of degrees with rational exponents. So for any a>0, b>0 and irrational numbers p and q the following are true properties of powers with irrational exponents:

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. for any positive numbers a and b, a 0 the inequality a p b p ;
  7. for irrational numbers p and q, p>q at 0 0 – inequality a p >a q .

From this we can conclude that powers with any real exponents p and q for a>0 have the same properties.

Bibliography.

  • Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S., Shvartsburd S.I. Mathematics textbook for 5th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 7th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 8th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 9th grade. educational institutions.
  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. and others. Algebra and the beginnings of analysis: Textbook for grades 10 - 11 of general education institutions.
  • Gusev V.A., Mordkovich A.G. Mathematics (a manual for those entering technical schools).

In this lesson we will begin to study degrees with natural exponents. First, we will discuss why mathematicians needed to introduce the concept of degree, give a definition of degree with a natural exponent, and consider a number of examples of degree. Next, we will give the definition of a degree with a unit exponent and at the end we will solve several examples of calculating the degree.

Subject:Degree with a natural indicator and its properties

Lesson:What is a degree with a natural exponent?

Where did the degree come from?

Expression a+a+a in mathematics can be replaced by a+a+a=3a.

Expression a+a+a+a+a can be represented in the form a+a+a+a+a=5a.

That is, if in the expression n identical terms, each of which A, then it can be briefly written na.

And multiplication can be briefly written as follows: a 3, reads: A A.

- A to the fifth power or fifth power of a number A.

And if in expression n identical factors, each of which A, then we will write:

= a n - n-th power of a.

Definition. Degree a n the work is called n identical factors, , Where n- natural number n={2,3,…..} ; A- any number.

Terminology:a n

a is the base of the degree,

n- exponent,

a n- degree, or a innth degree, ornth power of the number a.

Example 1: Write the product as a power, name the base and exponent, and calculate if possible.

1. - this is by definition 4 cubed or third power of a number 4 , 4 - the basis of the degree, 3 - exponent. Result:

Answer: 64

2. - by definition, this is x to the fourth power, x- the basis of the degree, 4 - exponent. It is impossible to calculate further, because x you need to assign a specific value.

Answer:

This to the fifth power, is the base of the degree, 5 - exponent, it shows how many times the base is multiplied by itself. Comment: the product does not change due to the variable places of the factors, let’s write this expression differently:

So the expression is .

Answer:.

4. - This cubed, 3 is an exponent - the basis of the degree.

Answer:

5.

Second power of number 13 , - second power of number 5 .

Answer: 4225

Third power of a number 2 , - second power of number 3 .

1. Write the product as a power, name the base and exponent, calculate if possible.

2. Calculate (-2) n, If

A) n=2 b) n=3 V) n=4

3. Calculate : a 5, Where

A) a=1

b) a=-2

4. Calculate the area of ​​a square whose side is equal to a/2, Where