Биографии Характеристики Анализ

Физические и химические свойства углерода. Валентные состояния атома углерода

Общие сведения и методы получения

Углерод (С) -неметалл. Название происходит от слова уголь В при­роде находится как в свободном состоянии, так и в виде многочислен­ных соединений. В качестве продуктов разложения древних формаций существуют угли, главной составной частью которых является углерод.

Нефть, озокерит (горный воск) и асфальт также являются углерод­ными соединениями, которые, очевидно, возникли при разложении древ­них организмов,

Углерод является главной составной частью животного и раститель­ного мира.

Несмотря на большое многообразие твердых конденсированных сис­тем углерода (угли, кокс, сажа, графит, алмаз и др), он имеет две кристаллические модификации: гексагональную (равновесную) в виде графита и кубическую (метастабильную) в виде алмаза. Углерод, по­лученный при термическом разложении его соединений, имеет плотную черную окраску. Ранее черный углерод считали особой аморфной мо­дификаций элемента. Согласно последним данным, тонкая структура атой модификации отвечает графиту.

Графит образует довольно обширные месторождения. Хорошо сфор­мированные кристаллы графита встречаются редко. Графит гибок, мягок, обладает слабым металлическим блеском, отличается маркостью. При­родный графит часто загрязнен другими элементами (до 20 °/о), поэтому для нужд современной техники и прежде всего атомной энергетики ис­пользуют искусственный графит высокой чистоты. Для производства искуственного графита используют в основном нефтяной кокс как на­полнитель и каменноугольный пек как связующее. В качестве добавок к наполнителю применяют природный графит и сажу. Иногда в качест­ве связующего используют некоторые синтетические смолы, например фурановые или фенольные. Производство искусственного графита сос­тоит из ряда механических операций (дробления, размола, рассева кокса по фракциям, смешения кокса со связующими, формовки заготовок) и термических отжигов при разной температуре и длительности. Графити-зация - окончательная термическая обработка, превращающая углерод­ный материал в графит, проводится при 3000-3100°С.

Углерод в форме алмаза представляет собой очень твердые, абсо­лютно прозрачные (в чистом виде) кристаллы, сильно преломляющие свет. Естественные грани алмаза часто являются гранями правильных октаэдров; однако встречаются и другие формы кубической системы среди ннх тетраэдр, что указывает на то, что алмаз принадлежит к тет-раэдрической гемнэдрии кубической системы.

В природе алмазы встречаются главным образом в россыпях, т. е. в наносных породах. В ряде мест алмазы обнаружены в оливинах вулка­нического происхождения, в так называемых кимберлитовых трубках.

В послевоенный период налажено промышленное получение искусст­венных алмазов как необходимого сырья для изготовления различных паст и режущего инструмента.

Физические свойства

Атомные характеристики. Атомный номер углерода 6, атомная масса 12,01115 а.е.м, атомный объем 3,42*10- 6 м 3 /моль. Атомный радиус ко-валентный равен 0,077 нм; ионный радиус С 4 + 0,02 нм. Конфигурация внешних электронных оболочек атома углерода 2л,2 2р 2 . Углерод состоит из двух стабильных изотопов |2 С и |3 С, содержание которых соответст­венно равно 98,892 и 1,108 %. Известны радиоактивные изотопы с мас­совыми числами 10, 11, 14, 15, период полураспада которых соответст­венно составляет 19,1 с, 1224 с, 5567 лет, 2,4 с.

Аллотропические модификации - графит и алмаз. Графит имеет гексагональную кубическую решетку, периоды который при комнатной температуре: а=0,2456 нм, с=0,6696 нм. Алмаз имеет кубическую ре­шетку с периодом а = 0,356679 нм. Потенциалы ионизации атома угле­рода / (эВ): 11,264; 24,376; 47,86. Электроотрицательность 2,5. Работа выхода электронов <р=4,7 эВ. Эффективное поперечное сечение захвата тепловых нейтронов 0,0034*10 -28 м 2 .

Плотность. При комнатной температуре рентгеновская плотность гра­фита 2,666 Мг/м 3 , пикнометрическая плотность 2,253 Мг/м 3 ; при тех же условиях рентгеновская плотность алмаза 3,515 Мг/м 3 , а пикнометриче­ская 3,514 Мг/м 3 .

Механические свойства

Алмаз по твердости превосходит все другие вещества, поэтому его можно шлифовать и вообще обрабатывать только алмазным порошком. Несмотря на высокую твердость, алмаз очень хрупок.

Микротвердость алмаза по Кнуппу при 20 °С 88200 МПа. Мнкротвер-дость, определенная при помощи обычной пирамиды, 78500 МПа. Вре­менное сопротивление при растяжении при комнатной температуре а в - = 1760-4-1780 МПа; модуль нормальной упругости при растяжении Е= = 1141,1 ГПа, в направлении £=1202 ГПа, а в направлении £=1052 ГПа (данные относятся к комнатной температуре).

Графит в отличие от алмаза обладает незначительной твердостью. По шкале Мооса твердость алмаза равна 10, а твердость графита 1, Временное сопротивление при растяжении пористого графита о„=0,34+ -*-0,69 МПа, а электродного графита о п =3,43-И7,2 МПа (вдоль элект­рода). В поперечном направлении а„=6,18н-8,93 МПа. На нитях из графита можно получить o B =26- i -28 МПа; на «усах» из графита до­стигнута прочность 480-500 МПа (данные относятся к комнатной температуре). Графит сравнительно хорошо сопротивляется сжимаю­щим нагрузкам. Так, о™ реакторного графита при 20 "С составляет 20,6-34,3 МПа. В уплотненном графите эта характеристика может быть доведена до 70 МПа. Сжимаемость графита и=3,24*10 -11 Па- 1 , сжима­емость алмаза х = 0,23-Ю - " Па -1 .

Химические свойства

В соединениях проявляет степени окисления -4, +2 и +4.

Углерод, независимо от модификации, обладает малой химической активностью. Он не растворяется в обычных растворителях, но хорошо растворяется в расплавленных металлах, особенно в металлах IVA - V1IIA подгрупп Периодической системы. При охлаждении расплавов углерод выпадает или в виде свободного графита, или в виде соедине­ний металла с углеродом. Алмаз отличается очень высокой химической стойкостью. На него не действуют ни кислоты, ни основания. При на­греве в кислороде выше 800 °С алмаз сгорает до С0 2 . Если алмаз на­гревать без доступа воздуха, то ои превращается в графит.

Графит легче поддается химическому воздействию, чем алмаз; при нагреве в чистом кислороде он воспламеняется уже при 637-642 С. Графит, смоченный концентрированной азотной кислотой, при нагреве до красного каления вспучивается. При обработке концентрированной серной кислотой в присутствии окислителей графит разбухает и стано­вится темно-синим. Некоторые сорта черного углерода воспламеняются в атмосфере кислорода уже при незначительном нагреве. Со фтором черный углерод уже взаимодействует при обычной температуре. При нагреве углерод соединяется со многими элементами: водородом, серой, кремнием, бором и др. В природе наблюдается большое разнообразие соединений углерода с водородом.

При взаимодействии с кислородом углерод образует два простых ок­сида. Продуктом полного сгорания углерода является диоксид С0 2 , при неполном сгорании образуется оксид СО. Теплота образования С0 2 при окислении графита Д# 0 бр=395,2 кДж/моль, а СО Д// 0 бр= 111,5 кДж/ /моль, т. е. значительно ниже. СОг - бесцветный, негорючий газ со сла­бым сладковатым запахом. Он тяжелее воздуха в 1,529 раза, легко сжижается при 20 °С и давлении 5,54 МПа, образуя бесцветную жид­кость. Критическая температура С0 2 31,4 °С, критическое давление 7,151 МПа. При нормальном давлении С0 2 сублимируется при

78,32 °С. СО образуется в процессе сжигания угля при недостаточном притоке воздуха, представляет собой ядовитый газ, не имеющий ни за­паха, ни цвета; он не поддерживает горения, но сам является горючим; в 0,967 раза легче воздуха. При атмосферном давлении СО сжижается при - 191,34°С и затвердевает прн -203,84 °С.

Углерод взаимодействует с серой. При пропускании ее паров над раскаленным древесным углем образуется двусернистый углерод CS 2 (сероуглерод). Низшие сульфиды углерода неустойчивы. Сероуглерод представляет бесцветную жидкость удушливого запаха. Температура кипения CS 2 46,2 "С, затвердевания -110,6°С. Давление пара CS 2 при 293 К равно 0,0385 МПа. Сероуглерод - эндотермическое соедине­ние, при его распаде освобождается около 64,5 кДж/моль. CS 2 взрыво­опасно, однако взрывная реакция широко не распространяется. Из дру­гих соединений углерода с серой следует отметить COS, представляю­щее собой бесцветный газ, не имеющий запаха; COS легко воспламе­няется. Образуется COS при совместном пропускании смеси паров серы и оксида углерода через раскаленную трубку. COS сжижается при ^49,9 "С, а затвердевает при -137,8 °С.

Углерод вступает в реакции с азотом. При прокаливании без досту­па воздуха различных органических продуктов (кожи, шерсти и др) образуются соединения, содержащие одновалентный радикал CN. Про­стейшую кислоту HCN, являющуюся производной циана, называют си­нильной, а ее солн цианидами. Синильная кислота - бесцветная жид­кость, кипящая при 26,66 °С; в большом разведении имеет запах, сход­ный с запахом горького миндаля. Затвердевает HCN при -14,85 °С, чрезвычайно ядовита. Цианиды калия и натрия широко применяются при производстве золота, а также в гальванотехнике благородных ме­таллов.

Имеются соединения углерода с галогенами. Фторид углерода CF 4 - бесцветный газ с температурой кипения -128 "С, температурой плавле­ния -183,44 °С. Получают CF 4 или при непосредственном взаимодейст­вии фтора и углерода или при воздействии AgF на СС1 4 при 300 °С. Четыреххлористый углерод ССЦ- бесцветная, негорючая жидкость со слабым характерным запахом. ССЦ кипит при 76,86 °С и затвердевает при -22,77 "С. При обычной температуре ССЦ химически инертен, не реагирует нн с основаниями, ни с кислотами. ССЦ очень хорошо рас­творяет органические вещества; его часто используют в качестве рас­творителя жиров, масел, смол и др.

Соединения углерода с металлами, а также с бором и кремнием на­зывают карбидами. Карбиды подразделяют на два основных класса: разлагаемые водой и не подвергающиеся действию воды. Карбиды, разлагаемые водой, можно рассматривать как соли ацетилена; в соот­ветствии с этим состав отвечает общим формулам Ме^Сг, Ме"С 2 и Me 2 (С 2)з. Водой или разбавленными кислотами ацетилиды расщепля­ются с образованием ацетилена.

К группе карбидов, устойчивых к действию воды или разбавленных кислот, относятся соединения углерода с переходными металлами, а также SiC . Кристаллическая структура карбидов, за исключением SiC , кубическая, типа NaCl . Такие кабриды иногда называют металлоподоб-ными соединениями, так как они обладают высокой электро- и тепло­проводностью, имеют металлический блеск. Соединение кремния с угле­родом SiC - карборунд. Он обладает очень высокой твердостью, а по своей кристаллической структуре подобен алмазу. Теплота образования SiC Д# 0 бр= 117,43 кДж/моль. К числу карбидов, стойких к воздействию воды и неразбавленных кислот, относятся также В 4 С, Сг 4 С, Сг 3 С 2 и некоторые другие.

Области применения

Наиболее широкое применение углерод получил в металлургической промышленности, прежде всего в доменном производстве, где исполь­зуется его способность восстанавливать железо из руд. Углерод в до­менном производстве применяют в виде кокса, который получают путем нагрева каменного угля без доступа воздуха. Металлургический кокс содержит до 90 % С, 1 % Н, 3 % О, 0,5-1 % N и 5 % золы, т.е. не­сгораемых составных частей. Кокс горит синеватым пламенем без ко­поти, а его теплотворная способность составляет 30-32 МДж/кг. В ка­честве огнеупорного материала для плавильных тиглей, стойкого к быст­рой смене температур, применяют графит. Его также используют для изготовления карандашей, смазки, огнеупорной краски и др.

Графит, обладающий высокой электрической проводимостью, нахо­дит разнообразное применение в электротехнике и гальванопластике (электроды, микрофонные угли, некоторые сорта графита для ламп на­каливания и др.). Он является также одним из конструкционных мате­риалов для ядерных реакторов. Производство графита в нашей стране регламентируется ГОСТ 17022-81, который распространяется на основ­ные виды естественного графита. Согласно этому ГОСТу производится три марки графита смазочного ГС-1 до 3, две марки графита тигельно­го ГТ, две марки графита литейного ГЛ, три марки графита аккумуля­торного ГАК, четыре марки графита электроугольного ГЭУ, три марки графита элементарного ГЭ (служит для производства гальванических элементов), две марки графита карандашного ГК, две марки графита алмазного ГАЛ (для производства алмазов и других изделий, где тре­буются высокие инертность, чистота, электрическая проводимость). Со­держание золы в низших сортах смазочного, электродного и литейного графита 13-18 °/о, а в отдельных случаях до 25 % по массе (например,

В атомной энергетике применяют искусственный графит, способ по-л\ 1сния которого был разработан еще в конце прошлого века.

Углерод — это, пожалуй, основной и самый удивительный химический элемент на Земле, ведь с его помощью формируется колоссальное количество разнообразных соединений, как неорганических, так и органических. Углерод является основой всех живых существ, можно сказать, что углерод, наравне с водой и кислородом, — основа жизни на нашей планете! Углерод имеет разнообразие форм, которые не похожи ни по своим физико-химическим свойствам, ни по внешнему виду. Но всё это углерод!

История открытия углерода

Углерод был известен человечеству ещё с глубокой древности. Графит и уголь использовались ещё древними греками, а алмазы нашли применение в Индии. Правда, за графит частенько принимали похожие по внешнему виду соединения. Тем не менее, графит имел широкое применение в древности, в частности для письма. Даже его название происходит от греческого слова «графо» — «пишу». Графит сейчас используется в карандашах. Алмазами начали впервые торговать в Бразилии в первой половине 18 века, с этого времени открыто множество месторождений, а в 1970 году была разработана технология получения алмазов искусственным путём. Такие искусственные алмазы применяются в промышленности, натуральные же, в свою очередь, в ювелирном деле.

Углерод в природе

Наиболее значимое количество углерода собрано в атмосфере и гидросфере в виде углекислого газа. В атмосфере углерода содержится около 0,046%, а еще больше — в растворенном виде в Мировом Океане.

Кроме того, как мы видели выше, углерод является основой живых организмов. Например, в теле человека массой 70 кг содержится около 13 кг углерода! Это только в одном человеке! А углерод содержится также во всех растениях и животных. Вот и считайте…

Круговорот углерода в природе

Аллотропные модификации углерода

Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации , или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.

Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз , фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире » .

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;
ж) однослойная нанотрубка

Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.

Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.

Графит — «тёмная сторона» алмаза

Применение углерода

Углерод и его соединения имеют огромное значение в жизнедеятельности человека. Из углерода образованы главные виды топлива на Земле — природный газ и нефть. Соединения углерода широко применяются в химической и металлургической промышленности, в строительстве, в машиностроении и медицине. Аллотропные модификации в виде алмазов используют в ювелирном деле, фуллерит и лонсдейлит в ракетостроении. Из соединений углерода изготавливаются различные смазки для механизмов, техническое оборудование и многое другое. Промышленность в настоящее время не может обойтись без углерода, он используется везде!

1. Во всех органических соединениях атом углерода имеет валентность равную 4.

2. Углерод способен образовывать простые и очень сложные молекулы (высокомолекулярные соединения: белки, каучуки, пластмассы).

3. Атомы углерода соединяются не только с другими атомами, но и друг с другом, образуя различные углерод - углеродные цепи - прямые, разветвленные, замкнутые:


4. Для соединений углерода характерно явление изомерии, т.е. когда вещества имеют один и тот же качественный и количественный состав, но различное химическое строение, а следовательно, различные свойства. Например: эмпирической формуле С 2 Н 6 О соответствуют два различных строений веществ:

этиловый спирт, диметиловый эфир,

жидкость, t 0 кип. = +78 0 С газ, t 0 кип. = -23,7 0 С

Следовательно, этиловый спирт и диметиловый эфир – изомеры.

5. Водные растворы большинства органических веществ – неэлектролиты, молекулы их не распадаются на ионы.

Изомерия.

В 1823 г. было открыто явление изомерии – существование веществ с одинаковым составом молекул, но обладающих различными свойствами. В чем причина различия изомеров? Поскольку состав их одинаков, то причину можно искать только в разном порядке соединения атомов в молекуле.

Еще до создания теории химического строения А.М. Бутлеров предсказал, что для бутана С 4 Н 10 , имеющего линейное строение СН 3 – СН 2 – СН 2 – СН 3 t 0 (кип. -0,5 0 С) возможно существование другого вещества с той же молекулярной формулой, но с иной последовательностью соединения углеродных атомов в молекуле:

изобутан

t 0 кип. – 11,7 0 С

Итак, изомеры – это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение, а следовательно и разные свойства. Существует два основных типа изомерии – структурная и пространственная.

Структурными называют изомеры, имеющие различный порядок соединения атомов в молекуле. Различают три вида ее:

Изомерия углеродного скелета:

С – С – С – С – С С – С – С – С

Изомерия кратной связи:

С = С – С – С С – С = С – С

Межклассовая изомерия:


пропионовая кислота

Пространственная изомерия. Пространственные изомеры имеют одинаковые заместители у каждого атома углерода. Но отличаются их взаимным расположением в пространстве. Различают два типа этой изомерии: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, имеющих плоскостное строение молекул (алкенов, циклоалканов, алкадиенов и др.). Если одинаковые заместители у атомов углерода, например, при двойной связи находятся по одну сторону плоскости молекулы, то это будет цис-изомер, по разные стороны – транс-изомер:




Оптическая изомерия – характерна для соединений, имеющих асимметрический атом углерода, который связан с четырьмя различными заместителями. Оптические изомеры являются зеркальным изображением друг друга. Например:


Электронное строение атома.

Строение атома изучается в неорганической химии и физике. Известно, что атом определяет свойства химического элемента. Атом состоит из положительно заряженного ядра, в котором сосредоточена вся его масса, и отрицательно заряженных электронов, окружающих ядро.

Так как в процессе химических реакций ядра реагирующих атомов не изменяются, то физические и химические свойства атомов зависят от строения электронных оболочек атомов. Электроны могут уходить от одних атомов к другим, могут объединяться и т.д. Поэтому мы подробно рассмотрим вопрос о распределении электронов в атоме на основе квантовой теории строения атомов. Согласно этой теории электрон одновременно обладает свойствами частицы (массой, зарядом) и волновой функцией. Для движущихся электронов невозможно определить точное местонахождение. Они находятся в пространстве вблизи атомного ядра. Можно определить вероятность нахождения электрона в различных частях пространства. Электрон как бы «размазан» в этом пространстве в виде некоторого облака (рисунок 1), плотность которого убывает.

Рисунок 1.

Область пространства, в которой вероятность нахождения электрона максимальна (≈ 95%) называется орбиталью .



Согласно квантовой механике состояние электрона в атоме определяется четырьмя квантовыми числами: главным (n), орбитальным (l) , магнитным (m) и спиновым (s).

Главное квантовое число n – характеризует энергию электрона, расстояние орбитали от ядра, т.е. энергетический уровень и принимает значения 1, 2, 3 и т.д. или K, L, M, N и т.д. Значение n = 1 соответствует наименьшей энергии. С увеличением n энергия электрона возрастает. Максимальное число электронов, находящихся на энергетическом уровне, определяется по формуле: N = 2n 2 , где n – номер уровня, следовательно, при:

n = 1 N = 2 n = 3 N = 18

n = 2 N = 8 n = 4 N = 32 и т.д.

В пределах энергетических уровней электроны располагаются по подуровням (или подоболочкам). Число их соответствует номеру энергетического уровня, но характеризуются они орбитальным квантовым числом l, которое определяет форму орбитали. Оно принимает значения от 0 до n-1. При

n = 1 l = 0 n = 2 l = 0, 1 n = 3 l = 0, 1, 2 n = 4 l = 0, 1, 2, 3

Максимальное число электронов на подуровне определяется по формуле: 2(2l + 1). Для подуровней принимают буквенные обозначения:

l = 1, 2, 3, 4

Следовательно, если n = 1, l = 0, подуровень s.

n = 2, l = 0, 1, подуровень s, p.

Максимальное количество электронов на подуровнях:

N s = 2 N d = 10

N p = 6 N f = 14 и т.д.

Больше этих количеств электронов на подуровнях быть не может. Форму электронного облака определяет значение l . При
l = 0 (s-орбиталь) электронное облако имеет сферическую форму и не имеет пространственную направленность.

Рисунок 2.

При l = 1 (p-орбиталь) электронное облако имеет форму гантели или форму «восьмерки»:

Рисунок 3.

Магнитное квантовое число m характеризует
расположение орбиталей в пространстве. Оно может принимать значения любых чисел от –l до +l, включая 0. Число возможных значений магнитного квантового числа при данном значении l равно (2l + 1). Например:

l = 0 (s-орбиталь) m = 0, т.е. s-орбиталь имеет только одно положение в пространстве.

l = 1 (p-орбиталь) m = -1, 0, +1 (3 значения).

l = 2 (d-орбиталь) m = -2, -1, 0, +1, +2 и т.д.

p и d-орбитали имеют соответственно 3 и 5 состояний.

Орбитали p вытянуты по координатным осям и их обозначают р x , p y , p z -орбитали.

Спиновое квантовое число s - характеризует вращение электрона вокруг собственной оси по часовой стрелке и против нее. Оно может иметь только два значения +1/2 и -1/2. Строение электронной оболочки атома изображается электронной формулой, которая показывает распределение электронов по энергетическим уровням и подуровням. В этих формулах энергетические уровни обозначаются цифрами 1, 2, 3, 4…, подуровни – буквами s, p, d, f. Число электронов на подуровне записывается степенью. Например: максимальное число электронов на s 2 , p 6 , d 10 , f 14 .

Электронные формулы часто изображают графически, которые показывают распределение электронов не только по уровням и подуровням, но и по орбиталям, обозначаемым прямоугольником. Подуровни делятся на квантовые ячейки.

Свободная квантовая ячейка

Ячейка с неспаренным электроном

Ячейка со спаренными электронами

На s-подуровне одна квантовая ячейка.

На p-подуровне 3 квантовых ячейки.

На d-подуровне 5 квантовых ячеек.

На f-подуровне 7 квантовых ячеек.

Распределение электронов в атомах определяется принципом Паули и правилом Гунда . Согласно принципа Паули: в атоме не может быть электронов с одинаковыми значениями всех четырех квантовых чисел. В соответствии с принципом Паули в энергетической ячейке может быть один, максимально два электрона с противоположными спинами. Заполнение ячеек происходит по принципу Гунда, согласно которому электроны располагаются сначала по одному в каждой отдельной ячейке, затем, когда все ячейки данного подуровня окажутся занятыми, начинается спаривание электронов.

Последовательность заполнения атомных электронных орбиталей определена правилами В. Клечковскогов зависимости от суммы (n + l ):

вначале заполняются те подуровни, у которых эта сумма меньшая;

при одинаковых значениях суммы (n + l ) вначале идет заполнение подуровня с меньшим значением n .

Например:

а) рассмотрим заполнение подуровней 3d и 4s. Определим сумму (n + l ):

у 3d (n + l ) = 3 + 2 = 5, у 4s (n + l ) = 4 + 0 = 4, следовательно сначала заполняется 4s, а затем 3d подуровень.

б) у подуровней 3d, 4p, 5s сумма значений (n + l ) = 5. В соответствии с правилом Клечковского заполнение начинается с меньшим значением n, т.е. 3d → 4p → 5s. Заполнение электронами энергетических уровней и подуровней атомов происходит в следующей последовательности:валентность n = 2 n = 1

У Be спаренная пара электронов на 2s 2 подуровне. Для подведения энергии извне эту пару электронов можно разъединить и сделать атом валентным. При этом происходит переход электрона с одного подуровня на другой подуровень. Этот процесс называется возбуждением электрона. Графическая формула Be в возбужденном состоянии будет иметь вид:


и валентность равна 2.

В состоянии соединений углерод входит в состав так называемых органических веществ, т. е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты и органических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал - все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т. е. химии углеродистых или, лучше, углеводородистых соединений».

Эти слова из «Основ химии» Д. И. Менделеева служат как бы развернутым эпиграфом к нашему рассказу о жизненно важном элементе - углероде. Впрочем, есть здесь один тезис, с которым, с точки зрения современной науки о веществе, можно и поспорить, но об этом ниже.

Вероятно, пальцев на руках хватит, чтобы пересчитать химические элементы, которым не была посвящена хотя бы одна научная книга. Но самостоятельная научно-популярная книга - не какая-нибудь брошюрка на 20 неполных страницах с обложкой из оберточной бумаги, а вполне солидный том объемом почти в 500 страниц - есть в активе только одного элемента - углерода.

И вообще литература по углероду - богатейшая. Это, во-первых, все без исключения книги и статьи химиков- органиков; во-вторых, почти все, что касается полимеров; в-третьих, бесчисленные издания, связанные с горючими ископаемыми; в-четвертых, значительная часть медикобиологической литературы...

Поэтому не будем пытаться объять необъятное (ведь не случайно авторы популярной книги об элементе № 6 назвали ее «Неисчерпаемый»!, а сконцентрируем внимание лишь на главном из главного - попытаемся увидеть углерод с трех точек зрения.

Углерод - один из немногочисленных элементов «без роду, без племени». История общения человека с этим веществом уходит во времена доисторические. Имя первооткрывателя углерода неизвестно, неизвестно и то, какая из форм элементного углерода - алмаз или графит - была открыта раньше. И то и другое случилось слишком давно. Определенно утверждать можно лишь одно: до алмаза и до графита было открыто вещество, которое еще несколько десятилетий назад считали третьей, аморфной формой элементного углерода - уголь. Но в действительности уголь, даже древесный, это не чистый углерод. В нем есть и водород, и кислород, и следы других элементов. Правда, их можно удалить, но и тогда углерод угля не станет самостоятельной модификацией элементного углерода. Это было установлено лишь во второй четверти нашего века. Структурный анализ показал, что аморфный углерод - это по существу тот же графит. А значит, никакой он не аморфный, а кристаллический; только кристаллы его очень мелкие и больше в них дефектов. После этого стали считать, что углерод на Земле существует лишь в двух элементарных формах - в виде графита и алмаза.

Вам никогда не приходилось задумываться о причинах резкого «водораздела» свойств, который проходит во втором коротком периоде менделеевской таблицы по линии, отделяющей углерод от следующего за ним азота? Азот , кислород , фтор при обычных условиях газообразны. Углерод - в любой форме - твердое тело. Температура плавления азота - минус 210,5°С, а углерода (в виде графита под давлением свыше 100 атм) - около плюс 4000°С...

Дмитрий Иванович Менделеев первым предположил, что эта разница объясняется полимерным строением молекул углерода. Он писал: «Если бы углерод образовывал молекулу C 2 , как и O 2 , то был бы газом». И далее: «Способность атомов угля соединяться между собой и давать сложные молекулы проявляется во всех углеродистых соединениях. Ни в одном из элементов такая способность к усложнению не развита в такой мере, как в углероде. Поныне нет основания для определения меры полимеризации угольной, графитной, алмазной молекулы, только можно думать, что в них содержится С п, где n есть большая величина».

Углерод и его полимеры

Это предположение подтвердилось в наше время. И графит, и алмаз - полимеры, состоящие из одинаковых, только углеродных атомов.

По меткому замечанию профессора Ю.В. Ходакова, «если исходить из природы преодолеваемых сил, профессию гранильщика алмазов можно было бы отнести к химическим профессиям». Действительно, гранильщику приходится преодолевать не сравнительно слабые силы межмолекулярного взаимодействия, а силы химической связи, которыми объединены в молекулу алмаза углеродные атомы. Любой кристалл алмаза, даже огромный, шестисотграммовый «Куллинан» - это по существу одна молекула, молекула в высшей степени регулярного, почти идеально построенного трехмерного полимера.

Иное дело графит. Здесь полимерная упорядоченность распространяется только в двух направлениях - по плоскости, а не в пространстве. В куске графита эти плоскости образуют достаточно плотную пачку, слои которой соединены между собой не химическими силами, а более слабыми силами межмолекулярного взаимодействия. Вот почему так просто - даже от соприкосновения с бумагой - расслаивается графит. В то же время разорвать графитовую пластинку в поперечном направлении весьма сложно - здесь противодействует химическая связь.

Именно особенности молекулярного строения объясняют огромную разницу в свойствах графита и алмаза. Графит отлично проводит тепло и электричество, алмаз - изолятор. Графит совершенно не пропускает света - алмаз прозрачен. Какими бы способами ни окисляли алмаз, продуктом окисления будет только CO 2 . А окисляя графит, можно при желании получить несколько промежуточных продуктов, в частности графитовую (переменного состава) и меллитовую C 6 (COOH) 6 кислоты. Кислород как бы вклинивается между слоями графитовой пачки и окисляет лишь некоторые углеродные атомы. В кристалле алмаза слабых мест нет, и поэтому возможно или полное окисление или полное неокисление - третьего не дано...

Итак, есть «пространственный» полимер элементного углерода, есть «плоскостной». В принципе давно уже допускалось существование и «одномерного» - линейного полимера углерода, но в природе он не был найден.

Не был найден до поры до времени. Через несколько лет после синтеза линейный полимер углерода был найден в метеоритном кратере, на территории ФРГ. А получили его первыми советские химики В. В. Коршак, А. М. Сладков, В. И. Касаточкин и Ю.П. Кудрявцев. Линейный полимер углерода назвали карбином. Внешне он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами, причем под действием света электропроводность карбина сильно увеличивается. Открылись у карбина и вовсе неожиданные свойства. Оказалось, например, что кровь при контакте с ним не образует сгустков - тромбов, поэтому волокно с покрытием из карбина стали применять при изготовлении неотторгаемых организмом искусственных кровеносных сосудов.

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. В нем могли быть чередующиеся одинарные и тройные связи (-C = C-C=C -С=), а могли быть только двойные (=C=C=C=C=)... А могло быть и то и другое одновременно. Лишь через несколько лет Коршаку и Сладкову удалось доказать, что двойных связей в карбине нет. Однако, поскольку теория допускала существование углеродного линейного полимера только с двойными связями, была предпринята попытка получить эту разновидность - по существу, четвертую модификацию элементного углерода.

Углерод в минералах

Это вещество было получено в Институте элементоорганических соединений АН СССР. Новый линейный полимер углерода назвали поликумуленом. А сейчас известно не меньше восьми линейных полимеров углерода, отличающихся один от другого строением кристаллической решетки. В зарубежной литературе все их называют карбинами.

Этот элемент всегда четырехвалентен, но, поскольку в периоде он находится как раз посередине, степень его окисления в разных обстоятельствах бывает то +4, то - 4. В реакциях с неметаллами он электроположителен, с металлами - наоборот. Даже в тех случаях, когда связь не ионная, а ковалентная, углерод остается верен себе - его формальная валентность остается по-прежнему равной четырем.

Весьма немногочисленны соединения, в которых углерод хотя бы формально проявляет валентность, отличную от четырех. Общеизвестно лишь одно такое соединение - CO, угарный газ, в котором углерод кажется двухвалентным. Именно кажется, потому что в действительности здесь более сложный тип связи. Атомы углерода и кислорода соединены 3-ковалентной поляризованной связью, и структурную формулу этого соединения пишут так: O+=C".

В 1900 г. М. Гомберг получил органическое соединение трифенилметил (C 6 H 5) 3 C. Казалось, что атом углерода здесь трехвалентен. Но позже выяснилось, что и на этот раз необычная валентность - сугубо формальная. Трифенилметил и его аналоги - это свободные радикалы, только в отличие от большинства радикалов достаточно стабильные.

Исторически сложилось так, что лишь очень немногие соединения углерода остались «под крышей» неорганической химии. Это окислы углерода, карбиды - его соединения с металлами, а также бором и кремнием, карбонаты - соли слабейшей угольной кислоты, сероуглерод CS 2 , цианистые соединения. Приходится утешаться тем, что, как это часто бывает (или бывало) на производстве, недоработку по номенклатуре компенсирует «вал». Действительно, наибольшая часть углерода земной коры содержится не в организмах растений и животных, не в угле, нефти и всей прочей органике, вместе взятой, а всего в двух неорганических соединениях - известняке CaCO 3 и доломите MgCa(CO 3) 2 . Углерод входит в состав еще нескольких десятков минералов, достаточно вспомнить о мраморе CaCO 3 (с добавками), малахите Cu 2 (OH) 2 CO 3 , минерале цинка смитсоните ZnCO 3 ... Есть углерод и в магматических породах, и в кристаллических сланцах.

Очень редки минералы, в состав которых входят карбиды. Как правило, это вещества особенно глубинного происхождения; поэтому ученые предполагают, что в ядре земного шара есть углерод.

Для химической промышленности углерод и его неорганические соединения представляют значительный интерес - чаще как сырье, реже как конструкционные материалы.

Многие аппараты химических производств, например теплообменники, изготавливают из графита. И это естественно: графит обладает большой термостойкостью и химической стойкостью и при этом прекрасно проводит тепло. Кстати, благодаря этим же свойствам графит стал важным материалом реактивной техники. Из графита сделаны рули, работающие непосредственно в пламени сопловых аппаратов. В воздухе воспламенить графит практически невозможно (даже в чистом кислороде сделать это непросто), а чтобы испарить графит, нужна температура, намного более высокая, чем развивающаяся даже в ракетном двигателе. И, кроме того, при нормальном давлении графит, как и гранит, не плавится.

Без графита трудно представить современное электрохимическое производство. Графитовые электроды используются не только электрометаллургами, но и химиками. Достаточно вспомнить, что в электролизерах, применяемых для получения каустической соды и хлора, аноды - графитовые.

Использование углерода

Об использовании соединений углерода в химической промышленности написаны многие книги. Карбонат кальция, известняк, служит сырьем в производстве извести, цемента, карбида кальция. Другой минерал - доломит - «праотец» большой группы доломитовых огнеупоров. Карбонат и гидрокарбонат натрия - кальцинированная и питьевая сода. Одним из основных потребителей кальцинированной соды была и остается стекольная промышленность, на нужды которой идет примерно треть мирового производства Na 2 CO 3 .

И наконец, немного о карбидах. Обычно, когда говорят карбид, имеют в виду карбид кальция - источник ацетилена, а следовательно, многочисленных продуктов органического синтеза. Но карбид кальция, хотя и самое известное, но далеко не единственное очень важное и нужное вещество этой группы. Карбид бора B 4 C - важный материал атомной

техники , карбид кремния SiC или карборунд - важнейший абразивный материал. Карбидам многих металлов свойственны высокая химическая стойкость и исключительная твердость; карборунд, к примеру, лишь немного уступает алмазу. Его твердость по шкале Mooca равна 9,5-9,75 (алмаза - 10). Но карборунд дешевле алмаза. Его получают в электрических печах при температуре около 2000°С из смеси кокса и кварцевого песка.

По словам известного советского ученого академика И.Л. Кнунянца, органическую химию можно рассматривать как своеобразный мост, перекинутый наукой от неживой природы к высшей ее форме - жизни. А всего полтора столетия назад лучшие химики того времени сами считали и учили своих последователей, что органическая химия это наука о веществах, образующихся при участии и под руководством некоей странной «материи» - жизненной силы. Но скоро эту силу отправили на свалку естествознания. Синтезы нескольких органических веществ - мочевины, уксусной кислоты, жиров, сахароподобных веществ - сделали ее попросту ненужной.

Появилось классическое определение К. Шорлеммера, не потерявшее смысла и 100 лет спустя: «Органическая химия есть химия углеводородов и их производных, то есть продуктов, образующихся при замене водорода другими атомами или группами атомов».

Итак, органика - это химия даже не одного элемента, а лишь одного класса соединений этого элемента. Зато какого класса! Класса, поделившегося не только на группы и подгруппы - на самостоятельные науки. Из органики вышли, от органики отпочковались биохимия, химия синтетических полимеров, химия биологически активных и лекарственных соединений...

Сейчас известны миллионы органических соединений (соединений углерода!) и около ста тысяч соединений всех остальных элементов, вместе взятых.

Общеизвестно, что на углеродной основе построена жизнь. Но почему же именно углерод - одиннадцатый по распространенности на Земле элемент - взял на себя труднейшую задачу быть основой всего живого?

Ответ на этот вопрос неоднозначен. Во-первых, «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде». Во-вторых, углерод способен соединяться с большинством элементов, причем самыми разнообразными способами. В-третьих, связь атомов углерода между собой, так же как и с атомами водорода, кислорода, азота, серы, фосфора и прочих элементов, входящих в состав органических веществ, может разрушаться под воздействием природных факторов. Поэтому углерод непрерывно круговращается в природе: из атмосферы - в растения, из растений - в животные организмы, из живого - в мертвое,

из мертвого - в живое...

Четыре валентности атома углерода - как четыре руки. А если соединились два таких атома, то «рук» становится уже шесть. Или - четыре, если на образование пары затрачено по два электрона (двойная связь). Или - всего две, если связь, как в ацетилене, тройная. Но эти связи (их называют ненасыщенными) подобны бомбе в кармане или джину в бутылке. Они скрыты до поры до времени, но в нужный момент вырываются на волю, чтобы взять свое в бурной, азартной игре химических взаимодействий и превращений. Самые разнообразные конструкции образуются в результате этих «игрищ», если в них участвует углерод. В редакции «Детской энциклопедии» подсчитали, что из 20 атомов углерода и 42 атомов водорода можно получить 366 319 различных углеводородов, 366 319 веществ состава С 20 Н42. А если в «игре» не шесть десятков участников, а несколько тысяч; если среди них представители не двух «команд», а, скажем, восьми!

Где углерод, там многообразие. Где углерод, там сложности. И самые разные по молекулярной архитектуре конструкции. Простенькие цепочки, как в бутане CH 3 -CH 2 -CH 2 -CH 3 или полиэтилене -CH 2 -CH 2 -CH 2 - CH 2 -, и разветвленные структуры простейшая из них - изобутан.

С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19% (см. также АЛМАЗ; ФУЛЛЕРЕНЫ).

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ.

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Сюняев З.И. Нефтяной углерод . М., 1980
Химия гиперкоординированного углерода . М., 1990

Найти "УГЛЕРОД " на