Биографии Характеристики Анализ

Физико химические свойства океанической воды кратко. Химические свойства вод океана

Мировой океан и его части


Мировой океан 1 - единая непрерывная водная оболочка Земли, окружающая мате­рики и острова. Из 510 млн км 2 площади земного шара на его долю приходится 361,3 млн км 2 (70,8%), так что мы, в сущ­ности, живем на островах 2 . Южное полуша­рие более океаническое (81%), чем северное (61%). Неравномерное распределение вод Океана и суши на нашей планете - один из важнейших факторов формирования природы земного шара.

Объем Мирового океана более 1340 млн км 3 , а если учесть воду, которая содержится в илах океанического дна (примерно 10% от вод Оке­ана), то общий объем океаносферы составля­ет почти 1,5 млрд км 3 . Средняя глубина Оке­ана 3710 м.

1 Слово «океан» (греч. о/геапоз), обозначающее «ве­
ликая река, обтекающая всю Землю», пришло к нам из
древних времен. Термин «Мировой океан» предложен в
1917 г. русским океанологом Ю. М. Шокальским.

2 С помощью искусственных спутников Земли уста­
новлено, что действительная площадь Мирового океана
из-за неровностей океанической поверхности на 0,14%
больше проекции, которая обычно принимается для рас­
четов, и составляет 361,8 млн км 2 .


Мировой океан не только вода, это цело­стное природное образование, своеобразный географический объект планетарного масшта­ба. С позиций системных исследований он рас­сматривается как открытая динамическая са­морегулирующаяся система, которая обмени­вается веществом и энергией со всеми остальными сферами Земли.

Единый Мировой океан подразделяется на отдельные океаны. Океан - обширная часть Мирового океана, обособленная материками, обладающая своеобразной конфигурацией бе­реговой линии, определенными геологическим строением, рельефом дна и донными отложе­ниями, самостоятельными системами атмо­сферной циркуляции и течений, специфиче­скими гидрологическими характеристиками и природными ресурсами. Несмотря на услов­ность границ и свободный обмен водных масс, каждый океан неповторим. Но специфика оке­анов проявляется на фоне общепланетарных процессов и черт, присущих Мировому океа­ну в целом.

В современной мировой океанологической литературе сложилась концепция разделения Мирового океана на четыре океана: Тихий

Любушкина

(площадь 178,68 млн км 2 , максимальная глубина в Марианском желобе 11022 м), Атлантический (91,66 млн км 2 , глубина в желобе Пуэрто-Рико 8742 м), Индий­ский (76,17 млн км 2 , глубина в Яванском желобе 7729 м), Северный Ледовитый (14,75 млн км 2 , глубина в котловине Нансе­на 5527 м). Границы океанов проводят по ма­терикам, островам, а в водных просторах ли­бо по подводным поднятиям, затрудняющим водообмен, либо даже условно по меридианам и параллелям. Граница между Тихим и Атлан­тическим океанами проведена по меридиану мыса Горн (остров Огненная Земля), между Атлантическим и Индийским океанами - по меридиану мыса Игольный (юг Африки), Ин­дийским и Тихим океанами - по меридиану мыса Южный (остров Тасмания) и по запад­ным берегам полуострова Малакка, Больших и Малых Зондских островов. Граница Север­ного Ледовитого океана с Атлантическим про­ходит частично по подводным порогам и ост­ровам: от залива Согне-Фьорд (Скандинавский полуостров) через Фарерские острова и Ис­ландию, далее по южному склону возвышения дна Датского пролива до м. Брустер (о. Грен­ландия); затем по южному склону возвыше­ния в Девисовом проливе до полуострова Ла­брадор. Граница между Тихим и Северным Ле­довитым океанами проходит по Берингову проливу от мыса Дежнева на Чукотке до мы­са принца Уэльского на Аляске.


Рис. 78. Южный океан

В 1996 г. Федеральной службой геодезии и картографии России принято решение о выделении на картах, издаваемых в России-


ской Федерации, Южного океана. Северная граница акватории Южного океана определе­на вдоль линии среднего многолетнего поло­жения субтропического фронта (примерно вдоль 40° ю. ш. с отклонениями от 37° до 48°) (рис. 78).

Во всех океанах есть моря. Море - бо­лее или менее обособленная островами, по­луостровами и подводными возвышенностями часть Океана. Исключение составляет уни­кальное Саргассово «море без берегов», рас­положенное в антициклоническом кольце те­чений Северной Атлантики.

Ввиду некоторой изоляции и большого вли­яния суши и других местных условий, а так­же замедленного водообмена моря отличают­ся от открытой части Океана своим гидроло­гическим режимом и другими природными особенностями.

Моря классифицируют по разным при­знакам.

По местоположению моря подразде-ляют на окраинные, внутренние и межостров­ные. Окраинные моря расположены на под­водном продолжении материков и ограничены с одной стороны сушей, с другой - острова­ми и подводными возвышенностями. Их связь с Океаном довольно тесная (Баренцево, Бе­рингово, Тасманово и др.). Внутренние (сре­диземные) моря далеко вдаются в сушу, с океанами соединяются узкими проливами с по­рогами и резко отличаются от них по гидро­логическому режиму. Их, в свою очередь, под­разделяют на внутриматериковые (Балтий­ское, Черное и др.) и межматериковые (Средиземное, Красное и др.). К межостров­ным морям, окруженным более или менее плотным кольцом островов и подводными по­рогами, относят Яванское, Филиппинское и др. Их режим определяется степенью водообмена с Океаном.

В целом моря составляют около 10% пло­щади Мирового океана. Самые крупные мо­ря - Филиппинское - 5726 тыс. км 2 , Ара­вийское - 4832 тыс. км 2 , Коралловое - 4068 тыс. км 2 .

По происхождению котловин вы­деляются два основных типа морей: мате­риковые и океанические. Они, как правило, различаются также формой котловин и глубиной.

Материковые (эпиконтинентальные) моря расположены в пределах подводной окраины материка с континентальной земной корой, преимущественно на шельфе. Они воз­никают при наступлении Океана на сушу вслед­ствие либо колебаний земной коры, либо за счет увеличения воды в Океане после таяния покровных ледников. Большинство окраинных морей и многие внутриматериковые моря от-

носятся к этому типу. Окраинные моря име­ют асимметричную форму: склон со стороны суши у них пологий, со стороны океана (ост­ровов) - крутой. Глубины у них относи­тельно небольшие и нарастают в сторону океана.

Океанические (геосинклинальные) моря образуются в результате разломов земной ко­ры и опускания суши. К ним относятся преж­де всего моря переходных зон от материков к ложу океана и средиземные межматериковые моря. У них симметричные по форме котло­вины, глубины нарастают к центру до 2000 м и более. Обычно они рассекают материковый цоколь, и им свойственна в настоящее время тектоническая активность (вулканы, землетря­сения). Все межостровные моря тоже нахо­дятся в тектонически активных зонах Земли, а окружающие их острова являются, по суще­ству, вершинами подводных гор, нередко вул­канов.

Наряду с этими двумя основными типами морей существуют моря, имеющие признаки обоих типов, например Берингово море.

Моря в отличие от океанов представля­ют собой региональные комплексные природ­ные объекты, ибо их главные особенности формируются под влиянием местных фак­торов.

Береговая линия - граница суши и мо­ря, как правило, неровная, с изгибами в ви­де заливов и полуостровов. Вдоль нее обыч­ны острова, отделенные от материков и друг от друга проливами.

Залив - часть океана, довольно глубоко вдающаяся в сушу. Заливы менее изолирова­ны от сопредельных океанов, чем моря. По­этому режим их больше схож с теми аквато­риями, к которым они принадлежат. Заливы подразделяются на разные типы в зависимо­сти от ряда факторов. По происхождению выделяют, например, фьорды - узкие, длин­ные, глубокие заливы с крутыми берегами, вдающиеся в гористую сушу, образовавшиеся на месте тектонических разломов, впоследст­вии обработанных ледником и затопленных мо­рем (Согне-фьорд и др.); лиманы - мелкие заливы на месте затопленных морем устьевых частей рек (Днепровский лиман и др.); лагу­ны - заливы вдоль побережья, отделенные от моря косами (Куршский залив и др.). Есть деление заливов по размерам (самый боль­шой - Бенгальский - 2191 тыс. км 2), по глубине(онже - 4519 м), по ф ор м е бе­реговой линии: округлые (Бискайский), длинные и узкие (Калифорнийский).

Исторически сложилось так, что, по суще­ству, однотипные акватории называются то за­ливами, то морями, хотя по многим призна­кам они схожи: например, Бенгальский залив,


но Аравийское море, Мексиканский залив, но Карибское море, Персидский залив, но Крас­ное море и т. д. Эти несоответствия объясня­ются тем, что названия им давались в разное время без научного обоснования и по тради­ции сохранились до наших дней.

Пролив - относительно узкая часть оке­ана или моря, разделяющая два участка суши и соединяющая два смежных водоема. Проли­вам нередко свойственно поднятие дна - под­водный порог. Проливы тоже подразделяют на разные типы по ряду признаков. По морфо­логии выделяют узкие и широкие проливы (самый широкий - пролив Дрейка - 1120 км), короткие и длинные (самый длин­ный - Мозамбикский - 1760 км), мелкие и глубокие (самый глубокий - тоже пролив Дрейка - 5249 м). По направлению в проливах вод их подразделяют на про­точные, в которых течение, как в реке, на­правлено в одну сторону, например Флорид­ский пролив с Флоридским течением, и на об­менные, в которых наблюдаются течения в противоположных направлениях: либо у раз­ных берегов (в Девисовом проливе теплое За­падно-Гренландское течение направлено на се­вер, а холодное Лабрадорское - на юг), ли­бо в противоположных направлениях на двух разных уровнях (в проливе Босфор поверхно­стное течение следует из Черного моря в Мра­морное, а глубинное - наоборот).

Полуостров - часть суши, вдающаяся в океан или море и окруженная с трех сторон водой. Самый крупный полуостров - Аравий­ский (2732 тыс. км 2). Выделяют коренные и аккумулятивные полуострова. Коренные под­разделяются на отчленившиеся, являющиеся продолжением материка в геологическом от­ношении (Кольский полуостров), и причле-нившиеся - самостоятельные части суши, геологически не связанные с материком, а при­соединившиеся к нему (полуостров Индостан). Аккумулятивные полуострова присоединяют­ся к берегу за счет перемычки наносной суши в результате волновой деятельности (например, полуостров Бузачи на Каспийском море).

Остров - небольшой по сравнению с материками участок суши, окруженный со всех сторон водой. Встречаются одиночные острова (самый крупный - Гренландия - 2176 тыс. км 2) и скопления островов - ар­хипелаги (Канадский архипелаг, Северная Земля). По происхождению острова под­разделяются на две основные группы: матери­ковые и океанические. Материковые - те, которые отделились от материков; они обыч­но крупные и располагаются на подводной окраине материков (Великобритания, Новоси­бирские острова и др.). Океанические (само-

I 11111 300 200 100

Уровень океана

Рис. 79. Изменение уровня Мирового океана и его воз­можные пределы за последние 350 тыс. лет (по Р Фейр-бриджу)

стоятельные), в свою очередь, подразделяют на вулканические и коралловые (органоген­ные). Вулканические острова - результат извержения подводных вулканов, вершины ко­торых оказались над уровнем Океана. Они ли­бо образуют цепочку островов вдоль глубоко­водных желобов в переходной зоне океана (Ку­рильские), либо являются выходами на поверхность срединно-океанических хребтов (остров Исландия - часть такого подводно­го хребта с разломом вдоль оси, активным вулканизмом и интенсивной гидротермальной деятельностью). Нередко это сводово-глыбо-вые подводные хребты на ложе океана, греб­ни которых увенчаны вулканическими горами (Гавайские острова). По дну океанов, особен­но Тихого, рассеяно огромное количество оди­ночных островов вулканического происхожде­ния. Коралловые острова характерны для жаркого пояса, особенно много их в Тихом и Индийском океанах. Коралловые сооруже­ния - атоллы имеют форму кольца или подковы диаметром до нескольких десятков ки­лометров вокруг мелководной лагуны. Осно­ванием для них обычно служат плосковершин­ные подводные вулканы - гайоты. Иногда атоллы образуют гирлянды вдоль берегов - барьерные рифы, например Большой Барьер­ный риф, протянувшийся вдоль восточного по­бережья Австралии на 2000 км.

Уровенная поверхность океана - сво­бодная водная поверхность океанов и морей,


близкая к геоидной форме. В нашей стране за исходный уровень - стандарт, от которого отсчитываются абсолютная высота поверх­ности суши и глубины морей, берется сред­ний многолетний уровень Балтийского моря у Кронштадта (Балтийская система высот).

Уровень Мирового океана подвержен раз­ного рода колебаниям, как периодическим, так и непериодическим. К периодическим коле­баниям относятся, например, суточные коле­бания из-за приливов-отливов, годовые из-за температуры, осадков, ветров. Непери­одические колебания возникают из-за про­хождения тропических циклонов, цунами, моретрясений и т. д. Периоды колебаний могут быть короткими (прилив-отлив через 6 ч 12,5 мин) и длительными, вековыми (сот­ни лет). Например, многие постройки Скан­динавии, некогда возведенные на берегу мо­ря, находятся сейчас далеко от него. А в Гол­ландии, Венеции происходит опускание суши и наступление моря.

Вековые изменения могут быть вызваны разными причинами: изменениями объема воды в Океане (гидрократические, или эв-статические, колебания) или изменениями емкости Океана (геократические, или тек­тонические, колебания). Геократические ко­лебания вызваны тектоническими нарушения­ми дна Океана, из-за чего изменяется объем Мирового океана.

Это неоднократно происходило в течение геологического времени, вызывая трансгрес­сии (наступление) и регрессии (отступание) моря.



-10000 -8000 -6000 -4000 -2000 Н, м - уровни океана (0 - современный уровень)

Взаимосвязанные теократические и гидро-кратические изменения неоднократно происхо­дили в плейстоцене. При похолодании огром­ная масса воды в виде льда консервировалась на суше и уровень Океана понижался на 100-120 м.

При потеплении во время межледниковий в результате таяния льда вода поступала в Океан и его уровень повышался (рис. 79). На характер колебаний уровня Океана в четвер­тичный период определенное влияние оказы­вали гляциоизостатические компенсации. На рисунке 80 отражено направленное повыше­ние уровня Мирового океана после окончания четвертичных оледенений в голоцене (около 10 тыс. лет назад). Видно, что он достиг сво­его современного положения примерно в се­редине атлантического периода голоцена око­ло 6 тыс. лет назад и с тех пор испытывает периодические колебания вокруг нулевой от-


Рис. 80. Изменение уровня Мирового океана и его воз­можные отклонения в голоцене (по Р К. Клиге и др.)

метки. Вместе с тем повышение уровня Ми­рового океана за последние 100 лет на 16 см связывают с глобальным антропогенным по­теплением климата на Земле, которое вызва­ло таяние ледников и тепловое расширение воды в Океане (рис. 81). Расчеты свидетель­ствуют о дальнейшем повышении уровня Оке­ана примерно на 20-30 см к середине XXI в., хотя крайние оценки существенно рас­ходятся: от 5-7 см до 140 см. Общая кар­тина изменения уровня Океана весьма слож­на и обычно вычисляется для определенных пунктов наблюдений.

Рис. 81. Современные изменения уровня Мирового оке­ана (по Р. К. Клиге и др.)

Основные физико-химические свойства океанской (морской) воды


Океанская вода - универсальный одно­родный ионизированный раствор, в состав ко­торого входят все химические элементы. В рас­творе находятся твердые минеральные ве­щества (соли) и газы, а также взвеси органического и неорганического происхож­дения.

Соленость морской воды. По массе рас­творенные соли составляют всего 3,5%, но они придают воде горько-соленый вкус и дру­гие свойства. Состав морской воды и содер­жание в ней разных групп солей видны из таб­лицы 8. Морская вода по составу резко от­личается от речной воды, ибо в ней преобладают хлориды. Интересно отметить, что состав солей плазмы крови близок к составу солей морской воды, в которой, как считают многие ученые, зародилась жизнь.

Таблица 8

(в % от всей массы солей) (по Л. К. Давыдову и др.)

Соленость - количество солей в грам­мах в I кг морской воды. Средняя соленость Океана 35% 0 . Из 35 граммов солей в мор­ской воде больше всего поваренной соли (око­ло 27 г), поэтому она соленая. Горький вкус ей придают соли магния. Линии на карте, со­единяющие точки с одинаковой соленостью, называются изогалинами.

Океанская вода образовалась из горячих соленых растворов земных недр и газов, так что соленость ее изначальная. Состав мор­ской воды напоминает состав ювенильных вод, т. е. вод и газов, выделяющихся при вулка­нических извержениях из магмы и впервые вступающих в круговорот воды на Земле. Га-


зы, выделяемые из современных вулканов, со­стоят преимущественно из водяного пара (око­ло 75%), углекислого газа (до 20%), хлора (7%), метана (3%), серы и других компонен­тов.

Первоначальный состав солей морской во­ды и соленость ее были несколько иными. Из­менения, которые она претерпела в процессе эволюции Земли, были вызваны прежде все­го появлением жизни, особенно механизма фо­тосинтеза и связанного с ним продуцирования кислорода. Некоторые изменения, по-видимо­му, вносили речные воды, которые на первых порах выщелачивали горные породы на суше и доставляли в Океан легкорастворимые со­ли, а в дальнейшем - в основном карбона­ты. Однако живые организмы, особенно жи­вотные, потребляли огромное количество сна­чала кремния, а потом кальция для образования своих внутренних скелетов и раковин. После отмирания они погружались на дно и выпада­ли из круговорота минеральных веществ, не увеличивая содержание карбонатов в морской воде.

В истории развития Мирового океана бы­ли периоды, когда соленость колебалась в сто­рону уменьшения или увеличения. Это проис­ходило как в результате геологических при­чин, ибо тектоническая активизация недр и вулканизм влияли на активность дегазации маг­мы, так и за счет климатических изменений. В суровые ледниковые эпохи, когда большие массы пресной воды консервировались на су­ше в виде ледников, соленость возрастала. При потеплении в межледниковые эпохи, ког­да в Океан поступали талые ледниковые во­ды, она уменьшалась. В аридные эпохи соле­ность увеличивалась, во влажные - умень­шалась.

В распределении солености поверхностных вод примерно до глубины 200 м прослежива­ется зональность, что связано с балансом (приходом и расходом) пресной воды, и преж­де всего с количеством выпадающих осадков и испарением. Уменьшают соленость морской воды речные воды и айсберги.

В экваториальных и субэкваториальных ши­ротах, где осадков выпадает больше, чем тра­тится воды на испарение (К увлажнения >1), и велик речной сток, соленость чуть менее 35% 0 . В тропических и субтропических широ­тах из-за отрицательного пресного баланса (осадков мало, а испарение велико) соленость составляет 37% 0 . В умеренных широтах со­леность близка к 35%о. В приполярных и по­лярных широтах соленость наименьшая - око-

ло 32%о, поскольку количество осадков пре­вышает испарение, велик речной сток, осо­бенно сибирских рек, много айсбергов, глав­ным образом вокруг Антарктиды и Гренландии.

Зональную закономерность солености на­рушают морские течения и приток речных вод. Например, в умеренных широтах северного по­лушария соленость больше у западных бере­гов материков, куда поступают субтропиче­ские воды повышенной солености, приносимые теплыми течениями, меньше - у восточных берегов материков, куда холодные течения при­носят менее соленые субполярные воды.

Из океанов наибольшей соленостью обла­дает Атлантический океан. Это объясняется, во-первых, сравнительной узостью его в низ­ких широтах в сочетании с близостью к Аф­рике с ее пустынями, откуда на океан беспре­пятственно дует жаркий сухой ветер, повыша­ющий испарение морской воды. Во-вторых, в умеренных широтах западный ветер уносит ат­лантический воздух далеко в глубь Евразии, где из него выпадает значительная часть осад­ков, не полностью возвращающихся в Атлан­тический океан. Соленость Тихого океана мень­ше, так как он, наоборот, широк в экватори­альном поясе, где соленость воды пониженная, а в умеренных широтах Кордильеры и Анды задерживают обильные осадки на наветренных западных склонах гор, и они вновь поступают в Тихий океан, рассоляя его.

Наименьшая соленость воды в Северном Ледовитом океане, особенно у Азиатского по­бережья, близ устьев сибирских рек - ме­нее 10% 0 . Однако в приполярных широтах происходит сезонное изменение солености во­ды: осенью - зимой при образовании мор­ского льда и уменьшении речного стока соле­ность возрастает, весной - летом при тая­нии морского льда и увеличении речного стока - уменьшается. Вокруг Гренландии и Антарктиды летом соленость становится мень­ше еще и за счет тающих айсбергов и подта­ивания краевых частей покровных и шельфо-вых ледников.


Рис. 82. Типы вертикального распределения солености (по Л. К. Давыдову и др.)

Максимальная соленость воды наблюдает­ся в тропических внутренних морях и заливах, окруженных пустынями, например в Красном море - 42% 0 , в Персидском заливе - 39% 0 .

Несмотря на различную соленость морской воды в разных акваториях Океана, процент­ное соотношение растворенных в ней солей неизменно. Оно обеспечивается подвижностью воды, непрерывным горизонтальным и верти­кальным ее перемешиванием, что в совокуп­ности приводит к общей циркуляции вод Ми­рового океана.

Изменение солености воды по вертикали в океанах различно. Намечено пять зональных типов вертикального распределения солено­сти: I - полярный, II - субполярный, III - умеренный, IV - тропический и V - эква­ториальный. Они представлены в виде графи­ков на рисунке 82.

Распределение солености по глубине в мо­рях весьма различно в зависимости от вели­чины баланса пресной влаги, интенсивности вертикального перемешивания и водообмена с соседними акваториями.

Годовые колебания солености в открытых частях Океана незначительны и в поверхно­стных слоях не превышают 1%о, а с глубины 1500-2000 м соленость в течение года прак­тически неизменна. В прибрежных окраинных морях и заливах сезонные колебания солено­сти воды значительнее. В морях Северного Ледовитого океана в конце весны соленость снижается за счет притока речных вод, а в акваториях с муссонным климатом летом - еще и за счет обилия осадков. В полярных и субполярных широтах сезонные изменения со­лености поверхностных вод обусловлены в большей степени процессами замерзания во­ды осенью и таяния морских льдов весной, а также таянием ледников и айсбергов во время полярного дня, о чем будет сказано позже.

Соленость воды влияет на многие ее физические свойства: температуру, плотность, электропроводность, скорость распростра­нения звука, быстроту образования льда и др.

Интересно заметить, что в морях близ кар­стовых побережий на дне нередки мощные под­водные (субмаринные) источники пресной во­ды, поднимающиеся к поверхности в виде фон­танов. Такие «пресные окна» среди соленой воды известны у берегов Югославии в Адриа­тическом море, у берегов Абхазии в Черном море, у берегов Франции, Флориды и в дру­гих местах. Эта вода используется моряками для хозяйственно-бытовых нужд.

Газовый состав океанов. В морской во­де, кроме солей, растворены газы азот, кис­лород, диоксид углерода, сероводород и др. И хотя содержание газов в воде крайне не­значительно и заметно изменяется в прост­ранстве и во времени, их достаточно для раз­вития органической жизни и биогеохимиче­ских процессов.

Кислорода в морской воде больше, чем в атмосфере, особенно в верхнем слое (35% при температуре 0°С). Главным источником его служит фитопланктон, который называют «лег­кими планеты». Глубже 200 м содержание кис­лорода уменьшается, но с 1500 м вновь воз­растает, даже в экваториальных широтах, за счет поступления вод из приполярных обла­стей, где насыщенность кислородом достигает 70 - 90%. Расходуется кислород путем отдачи в атмосферу при избытке его в поверхност­ных слоях (особенно днем), на дыхание мор­ских организмов и на окисление различных ве­ществ. Азота в морской воде меньше, чем в атмосфере. Содержание свободного азота свя­зано с распадом органических веществ. Рас­творенный в воде азот усваивается особыми бактериями, перерабатывается в азотистые со­единения, которые имеют большое значение для жизни растений и животных. В морской воде растворено некоторое количество свобод­ной и связанной углекислоты, которая попа­дает в воду из воздуха при дыхании морских организмов, при разложении органических ве­ществ, а также при вулканических изверже­ниях. Она важна для биологических процес­сов, так как это единственный источник угле­рода, который необходим растениям для построения органического вещества. Серово­дород образуется в глубоких застойных кот­ловинах в нижних частях водных толщ при разложении органических веществ и в резуль­тате жизнедеятельности микроорганизмов (на­пример, в Черном море). Так как сероводород является сильно ядовитым веществом, он рез­ко понижает биологическую продуктивность воды.


Поскольку растворимость газов интенсив­нее при низких температурах, воды высоких широт содержат их больше, в том числе важ­нейшего для жизни газа - кислорода. По­верхностные воды там даже перенасыщены кислородом и биологическая продуктивность вод выше, чем в низких широтах, хотя видо­вое разнообразие животных и растений бед­нее. В холодное время года Океан поглощает газы из атмосферы, в теплое время он выде­ляет их.

Плотность - важное физическое свой­ство морской воды. Морская вода плотнее пресной воды. Чем выше соленость и ниже температура воды, тем плотность ее больше. Плотность поверхностных вод увеличивается от экватора к тропикам благодаря нарастанию солености и от умеренных широт к полярным кругам в результате понижения температуры, а зимой еще и за счет увеличения солености. Это приводит к интенсивному опусканию по­лярных вод в холодный сезон, который про­должается 8-9 месяцев. В придонных слоях полярные воды движутся к экватору, вследст­вие чего глубинные воды Мирового океана в целом холодные (2-4 °С), но обогащенные кислородом.

Цвет и прозрачность зависят от отра­жения, поглощения и рассеяния солнечного света, а также от взвешенных в воде веществ органического и минерального происхождения. Синий цвет присущ воде в открытой части Океана, где нет взвесей. У побережий, где много взвесей, приносимых реками и времен­ными водотоками с суши, а также за счет взмучивания прибрежного грунта при волне­нии, цвет воды зеленоватый, желтый, корич­невый и др. При обилии планктона цвет во­ды синевато-зеленый.

Для визуальных наблюдений цвета морской воды используется шкала цветности, состоя­щая из 21 пробирки с цветными раствора­ми - от синего до коричневого цвета. Цвет воды нельзя отождествлять с цветом поверх­ности моря. Он зависит от погодных условий, особенно от облачности, а также от ветра и волнения.

Прозрачность лучше в открытой части Оке--ана, например в Саргассовом море, - 67 м, хуже - у побережий, где много взвесей. Про­зрачность уменьшается в период массового развития планктона.

Свечение моря (биолюминесценция) - это свечение в морской воде живых организ­мов, содержащих фосфор и испускающих «жи­вой» свет. Светятся прежде всего простейшие низшие организмы (ночесветка и др.), неко­торые бактерии, медузы, черви, рыбы во всех слоях воды. Поэтому мрачные глубины Океа­на не совсем лишены света. Свечение усили-

вается при волнении, поэтому судам ночью со­путствует настоящая иллюминация. Среди био­логов нет единого мнения о назначении све­чения. Предполагают, что оно служит либо для отпугивания хищников, либо для поисков пи­щи, либо для привлечения особей противопо­ложного пола в темноте. Холодное свечение морских рыб позволяет находить их косяки ры­боловным судам.

Звукопроводимость - акустическое свойство морской воды. Распространение зву­ка в морской воде зависит от температуры, солености, давления, содержания газов и взве­сей. В среднем скорость звука в Мировом оке­ане колеблется в пределах 1400-1550 м/с. С повышением температуры, увеличением со­лености и давления она увеличивается, при уменьшении - убывает. В океанах обнаруже­ны слои с разной проводимостью звука: зву-корассеивающий слой и слой, обладающий звуковой сверхпроводимостью, - подводный


«звуковой канал». К звукорассеивающему слою приурочены скопления зоопланктона и соответственно рыб. Он испытывает суточные миграции: ночью поднимается, днем опускает­ся. Его используют подводники, так как он гасит шум от двигателей подводных лодок, и рыболовные суда - для обнаружения косяков рыб. «Звуковой канал» начали ис­пользовать для краткосрочного прогноза волн цунами, в практике подводной навигации для сверхдальней передачи акустических сигналов.

Электропроводность морской воды вы­сокая. Она прямо пропорциональна солено­сти и температуре.

Естественная радиоактивность мор­ских вод мала, но многие растения и живот­ные способны концентрировать радиоактивные изотопы. Поэтому в настоящее время улов ры­бы и других морепродуктов проходит спецпро­верку на радиоактивность.

Солёность является важнейшая особенность океанской воды. Этот раствор содержит почти все известные на Земле химические элементы. Общее количество солей 50-10 16 т. Они могут покрыть дно океана слоем могут покрыть дно океана слоем 60 м, всю Землю – 45 м, сушу – 153 м. Соотношение солей в океанской воде остается постоянным, это обеспечивается высокой динамикой океанских вод. В составе преобладают NaCl (77,8 %), MgCl (10,9 %) и др.

Средняя соленость океана воды 35 0 / 00 . Отклонение от средней солености в ту или иную сторону вызывается изменениями в приходно-расходном балансе пресной воды. Так, атмосферные осадки, воды с ледников, сток с суши уменьшают соленость; испарение – повышает соленость.

В распределении солености в океане существуют как зональные, так и региональные черты. Зональные черты связаны с климатическими условиями (распределение осадков и испарения). В экваториальной зоне воды слегка рассолены (О>E), в тропических и субтропических широтах (E>O) соленость максимальная для поверхностных вод океана – 36-37 0 / 00 , к северу и югу от этой зоны соленость понижается. Понижению солености в высоких широтах способствует таяние льдов.

Широтную зональность в распределении солености на поверхности океана нарушают течения. Теплые повышают соленость, холодные – понижают. Средняя соленость океанов на поверхности различна. Наибольшей соленостью обладает Атлантический океан – 35,4 0 / 00 , наименьшей Северный Ледовитый океан – 32 0 / 00 (велика опресняющая роль сибирских вод). Изменения солености связаны в основном с поверхностными слоями, непосредственно получающими пресные воды и определяемые глубиной перемешивания. Все изменения солености происходят в верхних слоях до глубин 1500 м., глубже соленость не меняется.

Температура воды Мирового океана.

Изменения в ходе элементов теплового баланса определяют ход температуры воды. Суточные амплитуды колебания температуры воды на поверхности океана не превышают в среднем 0,5 0 C, Наибольшая суточная амплитуда в низких широтах (до 1 0 C), наименьшая – в высоких (до 0 0 C). Суточные колебания температуры в океане играют подчиненную роль.

Годовые амплитуды колебаний температуры на поверхности океана больше, чем суточные. Годовые колебания температуры невелики в низких (1 0) и высоких (2 0) широтах. В первом случае большое количества равномерно распределяется в течение года, во втором – за короткое лето вода не успевает сильно нагреваться. Наибольшие годовые амплитуды (от 10 0 до 17 0) отмечаются в умеренных широтах. Наибольшие средние годовые температуры воды (27-28 0) наблюдаются в экваториальных и тропических широтах, к северу и югу от них температура понижается до 0 0 С и ниже в полярных широтах. Термический экватор располагается примерно на 5 0 С с.ш. Океанские течения нарушают зональное распределение температуры. Течения, которые переносят тепло по направлению к полюсам (например, Гольфстрим), выделяются в виде положительных температурных аномалий. Поэтому в тропических широтах под воздействием течений температура воды у восточных берегов выше, чем у западных, а в умеренных широтах, наоборот у западных выше, чем у восточных. В южном, более мористом полушарии, зональность в распределении температур воды почти не нарушается. Самая высокая температура на поверхности океана (+32 0 С) наблюдалась в августе в Тихом океане, самая низкая в феврале в Северном Ледовитом океане (-1,7 0 С). В среднем за год поверхность океана в южном полушарии холоднее, чем в северном (влияние Антарктиды). Средняя годовая температура на поверхности океана +17,4 0 С, что выше, чем годовая температура воздуха +14 0 . Самый теплый – Индийский океан – около +20 0 С. Тепло солнечной радиации, нагревающей верхний слой воды, крайне медленно передается нижележащим слоям. Перераспределение тепла в толще океанской воды происходит благодаря конвекции и перемешиванию волнениями и течениями. Отсюда, температура с глубиной понижается. На глубине где-то около 100-200 м температура резко падает. Слой резкого падения температуры воды с глубиной называют термоклином.

Термоклин в океане от экватора до 50-60 0 с. и ю.ш. существует постоянно на глубинах от 100 до 700 м. В Северном Ледовитом океане температура воды до глубины 50-100 м падает, а затем растет достигая максимума на глубине 200-600 м. Это повышение температуры вызвано проникновением из умеренных широт теплых вод, более соленых, чем верхние слои воды.

Лед в океане появляется в высоких широтах при понижении температуры воды ниже точки замерзания. Температура замерзания зависит от её солености. Чем выше соленость, тем ниже температура замерзания. Лед имеет меньшую плотность, чем пресный лед. Соленый лед менее прочный, чем пресный, но более пластичный и вязкий. Он не ломается на зыби (слабом волнении). Приобретает зеленоватый оттенок, в отличие от голубого цвета у пресного льда. Лед в океане может быть неподвижным и плавучим. Неподвижный лед – сплошной ледяной покров, связанный с сушей или мелью. Обычно это ледяной припай. Плавучий лед (дрейфующий) не связан с берегом и перемещается под действием ветра и течений.

Температурный режим вод МО. Температурный режим вод МО определяется тепловым балансом. Океан получает теплоту за счет суммарной солнечной радиации. от конденсации влаги на водной поверхности, льдообразования и химико-биологических процессов, идущих с выделением теплоты; в океан поступает теплота, приносимая атмосферными осадками, речными водами; на температуре глубоководных слоев сказывается теплота Земли (об этом свидетельствуют высокие до 260 0 С температуры во впадинах Красного моря – вода здесь горячий рассол с соленостью 270 0 / 00). Теряется теплота за счет эффективного излучения водной поверхности, испарения воды, таяния льда, турбулентного обмена с атмосферой, нагрева холодной воды рек и течений. Определяющее значение в тепловом балансе имеет приход солнечной радиации и расход тепла на испарение.

Средняя годовая температура МО составляет 17,4 0 С, наибольшая средняя годовая температура воды отмечена для Тихого океана (19,1 0 С), наименьшая – для Северного Ледовитого океана (0,75 0 С). Распределение теплоты в толще океанской воды происходит благодаря конвекции и перемешиванию в результате волнения и течений. Температура воды с глубиной понижается. На некоторой глубине в толще воды наблюдается резкое понижение температуры, здесь выделяется слой температурного скачка – термоклин. По изменению температуры воды с глубиной выделяется несколько типов распределения температур.

В экваториальном типе температура воды быстро уменьшается от 26,65 0 С на поверхности до 10,74 0 С на глубине 300 м. Термоклин наблюдается на глубине 200-300 м. Далее до глубины 1000 м температура воды уменьшается медленно, а глубже остается практически постоянной.

В тропическом типе температура воды резко падает от 26,06 0 С до 13,60 0 С на глубине 300 м, далее температура воды изменяется более плавно.

В субтропическом типе температура воды уменьшается от 20,3 0 С на поверхности до 13,1 0 С на глубине 300 м. В субполярном типе температура уменьшается от 8,22 0 С на поверхности до 5,20 0 С на глубине 150 м. Полярный тип характеризуется уменьшением температуры воды до глубины 100 м, затем температура начинает повышаться до 1,8 0 С на глубине 400 м. За счет притока теплых атлантических вод. На глубине 1000 м температура воды равна 1,55 0 С. В слое от поверхности до глубины 1000 м наблюдается зональное изменение температуры и солености воды, глубже характеристики воды остаются практически постоянными.

Физико-химические свойства вод МО. Еще в начале 19 в. было замечено, что количество растворенных в водах океана солей может сильно различаться, но солевой состав, соотношение различных солей вод МО одинаковы. Эта закономерность формулируется как свойство постоянства солевого состава морских вод. На 1 кг морской воды приходится 19,35 г хлора, 2,70 г сульфатов, 0,14 г гидрокарбонатов, 10,76 г натрия, 1,30 г магния, 0,41 г кальция. Количественное соотношение между главными солями в воде МО остается постоянным. Общая соленостьопределяется по количеству хлора в воде (формулу получил М. Кнудсен в 1902 г.):


S = 0,030 + 1,805 Cl

Воды океанов и морей относятся к хлоридному классу и натриевой группе, этим они резко отличаются от речных вод. Всего восемь ионов дают более 99,9% общей массы солей в морской воде. На оставшиеся 0,1% приходятся все остальные элементы таблицы Д.И. Менделеева.

Распределение солености в водных массах зонально и зависит от соотношения осадков, притока речных вод и испарения. Кроме того, на соленость воды оказывает влияние циркуляция вод, деятельность организмов и другие причины. На экваторе отмечается пониженная соленость воды (34-33 0 / 00), обусловленная резким увеличением атмосферных осадков, стоком полноводных экваториальных рек и немного пониженным испарением из-за высокой влажности. В тропических широтах наблюдается самая высокая соленость вод (до 36,5 0 / 00), связанная с высоким испарением и небольшим количеством осадков в барических максимумах давления. В умеренных и полярных широтах соленость вод понижена (33-33,5 0 / 00), что объясняется увеличением количества осадков, стоком речных вод и таянием морских льдов.

Широтное распределение солености нарушают течения, реки и льды. Теплые течения в океанах переносят более соленые воды в направлении высоких широт, холодные течения переносят менее соленые воды к низким широтам. Реки опресняют приустьевые районы океанов и морей. Очень велико влияние рек Амазонки (опресняющее влияние Амазонки ощущается на расстоянии 1000 км от устья), Конго, Нигера и др. Льды оказывают сезонное влияние на соленость вод: зимой при образовании льда соленость воды возрастает, летом при таянии льда – уменьшается.

Соленость глубинных вод МО однообразна и в целом составляет 34,7-35,0 0 / 00 . Соленость придонных вод более разнообразна и зависит от вулканической деятельности на дне океана, выходов гидротермальных вод, разложения организмов. Характер изменения солености вод океана с глубиной различен на разных широтах. Выделяют пять основных типов изменения солености с глубиной.

В экваториальных широтах соленость с глубиной постепенно возрастает и достигает максимального значения на глубине 100 м. На этой глубине к экватору подходят более соленые и плотные воды их тропических широт океанов. До глубины 1000 м соленость очень медленно повышается до 34,62 0 / 00 , глубже соленость практически не меняется.

В тропических широтах соленость немного увеличивается до глубины 100 м, затем плавно уменьшается до глубины 800 м. На этой глубине в тропических широтах наблюдается самая низкая соленость (34,58 0 / 00). Очевидно, здесь распространяются менее соленые, но более холодные воды высоких широт. С глубины 800 м она немного увеличивается.

В субтропических широтах соленость быстро уменьшается до глубины 1000 м (34,48 0 / 00), затем становится почти постоянной. На глубине 3000 м она составляет 34,71 0 / 00 .

В субполярных широтах соленость с глубиной медленно увеличивается с 33,94 до 34,71 0 / 00 , в полярных широтах соленость с глубиной возрастает более существенно – с 33,48 до 34,70 0 / 00 .

Соленость морей сильно отличается от солености МО. Соленость воды Балтийского (10-12 0 / 00), Черного (16-18 0 / 00), Азовского (10-12 0 / 00), Белого (24-30 0 / 00) морей обусловлена опресняющим влиянием речных вод и атмосферных осадков. Соленость воды в Красном море (40-42 0 / 00) объясняется малым количеством осадков и большим испарением.

Средняя соленость вод Атлантического океана – 35,4; Тихого – 34,9; Индийского – 34,8; Северного Ледовитого океана – 29-32 0 / 00 .

Плотность – отношение массы вещества к его объему (кг/м 3). Плотность воды зависит от содержания солей, температуры и глубины, на которой находится вода. При увеличении солености воды плотность возрастает. Плотность воды увеличивается при понижении температуры, при увеличении испарения (так как увеличивается соленость воды), при образовании льда. С глубиной плотность растет, хотя и очень незначительно из-за малого коэффициента сжимаемости воды.

Плотность воды изменяется зонально от экватора к полюсам. На экваторе плотность воды небольшая – 1022-1023, что обусловлено пониженной соленостью и высокими значениями температуры воды. К тропическим широтам плотность воды возрастает до 1024-1025 из-за увеличения солености воды вследствие повышенного испарения. В умеренных широтах плотность воды средняя, в полярных – увеличивается до 1026-1027 из-за понижения температуры.

Способность воды растворять газы зависит от температуры, солености и гидростатического давления. Чем выше температура и соленость воды, тем меньше газов может в ней раствориться.

В воде океанов растворены различные газы: кислород, углекислый газ, аммиак, сероводород и др. Газы попадают в воду из атмосферы, за счет речного стока, биологических процессов, подводных вулканических извержений. Наибольшее значение для жизни в океане имеет кислород. Он участвует в планетарном газообмене между океаном и атмосферой. В активном слое океана ежегодно образуется 5 х 10 10 т кислорода. Поступает кислород из атмосферы и выделяется при фотосинтезе водных растений, расходуется на дыхание и окисление.

Углекислый газ находится в воде в основном в связанном состоянии, в виде углекислых соединений. Он выделяется при дыхании организмов, при разложении органического вещества, расходуется на строительство скелета кораллами.

Азот всегда есть в воде океана, но его содержание по отношению к другим газам меньше, чем в атмосфере. В некоторых морях в глубине может накапливаться сероводород, происходит это благодаря деятельности бактерий в бескислородной среде. В Черном море отмечено сероводородное загрязнение, содержание его достигло 6,5 см 3 /л, организмы в такой среде не живут.

Прозрачность воды зависит от рассеяния и поглощения солнечной радиации, от количества минеральных частиц и планктона. Наибольшая прозрачность отмечена в открытом океане в тропических широтах и равна 60 м. Уменьшается прозрачность воды на мелководье вблизи устьев рек. Особенно резко уменьшается прозрачность воды после шторма (до 1 м на мелководье). Наименьшая прозрачность наблюдается в океане в период активного размножения планктона. От прозрачности воды зависит глубина проникновения солнечных лучей в толщу океана и, следовательно, распространение фотосинтезирующих растений. Организмы, способные усваивать солнечную энергию, живут на глубине до 100 м.

Толща чистой воды имеет голубой или синий цвет, большое количество планктона приводит к появлению зеленоватого оттенка, вблизи рек вода может быть коричневой.

Наименование параметра Значение
Тема статьи: Химические свойства вод океана
Рубрика (тематическая категория) География

Физико-химические свойства вод океана

Теоретически не растворимых в воде веществ не существует, в связи с этим в морской воде содержатся почти всœе элементы таблицы Менделœеева. Правда, некоторые элементы находятся в столь малых количествах, что их присутствие обнаруживается только в морских организмах, собирающих эти элементы из окружающей их морской воды. Таковы, к примеру, кобальт, никель и олово, найденные в крови голотурий, омаров, устриц и других животных. Присутствие некоторых других элементов доказывается лишь их наличием в морских отложениях.

Среднее количество растворенных в водах Мирового океана твердых веществ составляет около 3,5% по весу. Больше всœего в морской воде содержится хлора - 1,9%. натрия - 1,06%. магния - 0,13%, серы -0,088%, кальция - 0,040%, калия - 0,038%, брома - 0,0065%, углерода - 0,003%. Содержание остальных элементов, в т.ч. биогенных и микроэлементов, ничтожно мало, менее 0,3%. В водах океана обнаружены драгоценные металлы, но концентрация их незначительна, и при общем большом количестве в океане (золота - 55 ‣‣‣ 10 5 т, серебра - 137 ‣‣‣ 10 6 т) добыча их нерентабельна.

Главнейшие распространенные в воде элементы обычно находятся в ней не в чистом виде, а в виде соединœений (солей). Основными из них являются: 1) хлориды (NaCl, MgCl), доля которых равна 88,7% всœех растворимых в воде веществ. Οʜᴎ придают воде горько-соленый вкус;

2) сульфаты (МgSО 4 , СаSО 4 , Ка 2 SО 4), которых в морской воде содержится 10,8%;

3) карбонаты (СаСО 3), доля которых составляет 0,3% всœех растворенных солей.

Для планетарного обмена веществ весьма важно то обстоятельство, что хлористые соединœения, преобладающие в морских водах, находятся в реках в очень малом количестве (табл. 4). Напротив, карбонаты, в основном формирующие солевой состав речных вод, почти отсутствуют в океане.

Общее содержание твердых веществ, растворенных в морской воде, принято выражать в тысячных долях весовых единиц - промилле и обозначать знаком % 0 . Содержание растворенных твердых веществ, выраженное в промилле и численно равное их весу, выраженному в граммах в одном килограмме морской воды, принято называть соленостью. Средняя соленость океанических вод 35°/оо, т. е. в 1 кг вод содержится 35 г солей.

Таблица 4 Состав растворенных солей (в %) океанических и речных вод

Установлено, что состав веществ (их соотношение), определяющий соленость морской воды, почти одинаков и постоянен во всœех точках, как на поверхности, так и на глубинах Мирового океана. При изменении общего количества растворенных солей (солености) их процентное соотношение не изменяется. По этой причине для определœения солености морской воды достаточно измерить количество одного какого-нибудь химического элемента (обычно хлора, как наиболее легко определяемого) и по нему вычислить общую соленость и количество всœех остальных элементов. Эмпирическое соотношение между соленостью океанической воды и содержанием хлора выражается формулой:

Число 1,81 носит название хлорного коэффициента.

Некоторые внутриматериковые моря могут иметь несколько отличный солевой состав, и в связи с этим для них эта формула непригодна и соотношения между солями устанавливаются для каждого моря отдельно.Соленость воды в Мировом океане не везде одинакова. В открытой части она изменяется в пределах 33-37°/оо и зависит от климатических условий (разности испарения и количества выпадающих осадков). По этой причине в ее распределœении четко проявляются черты широтной зональности, что позволяет картировать эту характеристику (карты изогалин). В отдельных районах широтная зональность нарушается влиянием переноса солей течениями.

Наименьшая соленость на поверхности открытой части Мирового океана наблюдается в высоких широтах. Это объясняется значительным превышением осадков над испарением, большим речным стоком (в северном полушарии), таянием плавучих льдов. По мере приближения к тропикам соленость растет, достигая максимальных значений в зоне между 20 и 25° широты, где испарение значительно превышает осадки. В экваториальных широтах количество атмосферных осадков возрастает, и соленость здесь вновь уменьшается (рис. 3).

Средняя соленость на поверхности океанов различна. Наибольшую среднюю соленость имеет Атлантический океан - 35,3°/ 0 о, наименьшую - Северный Ледовитый - 32%о (в приустьевых районах до 20°/оо).

Распределœение солености по вертикали различно в различных широтных зонах. Так, в полярных широтах до глубины 200 м соленость быстро возрастает, затем остается почти неизменной. В умеренных широтах соленость с глубиной изменяется мало. В субтропических - она уменьшается до глубины 1000 м, глубже соленость постоянная. В экваториальных широтах соленость постепенно возрастает, и под слоем поверхностных вод на глубинœе 100-150 м прослеживается слой высокосоленой воды (выше 36%о), переносимой с запада глубинными противотечениями, питающимися водами, поступающими из тропиков. Глубже этого слоя соленость убывает, а начиная с глубины 1000-1500 м становится почти постоянной.

Следует заметить, что ниже глубин порядка 1500 м соленость остается практически неизменной (34,7-34,9°/оо), а ее изменения по широтным зонам несущественны.Колебания солености по сезонам года в открытом океане незначительны и не превышают 0,2°/ О о, в прибрежных районах полярных областей соленость в летнее время вследствие таяния льдов может уменьшаться на 0,7°/ 0 о и более. В морях величина солености, как на поверхности, так и глубинœе, меняется в значительно больших пределах, чем в океане. Так, соленость Черного моря 17- 18% 0 , Красного-до 42% 0.

Газы в воде океана. Вода поглощает (растворяет) газы, с которыми она соприкасается. По этой причине в океанической воде содержатся всœе атмосферные газы, а также газы, приносимые водами рек, выделяющиеся при химических и биологических процессах, при подводных извержениях. Общее количество растворенных в воде газов невелико, но они играют решающую роль в развитии всœей органической жизни морей и океанов.

Особое значение имеет кислород. Содержание его изменяется, как и содержание всœех других газов, исходя из солености и температуры воды, от степени перемешивания поверхностных вод и т.д. Чем выше температура и соленость воды, тем меньше кислорода может в ней раствориться. По этой причине содержание его от экватора к полюсам возрастает

Кислород поступает в воду океана не только в результате контактаводы с воздухом, но и в результате фотосинтеза водорослей, населяющих воды океанов и морей. На глубинœе количество кислорода, как правило, уменьшается, так как процесс фотосинтеза имеет наибольшее развитие в поверхностном слое. В этом слое, особенно на мелководье, наблюдается повышенное содержание кислорода (до 180%). Избыток его передается атмосфере. Кислород в океане расходуется также на дыхание живых организмов и на окисление различных веществ.

Азот проникает в воду из атмосферы и образуется при распаде органического вещества. Содержание его в воде изменяется мало, так как он плохо вступает в соединœения, редко и в небольших количествах потребляется. Только некоторые придонные бактерии превращают его в нитраты и аммиак. Большой роли в океане он не играет.

Углекислый газ, в отличие от кислорода и азота͵ находится в воде океана в основном в связанном виде, в виде углекислых соединœений - карбонатов и бикарбонатов. Запасы углекислоты в океане поддерживаются дыханием организмов и растворением известковых пород дна и берегов, а также современных органогенных отложений (скелœетов, раковин и т. д.). Значительные количества углекислого газа поступают в океан при подводных вулканических извержениях. Как и кислород, углекислый газ растворяется быстрее в холодной воде. При повышении температуры вода отдает углекислый газ атмосфере, при понижении - поглощает его, в связи с этим в тропиках вода выделяет углекислый газ в атмосферу, в полярных широтах, напротив - углекислый газ из атмосферы поступает в воду.

Растворимость углекислого газа в воде в десятки и сотни раз превышает растворимость кислорода, в связи с этим океан его содержит в 60 раз больше, чем атмосфера. Расходуется углекислота на фотосинтез растений и на образование организмами скелœетов и раковин.

В воде морей количество и распределœение газов должна быть существенно иным, чем в океанах. На дне некоторых морей при разложении органических веществ и в результате жизнедеятельности микроорганизмов образуется сероводород. Это очень ядовитое вещество. Главное условие его образования - слабое вертикальное перемешивание и, как следствие его, отсутствие кислорода на глубинах. Присутствие сероводорода отмечено в некоторых глубоких фьордах Норвегии, в Каспийском, Черном, Красном и Аравийском морях. Не исключена возможность сероводородного заражения океанов.

3.2. Физические свойства вод океана. Физические свойства дистиллированной воды зависят только от двух параметров: температуры и давления. Физические же свойства морской воды зависят, кроме того, еще и от солености, которая составляет наиболее характерную ее особенность. С соленостью связано наличие таких свойств морской воды, которых нет у дистиллированной (осмотическое давление, электропроводность).

Плотность. Одной из важнейших характеристик морской воды является плотность. Плотностью морской воды в океанографии принято называть отношение массы единицы объёма воды при той температуре, которую она имела в момент наблюдений, к массе единицы объёма дистиллированной воды при 4° С, т. е. при температуре ее наибольшей плотности. Плотность морской воды существенно растет с увеличением солености. Возрастанию плотности поверхностных слоев воды способствует охлаждение, испарение и образование льда. В открытом океане плотность, как правило, определяется температурой и в связи с этим от экватора к полюсам растет. С глубиной плотность воды в океане увеличивается.

Давление и сжимаемость. Вода значительно плотнее воздуха. По этой причине изменение давления с увеличением глубины в океане происходит гораздо быстрее, чем в атмосфере. На каждые 10 м глубины давление увеличивается на 1 атм. Нетрудно подсчитать, что на глубинах порядка 10 км давление достигает 1 тыс. атм.

При этом воздействие давления воды на живые глубоководные организмы незаметно, так как чрезвычайно мало сжатие воды, т. е. Уменьшение ее удельного веса.Интересно отметить, что, несмотря на малую сжимаемость морской воды, уровень реального Мирового океана расположен примерно на 30 м ниже того уровня, который он бы занимал при условии несжимаемости воды.

Оптические свойства морской воды. Лучистая энергия Солнца, проникая в толщу воды, рассеивается и поглощается. От степени ее рассеивания и поглощения зависит прозрачность воды. Под прозрачностью воды понимают глубину, на которой белый стандартный диск диаметром 30 см (диск Секки) перестает быть видимым с поверхности моря. В Саргассовом море эта глубина достигает 67 м, в Средиземном - 50 м, в Черном - 25 м, в Азовском - Зм. Прозрачность зависит от содержания взвешенных частиц в морской воде. По этой причине наименьшая прозрачность наблюдается в прибрежной части, особенно после штормов. Значительно уменьшается прозрачность воды в период массового развития планктона, а также во время таяния льдов.

Совокупным действием отражения и рассеивания света в воде обусловливается ее цвет. Поток световой энергии, исходящий из глубин моря, вызывает голубой или синий цвет, который и является собственным цветом чистой воды. Особенности цвета воды каждого моря зависят от содержания в воде взвешенных частиц органического и минœерального происхождения, растворенных газов и прочих примесей. Вот почему в наиболее “чистых” тропических водах цвет моря темно-голубой и даже синий, в шельфовых морях - зелœеноватый, а в мутных прибрежных морях - имеет желтые оттенки.

Говоря об оптических свойствах морской воды, следует упомянуть и о таких явлениях, как свечение и цветение моря.

Свечение поверхности моря в ночное время объясняется светом, излучаемым морскими организмами (планктоном и особыми видами бактерий)

Цветение моря обусловливается массовым скоплением особей какого-либо вида, способных окрасить поверхность моря в один из цветов: желтый, красный, зелœеный и т. д.

4. Тепловой режим океанов и морей Поверхность океана способна поглощать 99,6% поступающегона нее солнечного тепла, тогда как для суши данный показатель равен всœего 55-65%. Благодаря этому и большой теплоемкости воды, океан представляет собой мощный аккумулятор тепла, оказывающий исключительно большое влияние на температурные условия прилегающих слоев атмосферы. Велико термическое воздействие океана и на климат прилегающих окраин континœентов.

Основным источником тепла, получаемого океаном, служит солнечная радиация (прямая и рассеянная). Воды океана получают также тепло при поглощении длинноволнового излучения атмосферы (встречная радиация), часть тепла приносят реки и осадки, выпадающие на поверхность океана. Тепло высвобождается при конденсации влаги, льдообразовании, химико-биологических процессах в толще океана. На температуру глубоких слоев океана влияет внутреннее тепло Земли и адиабатическое нагревание опускающейся воды.

Термическое состояние океана в среднем постоянно. Значит океанические воды тем или иным путем теряют почти столько же тепла, сколько получают. Эти потери происходят за счёт собственного излучения, испарения с поверхности океана, нагревания воздуха, холодной воды рек, океанических течений, таяния льдов и других процессов, совершающихся с затратами тепла. Приход и расход тепла в океане (тепловой баланс) определяют ход температуры воды.

4.1. Температура воды на поверхности океана В верхнем слое океанической воды, как и во всœей географической оболочке, тепло распределяется зонально. Самые высокие средние годовые температуры в океане (27-28° С) отмечаются немного севернее экватора между 5 и 10° с. ш. Здесь проходит термический экватор Земли. По сезонам температура воды в экваториальных широтах изменяется не более чем на 2-3° С. В тропических широтах наиболее высокие температуры (25-27° С) отмечаются у западных берегов. Разница в средних температурах восточных и западных регионов достигает 8-10° С. Понижению температуры у восточных берегов в этих широтах способствуют пассаты, отгоняющие воду от берегов: на место ушедшей воды поднимаются нижелœежащие, более холодные слои воды.

В умеренных широтах южного полушария суши очень мало и широтное распределœение температуры (от 0° С на 60° ю. ш. до 10° С на широте 40°) почти не нарушается. В северном полушарии умеренные широты океана несколько теплее, изотерма 10° С доходит в августе до полярного круга. Здесь важную роль играют теплые течения, благодаря которым температура океана выше у восточных берегов.

Средняя температура на поверхности всœего Мирового океана равна 17,4° С, т. е. превышает на 3° С среднюю температуру воздуха на земном шаре. Самый теплый океан - Тихий, у которого средняя температура воды на поверхности равна 19,1° С. В Индийском она равна 17,6° С, в Атлантическом - 16,9° С, а в Северном Ледовитом- 0,75° С. Самая низкая температура (-1,7° С) наблюдалась в феврале в Северном Ледовитом океане, самая высокая (+ 32° С) в августе на поверхности Тихого океана. В среднем в году поверхность океана в южном полушарии холоднее, чем в северном за счёт охлаждающего воздействия вод Антарктики.

Суточные амплитуды температуры в открытом океане обычно не превышают 1° С. Годовые амплитуды среднемесячных температур в низких и высоких широтах невелики (1° С и 2° С), и только в умеренных широтах они достигают 10° С и более. Суточные и годовые колебания температуры оказывают существенное влияние на химические и биологические процессы в океане.

4.2. Изменение температуры воды в океане исходя из глубины Температура воды с увеличением глубины понижается. Но процесс данный в разных широтах происходит неодинаково, так как глубина проникновения солнечной радиации в разных зонах неодинакова. Вместе с тем, на перераспределœение тепла в толще океанической воды оказывают влияние адвективные факторы.

На большей части акватории Мирового океана, между 50° С с. ш. и 45° С ю. ш. в вертикальном распределœении температур много общего. В верхних слоях океана до глубины 500 м понижение температуры идет очень быстро, дальше до 1500 м - значительно медленнее, глубже - температура почти не изменяется. На глубинах 3000-4000 м в экваториальных и умеренных широтах вода имеет температуру +2° С, +3° С, в высоких - около 0 = С. Глубже 4000 м температура воды немного повышается вследствие повышения давления (адиабатическое нагревание).

В приполярных районах температура воды понижается до глубины 50-100 м. Ниже она растет за счёт приноса более теплых и соленых вод из умеренных и субтропических широт, достигая максимума в слое 200-500 м. Под этим слоем температура снова понижается, и на глубинœе 800 м она равна 0° С. Средняя температура Мирового океана в целом +3,8° С.

В высоких и средних широтах летом под нагретым поверхностным слоем располагается слой резкого скачка температуры - сезонный термоклин. Глубина залегания слоя скачка и величина градиента температуры в нем зависят от интенсивности прогрева поверхностного слоя и перемешивания. В умеренных широтах он обычно располагается на глубинах от 10-16 до 50 м и ниже при значениях вертикального градиента температуры от долей градуса до нескольких градусов на метр.

От экватора до 50-60° С с. и ю. ш. слой скачка на глубинах от 300 до 1000 м существует постоянно (главный термоклин). Так как слой температурного скачка - слой изменения плотности, в нем всœегда скапливаются живые организмы. Резко выраженный слой скачка плотности препятствует опусканию взвешенных в воде предметов. К примеру, подводная лодка может лежать на слое скачка как на грунте, откуда и произошел термин “жидкий грунт”.

В случае если рассматривать температурный режим не только открытых частей океанов, но и морей, то и здесь ярко проявляется зависимость температуры от широты, хотя влияние суши, водообмен с океаном и другие причины вносят коррективы в эту связь. Самая высокая температура отмечена на поверхности внутриматериковых тропических морей (в Красном море до +32° .С). Самая низкая температура в полярных морях не опускается ниже -2° С.

Вертикальное распределœение температуры воды в морях зависит, в первую очередь, от водообмена с сосœедними частями океана. В морях, отделœенных от океана порогом, распределœение температур зависит от глубины порога, солености моря, температуры на его поверхности. Так, в Средиземном море температура воды у дна (4400 м) +13° С. Окраинные моря, свободно сообщающиеся с океаном, по характеру распределœения температур не отличаются от открытых частей океана.

5. Льды в океане. Ледовый режим Мирового океана определяется тем, что на преобладающей части его площади температура воды в течение всœего года выше точки замерзания, в связи с этим льдообразование наблюдается только в полярных и субполярных широтах. В умеренной зоне лишь очень в немногих, преимущественно мелководных морях на короткое время устанавливается ледовый покров. Большое отодвигание границы зимнего льдообразования в сторону полюсов определяется также соленостью, поскольку соленая вода замерзает при более низкой температуре, чем пресная.

Пресная вода, как известно, при охлаждении достигает наибольшей плотности при -)-4° С, а начинает замерзать только при 0° С. Процесс замерзания солоноватых вод (до 24,7°/оо) происходит аналогично тому, как и в пресной воде: вода сначала достигает температуры наибольшей плотности при данной солености, а затем точки замерзания.

При солености 24,7°/ 0 о температура замерзания и наибольшей плотности одинакова (-1,332° С). При солености больше 24,7%о температура наибольшей плотности ниже температуры замерзания, вследствие чего замерзание морской воды происходит иначе, чем пресной, при этом только часть солей переходит в лед, образовавшийся из морской воды, другая же часть стекает обратно в воду в виде солевого раствора, увеличивая тем самым соленость, а следовательно, и плотность поверхностной воды. Это обстоятельство, одной стороны, способствует поддержанию и усилению конвекционных движений и тем самым задерживает замерзание, а с другой - требует дальнейшего понижения температуры, т. к. с увеличением солености понижается температура замерзания. По этой причине замерзание морской воды происходит не при одинаковой температуре, а при понижающейся.

Плотность соленого льда меньше плотности льда пресного (0,85-0,94 г/см 3) и зависит от температуры, солености, плотности, возраста льда и условий льдообразования.

Морской лед по сравнению с пресноводным отличается большой пластичностью и вязкостью, но обладает меньшей прочностью.

Льдообразование в океане начинается с появления кристаллов в виде игл и пластинок. При большой концентрации ледяных кристаллов они образуют ледяное сало, а если на поверхность воды выпадает снег, то образуется снежура. При спокойном состоянии поверхности воды при смерзании сала возникает тонкая корка льда (5-10 см) - прозрачная, хрупкая в опресненной воде (склянка и матовая, эластичная в соленой (нилас). Во время волнения из ледяного сала, снежуры, склянки и ниласа образуется блинчатый лед - пластины льда преимущественно круглой формы от 30 см до 3 м в диаметре. При дальнейшем нарастании склянки и ниласа и при смерзании блинчатого льда образуется молодой лед (молодик), толщиной 10-30 см.

Вдоль берега появляется полоса неподвижного льда, состоящего из ниласа или из молодика - забереги. Ширина заберегов колеблется от нескольких метров до 100-200 м от береговой линии. Постепенно нарастая, забереги превращаются в более широкую полосу - береговой припаи, а молодик становится взрослым льдом, мощностью от 30 см до 2 м. Наиболее благоприятнымиусловиями для образования и развития припая являются: мелководье, изрезанная береговая линия, отсутствие сильных постоянных течений и значительных по амплитуде колебаний уровня. В некоторых районах припай разрастается на сотникилометров от берега (к примеру, в море Лаптевых его ширинужностигает 500 км).

В отличие от неподвижного льда (забереги, береговой припай), морской лед должна быть плавучим. Плавучиельды, не связанные с берегом, называются дрейфующими. Среди нихпо размерам различают битый лед (отнескольких метровдо 100 м впоперечнике) и ледяные поля, подразделяющиеся нагигантские (свыше 10 км), обширные (от 2 до 10 км) и большие поля (0,5-2 км).

В высоких широтах из-за короткого и холодного лета образовавшиеся за зиму льды не успевают растаять полностью, в связи с этим в этих районах встречаются льды разного возраста - от однолетних до многолетних. Многолетние (квазипостоянные) льды, мощность которых может достигать десять и более метров, называют паковыми.

Паковые льды почти не содержат солей и пузырьков воздуха и в связи с этим имеют голубоватый цвет. В Северном Ледовитом океане такие льды занимают до 80% площади океана. У берегов Антарктиды широкого распространения они не имеют. Для обычных ледокольных судов паковые льды непроходимы.

Кроме собственных морских льдов в океанах и морях встречаются речные и материковые (глетчерные) льды. Речные пресные льды выносятся реками во время ледохода, часто имеют желтоватую окраску, летом тают или вкрапливаются в льды морского происхождения. Материковые льды тоже пресные, голубоватые, обычно большой мощности. Οʜᴎ представляют из себяобломки материкового или шельфового льда, сползающие в океан, и называются айсбергами.

Таяние морского льда в основном зависит от интенсивности солнечной радиации и альбедо его поверхности, как правило, покрытой снегом, и начинается с загрязненных участков (обычно о берегов). После весеннего перехода температуры воздуха через 0° на поверхности льда образуются озерки - снежницы. Прочность структура пропитанного талой водой льда изменяются аналогично тому, как подмоченного водой куска сахара. Не изменяя существенно своих размеров, лед становится чрезвычайно хрупким и легко рассыпается при малейшем надавливании на него. В прибрежной полосœе возникают сплошные полосы чистой воды - водяные забереги, постепенно превращающиеся в полыньи. Ледяные поля распадаются на отдельные льды рыхлой структуры, которые, делясь на кристаллы, образуют в конечном итоге ледяную кашу.

Льды покрывают около 15% всœей акватории Мирового океана, т. е. 55,4 млн км 2 , в т.ч. 39 млн км 2 в южном полушарии. В северном полушарии ледяной покров образуется в Северном Ледовитом океане и его морях, в северной части Атлантического океана, в Балтийском, Белом, Азовском морях, некоторых районах Северного моря и северо-западной части Черного моря. Из морей, относящихся к бассейну Тихого океана, льдами покрываются Охотское, северная часть Берингова и Японского морей.

Ледяное кольцо вокруг Антарктиды имеет ширину от 280 до "00 миль. Основная масса морских льдов формируется с марта апрель преимущественно в морях Уэддела, Беллинсгаузена Росса, а также вблизи материка.

Мощность ледовых образований на морях, характер и распространение ледяного покрова, а также его продолжительность зависят от температурного и ветрового режима зимы и запаса тепла, накопленного водой в течение весны и лета. Сроки появления льда и замерзания, время вскрытия и очищения ото льда могут для одних и тех же пунктов меняться год от года в значительных пределах.

Наибольшего развития ледяной покров в Арктике достигает в апрелœе-мае, в Антарктиде - зимой.

Средняя граница льдов в северной части Атлантического океана проходит около 72° с. ш., в южной части она доходит до 50° ю. ш. В Тихоокеанском и Индийском секторах южного полушария она поднимается до 55-60° ю. ш. Далеко за пределы распространения плавучих льдов заходят айсберги. Места зарождения айсбергов: шельфовые ледники Антарктиды, побережье Гренландии, берега Шпицбергена, Земли Франца-Иосифа, Новой Земли, Северной Земли и отдельные острова Канадского архипелага.

Отдельные айсберги в северном полушарии достигают 35° с. ш., в южном - 40° ю. ш. и даже встречаются в тропиках. Важно заметить, что для северных вод типичный крупный айсберг может иметь 200 м в поперечнике и возвышаться над уровнем моря примерно на 25 м. Глубина подводной части достигает 225 м, а общая масса 5 ‣‣‣ 10 9 кᴦ. Мощность Антарктических айсбергов доходит до 500 м, а размеры в поперечнике достигают нескольких десятков километров.

Ледовый покров оказывает огромное влияние на климат всœей Земли, на жизнь в океане.

Льды в океанах и особенно в морях затрудняют судоходство и морской промысел. Стоит сказать, что для наблюдения за льдами и изучения их режима организуются специальные ледовые службы. С целью оповещения судов и прогнозирования скорости и направления движения айсбергов создан Международный ледовый патруль.

Химические свойства вод океана - понятие и виды. Классификация и особенности категории "Химические свойства вод океана" 2017, 2018.

Соленость . Океанская вода по весу состоит на 96,5% из чистой воды и на 3,5% из растворенных в ней минеральных веществ, газов, микроэлементов, коллоидов и взвесей органического и неорга­нического происхождения. В состав морской воды входят все известные химические элементы. Больше всего в океанской воде натрия, т. е. поваренной соли NaCl (27,2 г на 1 л), поэтому вода Океана на вкус соленая. Затем следуют соли магния – MgCl (3,8 г на 1 л) и MgSO 4 (1,7 г на 1 л), придающие воде горький вкус. На все остальные элементы, среди которых и биоген­ные элементы (фосфор, азот и т. п.), и микроэлементы, приходится меньше 1%, т. е. их содержание ничтожно мало. Общее количество солей в Океане достигает 50 10 16 т. При осаждении эти …
соли могут покрыть дно Океана слоем примерно в 60 м, всю Землю слоем в 45 м, а сушу слоем в 153 м. Удивительная особенность океанской воды – постоянство солевого состава. Раствор может быть в разных частях Океана разной концентрации, но соотношение главнейших солей остается неизменным.

Средняя соленость Мирового океана 35‰. Наи­большую среднюю соленость имеет Атлантический океан – 35,4‰, наименьшую – Северный Ледовитый – 32‰. Отклонения от средней солености в ту и другую сторону вызываются главным образом изменениями в приходно-расходном балансе пресной воды. Атмосферные осадки, выпадающие на поверхность Океана, сток с суши, таяние льдов вызывают понижение солености; испа­рение, образование льда – наоборот, повышают ее. Так как изменения солености связаны в основном с прихо­дом и расходом пресной воды, они заметны только в поверхност­ном слое, непосредственно получающем атмосферные осадки и испаряющем воду, и в некотором слое под ним (до глубины 1500 м), определяемым глубиной перемешивания. Глубже соленость вод Мирового океана остается неизменной (34,7 – 34,9 ‰).

Соленость морской воды тесно связана с ее плотностью. Плотность воды Океана отношение массы единицы ее объема при данной температуре к массе чистой воды того же объема при температуре + 4°С. Плотность воды Океана с увеличением солености всегда по­вышается, поскольку растет содержание веществ, имеющих боль­ший, чем вода, удельный вес. Увеличению плотности поверхност­ных слоев воды способствует охлаждение, испарение и образова­ние льда. Нагревание, а также смешение соленой воды с водой атмосферных осадков или талой водой вызывают понижение плот­ности. На поверхности океана наблюдается изменение плотности в пределах от 0,9960 до 1,083. В открытом Океане плотность, как правило, определяется температурой и поэтому от экватора к по­люсам в общем растет. С глубиной плотность воды в Океане уве­личивается.

Газы в воде Океана . Газы попадают в воду из атмосферы, выделяются при химических и биологических процессах, их приносят реки, они поступают при подводных извержениях. Перераспределение га­зов происходит посредством перемешивания. Способность океанской воды растворять газы зависит от ее тем­пературы, солености и гидростатического давления. Чем выше температура и соленость воды, тем меньше газов может в ней раствориться. Растворены в воде прежде всего азот (63%), кислород (35%) и угле­кислый газ, а также сероводород, аммиак, метан и др.

Углекислый газ, как и кислород, лучше растворяется в холодной воде. Поэтому при по­вышении температуры вода отдает его атмосфере, при пониже­нии – поглощает. Днем, в связи с усиленным потреблением угле­кислого газа растениями, содержание его в воде уменьшается, ночью, наоборот, возрастает. В высоких широтах Океан поглощает углекислый газ, в низких – выделяет его в атмосферу. Обмен газами между Океаном и атмосферой – процесс непрерывный.

Давление. На каждый квадратный сантиметр поверхности Океана атмосфера давит приблизительно с силой 1 кг (одна атмосфера). То же давление на ту же площадь оказывает стол­бик воды высотой всего в 10,06 м. Таким образом, можно считать, что на каждые 10 м глубины давление увеличивается на 1 атм. Все процессы, происходящие на большой глубине, совершаются под сильным давлением, но это не препятствует развитию жизни в глубинах Океана.

Прозрачность. Лучистая энергия Солнца, прони­кая в толщу воды, рассеивается и поглощается. Степень рассеивания и поглощения солнечной энергии зависит от количества взвешенных частиц, содержащихся в воде. Наименьшая прозрачность наблюдается у берегов на мел­ководье, в связи с увеличением количества взвесей, вносимых реками, и взмучиванием грунта волнением. Значительно уменьшается прозрачность воды в период массового развития планктона и при таянии льдов (лед всегда содержит примеси; кроме того, масса пузырьков воздуха, заключенных во льду, переходит в воду). Прозрачность воды увеличивается в местах подъема на поверх­ность глубинных вод.

Прозрачность выражается числом метров, т. е. глубиной, на которой еще виден белый диск диаметром 30 см. Наибольшая прозрачность (67 м) наблюдалась в Центральной части Тихого океана, в Средизем­ном море – 60 м, в Индийском океане – 50 м. В Северном море она равна 23 м, в Балтийском – 13 м, в Белом – 9 м, в Азовском – 3 м.

Цвет воды океанов и морей. Толща чистой воды Океана в результате собирательного поглощения и рассеивания света имеет голубой или синий цвет. Присутствие планктона и неорга­нических взвесей отражается на цвете воды, и она приобретает зеленоватый оттенок. Большие количества органических примесей делают воду желтовато-зеленой, близ устья рек она может быть даже корич­невой.

В экваториальных и тропических широтах господствующий цвет воды Океана темно-голубой и даже синий. Такого цвета вода, например, в Бенгальском заливе, Аравийском море, южной части Китайского моря, Красном море. Синяя вода в Средизем­ном и Черном морях. В умерен­ных широтах во многих местах вода зеленоватая (особенно у берегов), заметно зеленеет она в районах таяния льдов. В по­лярных широтах зеленоватый цвет преобладает.

Свечение моря. Свечение морской воды со­здается организмами, испускающими «живой» свет. К таким ор­ганизмам относятся прежде всего светящиеся бактерии. В опресненных прибрежных водах, где распространены главным образом такие бактерии, свечение моря наблюдается в виде ровного молочного света. Свечение вызывается, кроме того, мелкими и мельчайшими простейшими организмами, из которых наиболее известна ночесветка (Noctiluca). Некоторые более крупные организмы (большие медузы, мшанки, рыбы, кольчатые черви и др.) также отличаются способ­ностью производить свет. Свечение моря представляет собой явление, распространенное по всему Мировому океану. Оно наблюдается только в морской воде и никогда не бывает в пресной.

Цветение моря представляет собой бурное развитие зоо- и фи­топланктона в поверхностных слоях моря. Массовые скопления этих организмов вызывают изменения в окраске поверхности моря в виде желтых, розовых, молочных, зеленых, красных, бурых и дру­гих полос и пятен.

Звукопроводность океанической воды в 5 раз больше, чем воздуха. В воздухе звуковая волна движется со скоростью 332 м/с, в пресной воде – 435 м/с, в океанической – 1500 м/с. Распространение звука в морской воде зависит от температуры, солености, давления, содержания газов, а также взвешенных при­месей органического и неорганического происхождения.

Температура воды Мирового Океана . Основной источник тепла, получаемого поверхностью Мирового океана – это прямая и рассеянная солнечная радиация. Дополнительным источником тепла могут служить речные воды. Часть поступившей солнечной радиации отражается водной поверхностью, часть излучается в атмосферу и межпланетное пространство. Большое количество тепла море теряет на испарение. Большая роль в распределении и изменении температуры вод океанов принадлежит материкам, господствующим вет­рам и особенно течениям.

Морские воды, соприкасаясь с атмосферой, обмениваются с ней теплом. Если вода теплее воздуха, то происходит отдача тепла в атмосферу, если же вода холоднее, она получает некоторое коли­чество тепла в процессе теплообмена.

Тепло, поступающее от Солнца, поглощается тонким поверхност­ным слоем и идет на нагревание воды, но благодаря малой тепло­проводности воды почти не передается на глубину. Проникновение тепла от поверхности к нижележащим слоям происходит главным образом путем вертикального перемешивания, а также за счет адвекции тепла глубинными течениями. В результате вер­тикального перемешивания в летнее время к поверхности под­нимаются более холодные воды и понижают температуру поверхностных слоев, а глубинные воды отепляются. В зимнее время, когда поверхностные воды охлаждены, с глубин в процессе верти­кального обмена происходит подток более теплых вод, задержи­вающих начало ледообразования.

Средняя годовая температура на поверхности Океана + 17,4°С, в то время как средняя годовая температура воздуха +14°С. Наиболее высокую среднюю температуру имеет поверхность Ти­хого океана, большая часть которой находится в низких широтах (+ 19,1°С), Индийского (+ 17,1°С), Атлантического (+ 16,9°С). Значительные изменения температуры происходят только в верхних слоях воды Океана мощностью 200 – 1000 м. Глубже температура не превышает + 4, + 5°С и изменяется очень мало. Благодаря большой теплоем­кости воды Океан является аккумулятором солнечного тепла на Земле.

Процесс ледообразования в морской и пресной воде происходит различно – пресная вода замерзает при темпера­туре 0°С (несколько ниже 0°С), а морская вода замерзает при разной температуре в за­висимости от солености. Образование льда в Океане начинается с возникновения прес­ных кристаллов, которые затем смерзаются. При этом в про­странстве между кристаллами льда остаются капельки крепкого рассола, поэтому при образовании лед соленый. Чем ниже температура, при кото­рой происходило льдообразование, тем солонее лед. Рассол постепенно стекает между кристаллами, поэтому с течением времени лед опресняется.

В высоких широтах северного полушария образовавшийся зи­мой лед не успевает растаять за лето, поэтому среди полярных льдов встречаются льды разного возраста – от однолетних до многолетних. Толщина однолетнего льда в Арктике достигает 2 – 2,5 м, в Антарктике 1 – 1,5 м. Многолетние льды имеют мощ­ность 3 – 5 м и более. В месте сжатия льдов их толщина дости­гает 40 м. Льды покрывают около 15% всей акватории Мирового океана, т. е. 55 млн. км 2 , в том числе 38 млн. км 2 в южном полушарии.

Ледовый покров оказывает огромное влияние на климат всей Земли, на жизнь в Океане.

Льды в океанах и особенно в морях затрудняют судоходство и морской промысел.

Понятие о водных массах . Воды Мирового океана обладают весьма различными физическими и химическими свойствами. Большие объемы воды, сформированные в данных физико-географических условиях в опре­деленные отрезки времени и отличающиеся характерными физиче­скими, химическими и биологическими свойствами, называют водными массами.

Вод­ные массы формируются главным образом в поверхностных слоях Мирового океана под влиянием климатических условий, процессов термического и динамического взаимодействия океана и атмо­сферы. В формировании водных масс основная роль при­надлежит конвективному перемешиванию, которое, так же как и другие типы вертикального обмена, завершается образованием од­нородной водной массы. Течениями водные массы переносятся в другие районы, где, соприкасаясь с водами иного происхождения, трансформируются, особенно по периферии.

Движение вод океана

Вся масса океанских вод непрерывно движется. Это обеспечи­вает постоянное перемешивание воды, перераспределение тепла, солей и газов. Различают 3 вида движения: колебательные –волны, поступательные – океанические течения, смешанные – приливы и отливы.

Волны . Главная причина возникновения волн на поверхности Мирового океана – ветер. В отдельных случаях волны достигают высоты 18 м и длины до 1 км. С глубиной волны затухают.

При землетрясении, подводном извержении вулкана и подводных оползнях возникают сейсмические волны, распространяющиеся от эпицентра во все стороны и охватывающие всю толщу воды. Они называются цунами. Обычные цунами – волны, следующие друг за другом с периодичностью 20 – 60 минут со скоростью – 400 – 800 км/час. В открытом океане высота цунами не превышает 1 м. При подходе к берегу – на мелководье, цунами превращается в гигантскую волну до 15 – 30 м. Такие волны вызывают огромные разрушения. Цунами чаще других поражает восточные побережья Евразии, Японии, Новой Зеландии, Австралии, Филиппинские и Гавайский острова, юго-восточную часть Камчатки.

Океанические течения . Поступательные движения огромных масс воды называются течениями . Это горизонтальное перемещение воды на большие расстояния. Течения бывают ветровыми (или дрейфовыми), когда причиной является ветер, дующий в одном направлении. Сточные течения возникают в случае постоянного поднятия уровня воды, вызванного ее притоком или обильными атмосферными осадками. Например, Течение Гольфстрим вызвано повышением уровня воды в связи с притоком из соседнего Карибского моря. Компенсационные течения возмещают убыль воды в какой-либо части океана. Когда ветер постоянно дует с суши на море, он отгоняет поверхностные воды, на место которых поднимаются холодные воды из глубин. Плотностные течения – результат различной плотности воды на одной глубине. Их можно наблюдать в проливах, соединяющих моря с различной соленостью. Например, по проливу Босфор по дну из Средиземного моря в Черное идет более соленая и плотная вода, а навстречу этому потоку оп поверхности – более пресная.

Те­чения нарушают широтную зональность в распределении темпе­ратуры. Во всех трех океанах – Атлантическом, Индийском и Ти­хом – под влиянием течений возникают температурные аномалии: положительные аномалии связаны с переносом теплых вод от эква­тора в более высокие широты течениями, имеющими близкое к ме­ридиональному направление; отрицательные аномалии вызваны противоположно направленными (от высоких широт к экватору) холодными течениями. Течения оказывают влияние на распределение и других океа­нологических характеристик: солености, содержания кислорода, биогенных веществ, цвета, прозрачности и др. Распределение этих характеристик оказывает огромное влияние на развитие биологи­ческих процессов, растительный и животный мир морей и океа­нов.

Смешанные течения – приливы и отливы, возникающие в результате осевого вращения Земли и притяжения планеты Солнцем и Луной. В каждой точке поверхности Океана 2 раза в сутки наблюдается прилив и 2 раза – отлив. Высота приливной волны в открытом океане – около 1,5 м, а у берегов – зависит от их конфигурации. Самый высокий прилив в заливе Фанди у берегов Северной Америки в Атлантическом океане – 18 м.

Океан как среда жизни

В Мировом океане жизнь существует повсюду – в разных формах и разных проявлениях. По условиям существования в Океане выделяются две различные области: толща воды (пелагиаль) и дно (бенталь).Бенталь разделяется на прибрежную – литораль, имеющую глубины до 200 м, и глубинную – абиссаль. Абиссальная область представлена своеобразными организмами, приспособленными к обитанию в условиях низкой температуры, вы­сокого давления, отсутствия света и относительно малого содержа­ния кислорода.

Органический мир Океана состоит из трех групп: бентоса, планктона, нектона. Бентос – обитатели дна (растения, черви, моллюски), неспособные надолго подниматься в толщу воды. Планктон – обитатели водной толщи (бактерии, грибки, водоросли, простейшие и т. д.), не обладающие способностью активно перемещаться на большие расстояния. Нектон – обитатели вод, свободно проплывающие большие расстояния (киты, дельфины, рыбы).

Зеленые растения могут развиваться только там, где освеще­ние достаточно для фотосинтеза (до глубины не более 200 м). Большую часть массы живого вещества в Океане составляет фитопланктон, населяющий верхний 100-метровый слой воды. Средняя масса фитопланктона 1,7 млрд. т, годовая продукция 550 млрд. т. Самая распро­страненная форма фитопланктона – диатомовые водоросли, пред­ставленные 15 тыс. видов. Одна диатомовая водоросль за месяц способна дать 10 млн. экземпляров. Только потому, что фито­планктон быстро отмирает и поедается в больших количествах, он не заполнил Океан. Фитопланктон – начальное звено пищевой цепи в Океане. Места обильного развития фитопланк­тона – места повышенного плодородия в Океане, богатые жизнью вообще.

Распределение жизни в Океане очень неравномерно и имеет отчетливо выраженный зональный характер . В высоких широтах северного, полушария условия развития фитопланктона неблаго­приятные – сплошной ледяной покров, полярная ночь, низкое по­ложение Солнца над горизонтом летом, холодная (ниже 0°С) вода, слабая вертикальная циркуляция (следствие опресненности верх­него слоя воды), не обеспечивающая выноса питательных веществ с глубин. Летом появляются в полыньях некоторые холодолюбивые рыбы и питающиеся рыбой тюлени.

В субполярных широтах происходит сезонная миграция кромки полярных льдов. В холодную часть года в слое в не­сколько сотен метров вода интенсивно перемешивается (следствие охлаждения), обогащаясь кислородом и питательными солями. Весной и летом поступает много света, и, несмотря на сравни­тельно низкую температуру воды (результат затрат тепла на таяние), в ней развивается масса фитопланктона. Затем следует короткий период развития зоопланктона, питающегося фито­планктоном. В этот период в субполярной зоне скапливается множество рыбы (сельдь, треска, пикша, морской окунь и др.). Приходят на откорм киты, которых особенно много в южном полушарии.

В умеренных широтах обоих полушарий сильное перемешива­ние воды, достаточное количество тепла и света создают наибо­лее благоприятные условия для развития жизни. Это самые про­дуктивные зоны Океана. Максимальное развитие фитопланктона наблюдается весной. Он усваивает питательные вещества, коли­чество их уменьшается – начинается развитие зоопланктона. Осенью – второй максимум развития фитопланктона. Обилие зоо­планктона обусловливает обилие рыбы (сельдь, треска, анчоус, лосось, сардина, тунец, камбала, палтус, навага и т. д.).

В субтропических и тропических широтах вода на поверх­ности Океана имеет повышенную соленость, но из-за высокой температуры оказывается сравнительно легкой, что мешает пе­ремешиванию. Частицы, содержащие питательные вещества, не задерживаясь, опускаются на дно. Кислорода в 2 раза меньше, чем в умеренной зоне. Фитопланктон развивается сла6o, мало и зоопланктона. В субтропических широтах вода обладает наиболь­шей прозрачностью и интенсивным голубым цветом (цвет океан­ской пустыни). В теплой воде растут не связанные с дном бурые водоросли – саргассы, типичные для этой части Океана.

В экваториальных широтах на границе пассатных течений и экваториального противотечения происходит перемешивание воды, и поэтому она относительно богата питательными солями и кислородом. Планктона здесь значительно больше, чем в соседних широтах, хотя и не так много, как на северной окраине уме­ренной зоны.

Теплая вода содержит мало углекислого газа и поэтому плохо растворяет углекислый кальций, который содержится в ней в изо­билии и легко усваивается растениями и животными. В резуль­тате раковины и скелеты животных приобретают массивность и прочность, а после отмирания организмов образуются мощные толщи карбонатовых отложений, коралловые рифы и острова, столь характерные для низких широт.

Широтная зональность распределения жизни в верхних слоях Океана, хорошо выраженная в его открытой части, нарушается на окраине под влиянием ветров и течений.