Биографии Характеристики Анализ

Формула второй космической скорости в физике. Школьная энциклопедия

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 первая космическая скорость = 7899,9999999999 метр в секунду [м/с]

Исходная величина

Преобразованная величина

метр в секунду метр в час метр в минуту километр в час километр в минуту километр в секунду сантиметр в час сантиметр в минуту сантиметр в секунду миллиметр в час миллиметр в минуту миллиметр в секунду фут в час фут в минуту фут в секунду ярд в час ярд в минуту ярд в секунду миля в час миля в минуту миля в секунду узел узел (брит.) скорость света в вакууме первая космическая скорость вторая космическая скорость третья космическая скорость скорость вращения Земли скорость звука в пресной воде скорость звука в морской воде (20°C, глубина 10 метров) число Маха (20°C, 1 атм) число Маха (стандарт СИ)

Тепловая эффективность и топливная экономичность

Подробнее о скорости

Общие сведения

Скорость - мера измерения пройденного расстояния за определенное время. Скорость может быть скалярной величиной и векторной - при этом учитывается направление движения. Скорость движения по прямой линии называется линейной, а по окружности - угловой.

Измерение скорости

Среднюю скорость v находят, поделив общее пройденное расстояние ∆x на общее время ∆t : v = ∆x /∆t .

В системе СИ скорость измеряют в метрах в секунду. Широко используются также километры в час в метрической системе и мили в час в США и Великобритании. Когда кроме величины указано и направление, например 10 метров в секунду на север, то речь идет о векторной скорости.

Скорость движущихся с ускорением тел можно найти с помощью формул:

  • a , с начальной скоростью u в течении периода ∆t , имеет конечную скорость v = u + a ×∆t .
  • Тело, движущееся с постоянным ускорением a , с начальной скоростью u и конечной скоростью v , имеет среднюю скорость ∆v = (u + v )/2.

Средние скорости

Скорость света и звука

Согласно теории относительности, скорость света в вакууме - самая большая скорость, с которой может передвигаться энергия и информация. Она обозначается константой c и равна c = 299 792 458 метров в секунду. Материя не может двигаться со скоростью света, потому что для этого понадобится бесконечное количество энергии, что невозможно.

Скорость звука обычно измеряется в упругой среде, и равна 343,2 метра в секунду в сухом воздухе при температуре 20 °C. Скорость звука самая низкая в газах, а самая высокая - в твердых телах. Она зависит от плотности, упругости, и модуля сдвига вещества (который показывает степень деформации вещества при сдвиговой нагрузке). Число Маха M - это отношение скорости тела в среде жидкости или газа к скорости звука в этой среде. Его можно вычислить по формуле:

M = v /a ,

где a - это скорость звука в среде, а v - скорость тела. Число Маха обычно используется в определении скоростей, близких к скорости звука, например скоростей самолетов. Эта величина непостоянна; она зависит от состояния среды, которое, в свою очередь, зависит от давления и температуры. Сверхзвуковая скорость - скорость, превышающая 1 Мах.

Скорость транспортных средств

Ниже приведены некоторые скорости транспортных средств.

  • Пассажирские самолеты с турбовентиляторными двигателями: крейсерская скорость пассажирских самолетов - от 244 до 257 метров в секунду, что соответствует 878–926 километрам в час или M = 0,83–0,87.
  • Высокоскоростные поезда (как «Синкансэн» в Японии): такие поезда достигают максимальных скоростей от 36 до 122 метров в секунду, то есть от 130 до 440 километров в час.

Скорость животных

Максимальные скорости некоторых животных примерно равны:

Скорость человека

  • Люди ходят со скоростью примерно 1,4 метра в секунду или 5 километров в час, и бегают со скоростью примерно до 8,3 метра в секунду, или до 30 километров в час.

Примеры разных скоростей

Четырехмерная скорость

В классической механике векторная скорость измеряется в трехмерном пространстве. Согласно специальной теории относительности, пространство - четырехмерное, и в измерении скорости также учитывается четвертое измерение - пространство-время. Такая скорость называется четырехмерной скоростью. Ее направление может изменяться, но величина постоянна и равна c , то есть скорости света. Четырехмерная скорость определяется как

U = ∂x/∂τ,

где x представляет мировую линию - кривую в пространстве-времени, по которой движется тело, а τ - «собственное время», равное интервалу вдоль мировой линии.

Групповая скорость

Групповая скорость - это скорость распространения волн, описывающая скорость распространения группы волн и определяющая скорость переноса энергии волн. Ее можно вычислить как ∂ω /∂k , где k - волновое число, а ω - угловая частота. K измеряют в радианах/метр, а скалярную частоту колебания волн ω - в радианах в секунду.

Гиперзвуковая скорость

Гиперзвуковая скорость - это скорость, превышающая 3000 метров в секунду, то есть во много раз выше скорости звука. Твердые тела, движущиеся с такой скоростью, приобретают свойства жидкостей, так как благодаря инерции, нагрузки в этом состоянии сильнее, чем силы, удерживающие вместе молекулы вещества во время столкновения с другими телами. При сверхвысоких гиперзвуковых скоростях два столкнувшихся твердых тела превращаются в газ. В космосе тела движутся именно с такой скоростью, и инженеры, проектирующие космические корабли, орбитальные станции и скафандры, должны учитывать возможность столкновения станции или космонавта с космическим мусором и другими объектами при работе в открытом космосе. При таком столкновении страдает обшивка космического корабля и скафандр. Разработчики оборудования проводят эксперименты столкновений на гиперзвуковой скорости в специальных лабораториях, чтобы определить, насколько сильные столкновения выдерживают скафандры, а также обшивка и другие части космического корабля, например топливные баки и солнечные батареи, проверяя их на прочность. Для этого скафандры и обшивку подвергают воздействию ударов разными предметами из специальной установки со сверхзвуковыми скоростями, превышающими 7500 метров в секунду.

Нашей планеты. Объект при этом будет двигаться неравномерно и неравноускоренно. Это происходит потому, что ускорение и скорость в данном случае не будут удовлетворять условиям с постоянной по направлению и величине скоростью/ускорением. Эти два вектора (скорости и ускорения) по мере движения по орбите будут всё время менять свое направление. Поэтому такое движение иногда называют движением с постоянной скоростью по круговой орбите

Первая космическая - скорость, которую нужно придать телу, чтобы вывести его на круговую орбиту. При этом оно станет подобно Другими словами, первая космическая - скорость, достигнув которую тело, движущееся над поверхностью Земли, не упадёт на неё, а будет продолжать движение по орбите.

Для удобства вычислений можно рассматривать это движение как происходящее в неинерциальной системе отсчета. Тогда тело на орбите можно будет считать находящимся в состоянии покоя, так как на него будут действовать две и тяготения. Следовательно, первая будет вычисляться, исходя из рассмотрения равенства этих двух сил.

Рассчитывается она по определённой формуле, в которой учитывается масса планеты, масса тела, гравитационная постоянная. Подставив известные значения в определённую формулу, получают: первая космическая скорость - 7,9 километров в секунду.

Кроме первой космической существуют вторая и третья скорости. Каждая из космических скоростей вычисляется по определённым формулам и интерпретируется физически как скорость, при которой любое тело, запускаемое с поверхности планеты Земля, становится либо искусственным спутником (это произойдет при достижении первой космической скорости), либо выходит из поля тяготения Земли (это происходит при достижении второй космической скорости), либо уйдёт из Солнечной системы, преодолевая притяжение Солнца (это происходит при третьей космической скорости).

Набрав скорость, равную 11,18 километров в секунду (вторая космическая), может лететь в сторону планет в Солнечной системе: Венеры, Марса, Меркурия, Сатурна, Юпитера, Нептуна, Урана. Но чтобы достичь какой-либо из них, нужно учитывать их движение.

Раньше учёные полагали, что движение планет равномерное и происходит по окружности. И только И. Кеплер установил настоящую форму их орбит и закономерность, по которой изменяются скорости движения небесных тел при их вращении вокруг Солнца.

Понятие космической скорости (первой, второй или третьей) применяется при расчёте движения искусственного тела в любой планеты или её естественного спутника, а также Солнца. Так можно определить космическую скорость, например, для Луны, Венеры, Меркурия и других небесных тел. Эти скорости должны вычисляться по формулам, в которых учитывается масса небесного тела, силу тяготения которой нужно преодолеть

Третья космическая может быть определена исходя из условия, что космический аппарат должен иметь по отношению к Солнцу параболическую траекторию движения. Для этого во время запуска у поверхности Земли и на высоте около двухсот километров его скорость должна быть равной примерно 16,6 километров в секунду.

Соответственно космические скорости могут быть рассчитаны также и для поверхностей других планет и их спутников. Так, например, для Луны первая космическая составит 1,68 километров в секунду, вторая — 2,38 километров в секунду. Вторая космическая скорость для Марса и Венеры, соответственно, равна 5,0 километров в секунду и 10,4 километра в секунду.

Если и некоторому телу сообщить скорость, равную первой космической скорости, то оно не упадет на Землю, а станет искусственным спутником, движущимся по околоземной круговой орбите. Напомним, что эта скорость должна быть перпендикулярна направлению к центру Земли и равна по величине
v I = √{gR} = 7,9 км/с ,
где g = 9,8 м/с 2 − ускорение свободного падения тел у поверхности Земли, R = 6,4 × 10 6 м − радиус Земли.

А может ли тело и вовсе порвать цепи тяготения, «привязывающие» его к Земле? Оказывается, может, но для этого его нужно «бросить» с еще большей скоростью. Минимальную начальную скорость, которую необходимо сообщить телу у поверхности Земли, чтобы оно преодолело земное притяжение, называют второй космической скоростью. Найдем ее значение v II .
 При удалении тела от Земли сила притяжения совершает отрицательную работу, в результате чего кинетическая энергия тела уменьшается. Одновременно с этим уменьшается и сила притяжения. Если кинетическая энергия упадет до нуля до того, как станет равной нулю сила притяжения, тело вернется обратно на Землю. Чтобы этого не произошло, нужно, чтобы кинетическая энергия сохранялась отличной от нуля до тех пор, пока сила притяжения не обратится в нуль. А это может произойти лишь на бесконечно большом расстоянии от Земли.
 Согласно теореме о кинетической энергии, изменение кинетической энергии тела равно работе действующей на тело силы. Для нашего случая можно записать:
0 − mv II 2 /2 = A ,
или
mv II 2 /2 = −A ,
где m − масса брошенного с Земли тела, A − работа силы притяжения.
 Таким образом, для вычисления второй космической скорости нужно найти работу силы притяжения тела к Земле при удалении тела от поверхности Земли на бесконечно большое расстояние. Как это ни удиви-тельно, но работа эта вовсе не бесконечно большая, несмотря на то, что перемещение тела как будто бы бесконечно велико. Причина тому − уменьшение силы притяжения по мере удаления тела от Земли. Чему же равна работа силы притяжения?
 Воспользуемся той особенностью, что работа силы тяготения не зависит от формы траектории движения тела, и рассмотрим самый простой случай − тело удаляется от Земли по линии, проходящей через центр Земли. На приведенном здесь рисунке изображен Земной шар и тело массой m , которое движется вдоль направления, указанного стрелкой.

 Найдем сначала работу А 1 , которую совершает сила притяжения на очень малом участке от произвольной точки N до точки N 1 . Расстояния этих точек до центра Земли обозначим через r и r 1 , соответственно, так что работа А 1 будет равна
A 1 = −F(r 1 − r) = F(r − r 1) .
Но какое значение силы F следует подставить в эту формулу? Ведь оно изменяется от точки к точке: в N оно равно GmM/r 2 (М − масса Земли), в точке N 1 GmM/r 1 2 .
 Очевидно, нужно взять среднее значение этой силы. Так как расстояния r и r 1 , мало отличаются друг от друга, то в качестве среднего можно взять значение силы в некоторой средней точке, например такой, что
r cp 2 = rr 1 .
Тогда получаем
A 1 = GmM(r − r 1)/(rr 1) = GmM(1/r 1 − 1/r) .
 Рассуждая таким же образом, найдем, что на участке N 1 N 2 совершается работа
A 2 = GmM(1/r 2 − 1/r 1) ,
на участке N 2 N 3 работа равна
A 3 = GmM(1/r 3 − 1/r 2) ,
а на участке NN 3 работа равна
A 1 + A 2 + A 2 = GmM(1/r 3 − 1/r) .
 Закономерность ясна: работа силы притяжения при перемещении тела от одной точки к другой определяется разностью обратных расстояний от этих точек до центра Земли. Теперь нетрудно найти и всю работу А при перемещении тела от поверхности Земли (r = R ) на бесконечно большое расстояние (r → ∞ , 1/r = 0 ):
A = GmM(0 − 1/R) = −GmM/R .
 Как видно, эта работа и в самом деле не бесконечно велика.
 Подставив полученное выражение для А в формулу
mv II 2 /2 = −GmM/R ,
найдем значение второй космической скорости:
v II = √{−2A/m} = √{2GM/R} = √{2gR} = 11,2 км/с .
 Отсюда видно, что вторая космическая скорость в √{2} раз больше первой космической скорости:
v II = √{2}v I .
 В проведенных расчетах мы не принимали во внимание то, что наше тело взаимодействует не только с Землей, но и с другими космическими объектами. И в первую очередь − с Солнцем. Получив начальную скорость, равную v II , тело сумеет преодолеть тяготение к Земле, но не станет истинно свободным, а превратится в спутник Солнца. Однако если телу у поверхности Земли сообщить так называемую третью космическую скорость v III = 16,6 км/с , то оно сумеет преодолеть и силу притяжения к Солнцу.
 Смотрите пример

02.12.2014

Урок 22 (10 класс)

Тема. Искусственные спутники Земли. Развитие космонавтики.

О движении бросаемых тел

В 1638 г. в Лейдене вышла книга Галилея «Беседы и математические доказательства, касающиеся двух новых отраслей науки». Четвертая глава этой книги называлась «О движении бросаемых тел». Не без труда удалось ему убедить людей в том, что в безвоздушном пространстве «крупинка свинца должна падать с такой же быстротой, как пушечное ядро». Но когда Галилей поведал миру о том, что ядро, вылетевшее из пушки в горизонтальном направлении, находится в полете столько же времени, что и ядро, просто выпавшее из ее жерла на землю, ему не поверили. Между тем это действительно так: тело, брошенное с некоторой высоты в горизонтальном направлении, движется до земли в течение такого же времени, как если бы оно просто упало с той же высоты вертикально вниз.
Чтобы убедиться в этом, воспользуемся прибором, принцип действия которого иллюстрирует рисунок 104, а. После удара молоточком М по упругой пластине П шарики начинают падать и, несмотря на различие в траекториях, одновременно достигают земли. На рисунке 104, б изображена стробоскопическая фотография падающих шариков. Для получения этой фотографии опыт проводили в темноте, а шарики через равные интервалы времени освещали яркой вспышкой света. При этом затвор фотоаппарата был открыт до тех пор, пока шарики не упали на землю. Мы видим, что в одни и те же моменты времени, когда происходили вспышки света, оба шарика находились на одной и той же высоте и столь же одновременно они достигли земли.

Время свободного падения с высоты h (вблизи поверхности Земли) может быть найдено по известной из механики формуле s=аt2/2 . Заменяя здесь s на h и а на g , перепишем эту формулу в виде

откуда после несложных преобразований получим

Такое же время будет находиться в полете и тело, брошенное с той же высоты в горизонтальном направлении. В этом случае, согласно Галилею, «к равномерному беспрепятственному движению присоединяется другое, вызываемое силой тяжести, благодаря чему возникает сложное движение, слагающееся из равномерного горизонтального и естественно ускоренного движений».
За время, определяемое выражением (44.1), двигаясь в горизонтальном направлении со скоростью v0 (т. е. с той скоростью, с которой оно было брошено), тело переместится по горизонтали на расстояние

Из этой формулы следует, что дальность полета тела, брошенного в горизонтальном направлении, пропорциональна начальной скорости тела и возрастает с увеличением высоты бросания.
Чтобы выяснить, по какой траектории движется в этом случае тело, обратимся к опыту. Присоединим к водопроводному крану резиновую трубку, снабженную наконечником, и направим струю воды в горизонтальном направлении. Частицы воды при этом будут двигаться точно так же, как и брошенное в том же направлении тело. Отворачивая или, наоборот, заворачивая кран, можно изменить начальную скорость струи и тем самым дальность полета частиц воды (рис. 105), однако во всех случаях струя воды будет иметь форму параболы . Чтобы убедиться в этом, позади струи следует поставить экран с заранее начерченными на нем параболами. Струя воды будет точно соответствовать изображенным на экране линиям.

Итак, свободно падающее тело, начальная скорость которого горизонтальна, движется по параболической траектории.
По параболе будет двигаться тело и в том случае, когда оно брошено под некоторым острым углом к горизонту. Дальность полета в этом случае будет зависеть не только от начальной скорости, но и от угла, под которым она была направлена. Проводя опыты со струей воды, можно установить, что наибольшая дальность полета при этом достигается тогда, когда начальная скорость составляет с горизонтом угол 45° (рис. 106).

При больших скоростях движения тел следует учитывать сопротивление воздуха. Поэтому дальность полета пуль и снарядов в реальных условиях оказывается не такой, как это вытекает из формул, справедливых для движения в безвоздушном пространстве. Так, например, при начальной скорости пули 870 м/с и угле 45° в отсутствие сопротивления воздуха дальность полета составила бы примерно 77 км, между тем как в действительности она не превышает 3,5 км.

Первая космическая скорость

Вычислим скорость, которую надо сообщить искусственному спутнику Земли, чтобы он двигался по круговой орбите на высоте h над Землей.
На больших высотах воздух сильно разрежен и оказывает незначительное сопротивление движущимся в нем телам. Поэтому можно считать, что на спутник действует только гравитационная сила , направленная к центру Земли (рис.4.4 ).

По второму закону Ньютона .
Центростремительное ускорение спутника определяется формулой , где h - высота спутника над поверхностью Земли. Сила же, действующая на спутник, согласно закону всемирного тяготения определяется формулой , где M - масса Земли.
Подставив значения F и a в уравнение для второго закона Ньютона, получим

Из полученной формулы следует, что скорость спутника зависит от его расстояния от поверхности Земли: чем больше это расстояние, тем с меньшей скоростью он будет двигаться по круговой орбите. Примечательно то, что эта скорость не зависит от массы спутника. Значит, спутником Земли может стать любое тело, если ему сообщить определенную скорость. В частности, при h =2000 км=2 10 6 м скорость v≈ 6900 м/с.
Минимальная скорость, которую надо сообщить телу на поверхности Земли, чтобы оно стало спутником Земли, движущимся по круговой орбите, называется первой космической скоростью .
Первую космическую скорость можно найти по формуле (4.7), если принять h =0:

Подставив в формулу (4.8) значение G и значения величин M и R для Земли, можно вычислить первую космическую скорость для спутника Земли:

Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет искусственным спутником Земли, обращающимся вокруг нее по круговой орбите.
Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников.
Любое тело может стать искусственным спутником другого тела (планеты), если сообщить ему необходимую скорость.

Движение искусственных спутников

В работах Ньютона можно найти замечательный рисунок, показывающий, как можно осуществить переход от простого падения тела по параболе к орбитальному движению тела вокруг Земли (рис. 107). «Брошенный на землю камень,- писал Ньютон,- отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше». Продолжая эти рассуждения, нетрудно прийти к выводу, что если бросить камень с высокой горы с достаточно большой скоростью, то его траектория могла бы стать такой, что он вообще никогда не упал бы на Землю, превратившись в ее искусственный спутник .

Минимальная скорость, которую необходимо сообщить телу у поверхности Земли, чтобы превратить его в искусственный спутник, называется первой космической скоростью .
Для запуска искусственных спутников применяют ракеты, поднимающие спутник на заданную высоту и сообщающие ему в горизонтальном направлении требуемую скорость. После этого спутник отделяется от ракеты-носителя и продолжает дальнейшее движение лишь под действием гравитационного поля Земли. (Влиянием Луны, Солнца и других планет мы здесь пренебрегаем.) Ускорение, сообщаемое этим полем спутнику, есть ускорение свободного падения g . С другой стороны, поскольку спутник движется по круговой орбите, это ускорение является центростремительным и поэтому равно отношению квадрата скорости спутника к радиусу его орбиты. Таким образом,

Откуда

Подставляя сюда выражение (43.1), получаем

Мы получили формулу круговой скорости спутника , т. е. такой скорости, которую имеет спутник, двигаясь по круговой орбите радиусомr на высоте h от поверхности Земли.
Чтобы найти первую космическую скорость v1 , следует учесть, что она определяется как скорость спутника вблизи поверхности Земли, т. е. когда h< и r≈R3 . Учитывая это в формуле (45.1), получаем

Подстановка в эту формулу числовых данных приводит к следующему результату:

Сообщить телу такую огромную скорость впервые удалось лишь в 1957 г., когда в СССР под руководством С. П. Королева был запущен первый в мире искусственный спутник Земли (сокращенно ИСЗ). Запуск этого спутника (рис. 108) - результат выдающихся достижений в области ракетной техники, электроники, автоматического управления, вычислительной техники и небесной механики.

В 1958 г. на орбиту был выведен первый американский спутник «Эксплорер-1», а несколько позже, в 60-х гг., запуски ИСЗ произвели и другие страны: Франция, Австралия, Япония, КНР, Великобритания и др., причем многие спутники были запущены с помощью американских ракет-носителей.
В настоящее время запуск искусственных спутников является привычным делом, и в практике космических исследований уже давно получило широкое распространение международное сотрудничество.
Запускаемые в разных странах спутники могут быть разделены по своему назначению на два класса:
1. Научно-исследовательские спутники . Они предназначены для изучения Земли как планеты, ее верхней атмосферы, околоземного космического пространства, Солнца, звезд и межзвездной среды.
2. Прикладные спутники . Они служат удовлетворению земных нужд народного хозяйства. Сюда относятся спутники связи, спутники для изучения природных ресурсов Земли, метеорологические спутники, навигационные, военные и др.
К ИСЗ, предназначенным для полета людей, относятся пилотируемые корабли-спутники и орбитальные станции .
Помимо работающих спутников на околоземных орбитах обращаются вокруг Земли и так называемые вспомогательные объекты: последние ступени ракет-носителей, головные обтекатели и некоторые другие детали, отделяемые от ИСЗ при выводе их на орбиты.
Заметим, что из-за огромного сопротивления воздуха вблизи поверхности Земли спутник не может быть запущен слишком низко. Например, на высоте 160 км он способен совершить всего лишь один оборот, после чего снижается и сгорает в плотных слоях атмосферы. По этой причине первый искусственный спутник Земли, выведенный на орбиту на высоте 228 км, просуществовал только три месяца.
С увеличением высоты сопротивление атмосферы уменьшается и при h >300 км становится пренебрежимо малым.
Возникает вопрос: а что будет, если запустить спутник со скоростью, большей первой космической? Расчеты показывают, что если превышение незначительно, то тело при этом остается искусственным спутником Земли, но движется уже не по круговой, а по эллиптической орбите. С увеличением скорости орбита спутника становится все более вытянутой, пока наконец не «разрывается», превратившись в незамкнутую (параболическую) траекторию (рис. 109).

Минимальная скорость, которую нужно сообщить телу у поверхности Земли, чтобы оно ее покинуло, двигаясь по незамкнутой траектории, называется второй космической скоростью .
Вторая космическая скорость в √2 раза больше первой космической:

При такой скорости тело покидает область земного притяжения и становится спутником Солнца.
Чтобы преодолеть притяжение Солнца и покинуть Солнечную систему, нужно развить еще большую скорость - третью космическую . Третья космическая скорость равна 16,7 км/с. Имея примерно такую скорость, автоматическая межпланетная станция «Пионер-10» (США) в 1983 г. впервые в истории человечества вышла за пределы Солнечной системы и сейчас летит по направлению к звезде Барнарда.

Примеры решения задач

Задача 1 . Тело бросают вертикально вверх со скоростью 25 м/с. Определите высоту подъема и время полета.

Дано: Решение:

; 0=0+25 . t-5 . t 2

; 0=25-10 . t 1 ; t 1 =2,5c; Н=0+25 . 2,5-5 . 2,5 2 =31,25 (м)

t- ? 5t=25; t=5c

H - ? Ответ: t=5c; Н=31,25 (м)

Рис. 1. Выбор системы отсчета

Сначала мы должны выбрать систему отсчета. Систему отсчета выбираем связанную с землей, начальная точка движения обозначена 0. Вертикально вверх направлена ось Оу. Скорость направлена вверх и совпадает по направлению с осью Оу. Ускорение свободного падения направлено вниз по той же оси.

Запишем закон движения тела. Нельзя забывать о том, что скорость и ускорение величины векторные.

Следующий шаг. Обратите внимание, что конечная координата, в конце, когда тело поднялось на некоторую высоту, а потом упало обратно на землю, будет равна 0. Начальная координата также равна 0: 0=0+25 . t-5 . t 2 .

Если решить это уравнение, получим время: 5t=25; t=5 c.

Определим теперь максимальную высоту подъема. Сначала определим время подъема тела до верхней точки. Для этого мы используем уравнение скорости: .

Мы записали уравнение в общем виде: 0=25-10 . t 1 ,t 1 =2,5 c.

Когда мы подставляем известные нам значения, то получаем, что время подъема тела, время t 1 составляет 2,5 с.

Здесь бы хотелось отметить то, что все время полета составляет 5 с, а время подъема до максимальной точки 2,5 с. Это означает, что тело поднимается ровно столько времени, сколько потом будет обратно падать на землю. Теперь воспользуемся уравнением, которое мы уже использовали, – закон движения. В этом случае мы вместо конечной координаты ставим Н, т.е. максимальную высоту подъема: Н=0+25 . 2,5-5 . 2,5 2 =31,25 (м) .

Произведя несложные расчеты, получаем, что максимальная высота подъема тела составит 31,25 м . Ответ: t=5c; Н=31,25 (м) .

В данном случае мы воспользовались практически всеми уравнениями, которые изучали при исследовании свободного падения.

Задача 2 . Определите высоту над уровнем Земли, на которойускорение свободного падения уменьшается в два раза.

Дано: Решение:

R З =6400 км ; ;

.

Н -? Ответ: Н ≈ 2650 км.

Для решения этой задачи нам потребуется, пожалуй, одно единственное данное. Это радиус Земли. Он равен 6400 км.

Ускорение свободного падения определяется на поверхности Земли следующим выражением: . Это на поверхности Земли. Но стоит нам только удалиться от Земли на большое расстояние, ускорение будет определяться уже следующим образом: .

Если теперь мы разделим эти величины друг на друга, получим следующее: .

Сокращаются постоянные величины, т.е. гравитационная постоянная и масса Земли, а остается радиус Земли и высота, и это отношение равно 2.

Преобразуя теперь полученные уравнения, находим высоту: .

Если подставить значения в полученную формулу, получаем ответ: Н ≈ 2650 км .

Задача 3. Тело движется по дуге радиусом 20 см со скоростью 10 м/с. Определите центростремительное ускорение.

Дано: СИ Решение:

R=20 см 0,2 м

V=10 м/с

а Ц - ? Ответ: а Ц = .

Формула для вычисления центростремительного ускорения известна. Подставляя сюда значения, мы получаем: . В этом случае центростремительное ускорение получается огромным, посмотрите на его значение . Ответ: а Ц = .

«Равномерное и неравномерное движение» - t 2. Неравномерное движение. Яблоневка. L 1. Равномерное и. L2. t 1. L3. Чистоозерное. t 3. Равномерное движение. =.

«Криволинейное движение» - Центростремительное ускорение. РАВНОМЕРНОЕ ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ Различают: - криволинейное движение с постоянной по модулю скоростью; - движение с ускорением, т.к. скорость меняет направление. Направление центростремительного ускорения и скорости. Движение точки по окружности. Движение тела по окружности с постоянной по модулю скоростью.

«Движение тел по плоскости» - Оценить полученные значения неизвестных величин. Подставить числовые данные в решение общего вида, произвести вычисления. Выполнить рисунок, изобразив на нем взаимодействующие тела. Выполнить анализ взаимодействия тел. Fтр. Движение тела по наклонной плоскости без силы трения. Изучение движения тела по наклонной плоскости.

«Опора и движение» - К нам скорая помощь привезла больного. Стройный, сутулый, сильный, крепкий, толстый, неуклюжий, ловкий, бледный. Игровая ситуация “Консилиум врачей”. Спать на жесткой постели с невысокой подушкой. «Опора тела и движение. Правила для поддержания правильной осанки. Правильная поза в положении стоя. Кости детей мягкие, эластичные.

«Космическая скорость» - V1. СССР. Поэтому. 12 апреля 1961г. Послание внеземным цивилизациям. Третья космическая скорость. На борту «Вояджер-2» диск с научной информацией. Расчет первой космической скорости у поверхности Земли. Первый полет человека в космос. Траектория движения Вояджер-1. Траектория движения тел движущихся с малой скоростью.

«Динамика тела» - Что лежит в основе динамики? Динамика- раздел механики, рассматривающий причины движения тел (материальных точек). Законы Ньютона применимы только для инерциальных систем отсчета. Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными. Динамика. В каких системах отсчета применяются законы Ньютона?

Всего в теме 20 презентаций