Биографии Характеристики Анализ

Формулы для нахождения первообразных. Первообразная функции и общий вид

Научиться интегрированию не сложно. Для этого необходимо лишь усвоить определенный, достаточно небольшой, набор правил и разработать у себя своего рода чутье. Выучить правила и формулы, конечно же, легко, но понять, где и когда нужно применить то или иное правило интегрирования или дифференцирования, достаточно затруднительно. В этом, собственно, и состоит умение интегрировать.

1. Первообразная. Неопределенный интеграл.

Предполагается, что к моменту чтения этой статьи читатель уже обладает некими навыками дифференцирования (т.е. нахождения производных).

Определение 1.1: Функция называется первообразной функции если выполняется равенство:

Комментарии: > Ударение в слове “первообразная” можно ставить двумя способами: первоо бразная или первообра зная.

Свойство 1: Если функция является первообразной функции , то функция также является первообразной функции .

Доказательство: Докажем это из определения первообразной. Найдем производную функции :

Первое слагаемое по определению 1.1 равно , а второе слагаемое является производной константы, которая равна 0.

.

Подведем итог. Запишем начало и конец цепочки равенств:

Таким образом, производная функции равна , а значит, по определению, является её первообразной. Свойство доказано.

Определение 1.2: Неопределенным интегралом функции называется всё множество первообразных этой функции. Это обозначается так:

.

Рассмотрим названия каждой части записи подробно:

— общее обозначение интеграла,

— подинтегральное (подынтегральное) выражение, интегрируемая функция.

— дифференциал, и выражение после буквы , в данном случае это , будем называть переменной интегрирования.

Комментарии: Ключевые слова в этом определении – “все множество”. Т.е. если в будущем в ответе не будет записано это самое «плюс С», то проверяющий имеет полное право не зачесть это задание, т.к. необходимо найти все множество первообразных, а если С отсутствует, то найдена только одна.

Вывод: Для того, чтобы проверить правильно ли вычислен интеграл, необходимо найти от результата производную. Она должна совпасть с подынтегральным выражением.
Пример:
Задание: Вычислить неопределенный интеграл и выполнить проверку.

Решение:

То, как вычислен этот интеграл, в данном случае не имеет никакого значения. Предположим, что это откровение свыше. Наша задача – показать, что откровение нас не обмануло, а сделать это можно с помощью проверки.

Проверка:

При дифференцировании результата получили подынтегральное выражение, значит, интеграл вычислен верно.

2. Начало. Таблица интегралов.

Для интегрирования не нужно каждый раз вспоминать функцию, производная которой равна данной подынтегральной функции (т.е. использовать непосредственно определение интеграла). В каждом сборнике задач или учебнике по математическому анализу приведена список свойств интегралов и таблица простейших интегралов.

Перечислим свойства.

Свойства:
1.
Интеграл от дифференциала равен переменной интегрирования.
2. , где — константа.
Множитель-константу можно выносить за знак интеграла.

3.
Интеграл суммы равен сумме интегралов (если количество слагаемых конечно).
Таблица интегралов:

1. 10.
2. 11.
3. 12.
4. 13.
5. 14.
6. 15.
7. 16.
8. 17.
9. 18.

Чаще всего задача состоит в том, чтобы с помощью свойств и формул свести исследуемый интеграл к табличному.

Пример:

[ Воспользуемся третьим свойством интегралов и запишем в виде суммы трех интегралов.]

[ Воспользуемся вторым свойством и вынесем константы за знак интегрирования.]

[ В первом интеграле воспользуемся табличным интегралом №1 (n=2), во втором – той же формулой, но n=1, а для третьего интеграла можно или воспользоваться все тем же табличным интегралом, но с n=0, или первым свойством.]
.
Проверим дифференцированием:

Получено исходное подынтегральное выражение, следовательно, интегрирование выполнено без ошибок (и даже не забыто прибавление произвольной константы С).

Табличные интегралы необходимо выучить наизусть по одной простой причине – дабы знать, к чему стремиться, т.е. знать цель преобразования данного выражения.

Приведем еще несколько примеров:
1)
2)
3)

Задачи для самостоятельного решения:

Задание 1. Вычислить неопределенный интеграл:

+ Показать/спрятать подсказку №1.

1) Воспользоваться третьим свойством и представить этот интеграл как сумму трех интегралов.

+ Показать/спрятать подсказку №2.

+ Показать/спрятать подсказку №3.

3) Для первых двух слагаемых воспользоваться первым табличным интегралом, а для третьего – вторым табличным.

+ Показать/спрятать Решение и Ответ.

4) Решение:

Ответ:

Первообразная

Определение первообразной функции

  • Функцию у= F (x) называют первообразной для функции у=f (x) на заданном промежутке Х, если для всех х Х выполняется равенство: F′(x) = f (x)

Можно прочесть двумя способами:

  1. f производная функции F
  2. F первообразная для функции f

Свойство первообразных

  • Если F(x) - первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С - произвольная постоянная.

Геометрическая интерпретация

  • Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу .

Правила вычисления первообразных

  1. Первообразная суммы равна сумме первообразных . Если F(x) - первообразная для f(x) , а G(x) - первообразная для g(x) , то F(x) + G(x) - первообразная для f(x) + g(x) .
  2. Постоянный множитель можно выносить за знак производной . Если F(x) - первообразная для f(x) , и k - постоянная, то k·F(x) - первообразная для k·f(x) .
  3. Если F(x) - первообразная для f(x) , и k, b - постоянные, причём k ≠ 0 , то 1/k · F(kx + b) - первообразная для f(kx + b) .

Запомни!

Любая функция F(x) = х 2 + С , где С - произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х .

  • Например:

    F"(x) = (х 2 + 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 – 1)" = 2x = f(x);

    f(x) = 2х, т.к. F"(x) = (х 2 –3)" = 2x = f(x);

Связь между графиками функции и ее первообразной:

  1. Если график функции f(x)>0 F(x) возрастает на этом промежутке.
  2. Если график функции f(x)<0 на промежутке, то график ее первообразной F(x) убывает на этом промежутке.
  3. Если f(x)=0 , то график ее первообразной F(x) в этой точке меняется с возрастающего на убывающий (или наоборот).

Для обозначения первообразной используют знак неопределённого интеграла, то есть интеграла без указания пределов интегрирования.

Неопределенный интеграл

Определение :

  • Неопределённым интегралом от функции f(x) называется выражение F(x) + С, то есть совокупность всех первообразных данной функции f(x). Обозначается неопределённый интеграл так: \int f(x) dx = F(x) + C
  • f(x) - называют подынтегральной функцией;
  • f(x) dx - называют подынтегральным выражением;
  • x - называют переменной интегрирования;
  • F(x) - одна из первообразных функции f(x);
  • С - произвольная постоянная.

Свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции: (\int f(x) dx)\prime= f(x) .
  2. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла: \int k \cdot f(x) dx = k \cdot \int f(x) dx .
  3. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx .
  4. Если k, b - постоянные, причём k ≠ 0, то \int f(kx + b) dx = \frac{1}{k} \cdot F(kx + b) + C .

Таблица первообразных и неопределенных интегралов

Функция

f(x)

Первообразная

F(x) + C

Неопределенные интегралы

\int f(x) dx = F(x) + C

0 C \int 0 dx = C
f(x) = k F(x) = kx + C \int kdx = kx + C
f(x) = x^m, m\not =-1 F(x) = \frac{x^{m+1}}{m+1} + C \int x{^m}dx = \frac{x^{m+1}}{m+1} + C
f(x) = \frac{1}{x} F(x) = l n \lvert x \rvert + C \int \frac{dx}{x} = l n \lvert x \rvert + C
f(x) = e^x F(x) = e^x + C \int e{^x }dx = e^x + C
f(x) = a^x F(x) = \frac{a^x}{l na} + C \int a{^x }dx = \frac{a^x}{l na} + C
f(x) = \sin x F(x) = -\cos x + C \int \sin x dx = -\cos x + C
f(x) = \cos x F(x) =\sin x + C \int \cos x dx = \sin x + C
f(x) = \frac{1}{\sin {^2} x} F(x) = -\ctg x + C \int \frac {dx}{\sin {^2} x} = -\ctg x + C
f(x) = \frac{1}{\cos {^2} x} F(x) = \tg x + C \int \frac{dx}{\sin {^2} x} = \tg x + C
f(x) = \sqrt{x} F(x) =\frac{2x \sqrt{x}}{3} + C
f(x) =\frac{1}{ \sqrt{x}} F(x) =2\sqrt{x} + C
f(x) =\frac{1}{ \sqrt{1-x^2}} F(x)=\arcsin x + C \int \frac{dx}{ \sqrt{1-x^2}}=\arcsin x + C
f(x) =\frac{1}{ \sqrt{1+x^2}} F(x)=\arctg x + C \int \frac{dx}{ \sqrt{1+x^2}}=\arctg x + C
f(x)=\frac{1}{ \sqrt{a^2-x^2}} F(x)=\arcsin \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2-x^2}} =\arcsin \frac {x}{a}+ C
f(x)=\frac{1}{ \sqrt{a^2+x^2}} F(x)=\arctg \frac {x}{a}+ C \int \frac{dx}{ \sqrt{a^2+x^2}} = \frac {1}{a} \arctg \frac {x}{a}+ C
f(x) =\frac{1}{ 1+x^2} F(x)=\arctg + C \int \frac{dx}{ 1+x^2}=\arctg + C
f(x)=\frac{1}{ \sqrt{x^2-a^2}} (a \not= 0) F(x)=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C \int \frac{dx}{ \sqrt{x^2-a^2}}=\frac{1}{2a}l n \lvert \frac {x-a}{x+a} \rvert + C
f(x)=\tg x F(x)= - l n \lvert \cos x \rvert + C \int \tg x dx =- l n \lvert \cos x \rvert + C
f(x)=\ctg x F(x)= l n \lvert \sin x \rvert + C \int \ctg x dx = l n \lvert \sin x \rvert + C
f(x)=\frac{1}{\sin x} F(x)= l n \lvert \tg \frac{x}{2} \rvert + C \int \frac {dx}{\sin x} = l n \lvert \tg \frac{x}{2} \rvert + C
f(x)=\frac{1}{\cos x} F(x)= l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C \int \frac {dx}{\cos x} = l n \lvert \tg (\frac{x}{2} +\frac{\pi}{4}) \rvert + C


Формула Ньютона–Лейбница

Пусть f (х) данная функция, F её произвольная первообразная.

\int_{a}^{b} f(x) dx =F(x)|_{a}^{b} = F(b) - F(a)

где F(x) - первообразная для f(x)

То есть, интеграл функции f (x) на интервале равен разности первообразных в точках b и a .

Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке функции f , осью Ox и прямыми x = a и x = b .

Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:

S= \int_{a}^{b} f(x) dx

Ниже перечислены четыре основных метода интегрирования.

1) Правило интегрирования суммы или разности.
.
Здесь и далее u, v, w - функции от переменной интегрирования x .

2) Вынесение постоянной за знак интеграла.
Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла.

3) Метод замены переменной.
Рассмотрим неопределенный интеграл .
Если удастся подобрать такую функцию φ(x) от x , так что
,
то, выполнив замену переменной t = φ(x) , имеем
.

4) Формула интегрирования по частям.
,
где u и v - это функции от переменной интегрирования.

Конечная цель вычисления неопределенных интегралов - это, путем преобразований, привести заданный интеграл к простейшим интегралам, которые называются табличными. Табличные интегралы выражаются через элементарные функции по известным формулам.
См. Таблица интегралов >>>

Пример

Вычислить неопределенный интеграл

Решение

Замечаем, что подынтегральная функция является суммой и разностью трех членов:
, и .
Применяем метод 1 .

Далее замечаем, что подынтегральные функции новых интегралов умножены на постоянные 5, 4, и 2 , соответственно. Применяем метод 2 .

В таблице интегралов находим формулу
.
Полагая n = 2 , находим первый интеграл.

Перепишем второй интеграл в виде
.
Замечаем, что . Тогда

Применяем третий метод. Делаем замену переменной t = φ(x) = ln x .
.
В таблице интегралов находим формулу

Поскольку переменная интегрирования может обозначаться любой буквой, то

Перепишем третий интеграл в виде
.
Применяем формулу интегрирования по частям.
Положим .
Тогда
;
;

;
;
.

Окончательно имеем
.
Соберем члены с x 3 .
.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.