Биографии Характеристики Анализ

Фотографии урана из космоса. Планеты солнечной системы: фото

13 30 854 0

Космос привлекает не только ученых. Это вечная тема для рисования. Конечно, увидеть все своими глазами мы не можем. Но фото и видео, снятые космонавтами, поражают воображение. И в нашей инструкции мы постараемся изобразить космос. Этот урок несложный, но поможет разобраться ребенку, где находится каждая планета.

Вам понадобятся:

Основной круг

Вначале нарисуйте большой круг на правой стороне листа. Если у вас нет циркуля, можно обвести круглый предмет.

Орбиты

От центра отходят орбиты планет, которые находятся на одинаковом расстоянии.

Центральная часть

Круги постепенно увеличиваются. Конечно, полностью они не поместятся, поэтому рисуйте полукруги.

Орбиты планет никогда не пересекаются, иначе столкнутся друг с другом.

Заканчиваем рисование орбит

Весь лист должен быть покрыт полукругами. Нам известно всего девять планет. Но что, если на дальних орбитах тоже есть космические тела, которые перемещаются по самых далеких орбитах.

Солнце

Центральный круг сделайте немного меньше и обведите жирной линией, чтобы Солнце выделялось на фоне остальных орбит.

Меркурий, Венера и Земля

Теперь приступаем к рисованию планет. Располагать их нужно в определенном порядке. В каждой планеты своя орбита. Возле самого Солнца вращается Меркурий. За ним, на второй орбите, находится Венера. Третьей идет Земля.

Марс, Сатурн и Нептун

Соседом Земли является Марс. Он немного меньше нашей планеты. Пятую орбиту пока оставьте пустой. Следующие круги – Сатурн, Нептун. Эти небесные тела еще называют планетами-гигантами, так как они в десятки раз больше Земли.

Уран, Юпитер и Плутон

Между Сатурном и Нептуном находится еще одна большая планета – Уран. Ее нарисуйте сбоку, чтобы изображения не соприкасались.

Самой большой планетой Солнечной системы считается Юпитер. Вот почему мы изобразим его в стороне, подальше от других планет. И на девятой орбите добавьте самое маленькое небесное тело – Плутон.

Сатурн известен своими кольцами, которые появились вокруг него. Изобразите несколько овалов по центру планеты. Нарисуйте лучи разной величины, которые отходят от Солнца.

Поверхность каждой планеты не однообразна. Даже наше Солнце имеет разные оттенки и черные пятна. На каждой планете изобразите поверхность с помощью кругов и полукругов.

На поверхности Юпитера нарисуйте туман. На этой планете часто происходят песчаные бури и она затянута тучами.

Голубая планета Уран - седьмая от Солнца, третья по диаметру и четвертая по массе планета в Солнечной системе. Был открыт при наблюдениях в телескоп английским астрономом Уильямом Гершелем в марте 1781 года. Экваториальный радиус Урана составляет порядка 25.56 тыс км, что более чем в два раза меньше чем у Юпитера и Сатурна. За счет вращения планета сплющивается в полярных точках, тем самым вертикальный радиус на 627 км меньше экваториального. Плотность Урана близка к Юпитеру, однако в два раза превышает, чем у Сатурна. Пожалуй главной особенностью планеты, является его странное вращение вокруг собственной оси. В отличии от других планет, Уран вращается "лежа на боку", и похож на катящийся шар по орбите вокруг Солнца, поскольку плоскость экватора Урана наклонена к плоскости его орбиты под углом 97,86°. К примеру у Земли такой угол равен 23,4°, у Марса - 24,9°, у Юпитера всего 3,13°. Такое аномальное вращение способствует совсем иному представлению о смене времен года на планете. Каждые 42 земных года, Уран подставляет то южный то северный полюс к Солнцу. Поэтому 42 года один из полюсов находится в абсолютной темноте, а другой наоборот освещен солнечными лучами

Статуя Урана, древнейшего греческого бога неба и первого царя Вселенной

Сравнение размеров девяти планет Солнечной системы. Огромный шар с белыми и коричневыми полосами принадлежит Юпитеру, справа от него вторая по размерам планета Сатурн. Две сферы в среднем ряду (Нептун и Уран) очень похожи по размерам. Диаметр Урана больше чем у Нептуна всего на 1600 км. Планеты внизу относятся к типу планет земной группы, крупнейшие из них Земля и ее сестра Венера. С 2006 года самой мелкой планетой считается Меркурий, поскольку занимавший это положение Плутон, с этого времени перестал быть обычной планетой и перенесся в категорию карликовых планет

Основными компонентами всех газовых гигантов, в том числе и Урана, является водород и гелий. В нижний слоях атмосферы "голубой планеты" встречается 2-3 -ех процентное содержание метана, этана и других углеводородных элементов

Внутренняя структура Урана

Атмосфера (тропосфера) из водорода, гелия и аммиака, толщиной 300 км;

Жидкий водород, толщиной 5 000 км;

"Ледяная" мантия из жидкой воды, аммиака и метана, толщиной 15 150 км;

Твердое ядро из каменных пород и металлов, радиус 5 110 км.
В отличие от газовых гигантов — Сатурна и Юпитера, состоящих в основном из водорода и гелия, в недрах Урана и схожего с ним Нептуна отсутствует металлический водород, но зато много высокотемпературных модификаций льда — по этой причине специалисты выделили эти две планеты в отдельную категорию "ледяных гигантов". На границе между твердым ядром и ледяной мантией температура достигает 5000-6000 °C, а давление может подниматься до 8 миллионов земных атмосфер

Уран движется по орбите на среднем расстоянии от Солнца 2,87 млрд. км при орибитальной скорости 24 500 км/ч. Пока Уран полностью обернется вокруг звезды, пройдет 84,32 земных года. Каждые сутки на планете длятся по 17-17,5 часов


Первый атмосферный вихрь, замеченный на Уране. Снимок получен космическим телескопом "Хаббл". Климат голубой планеты намного спокойнее его соседей (Нептуна, Сатурна и Юпитера). На экваторе ветра являются ретроградными, то есть дуют в обратном по отношению к вращению планеты направлении. Максимальная скорость ветра, зафиксированная в северном полушарии атмосферы Урана, составляет более 250 м/с

Положение колец Урана в разные периоды наблюдения

До сегодняшнего времени у Урана замечено 13 колец, состоящие из частиц диаметров от нескольких миллиметров до 10 метров. Как и кольца Сатурна, кольца Урана состоят из чистого водяного льда и имеют высокую отражательную способность. Внешнее кольцо μ состоящее из бесконечного множества мелких пылинок, вращается от центра планеты на расстоянии около 100 000 км, имея при этом толщину не более 150 м

Изображение в естественном цвете (слева) и в более дальних частях видимого спектра (справа), позволяющие различить облачные полосы и атмосферные зоны. Снимки получены космическим аппаратом "Вояджера-2" в 1986 году


Уран - в окружении своих крупнейших лун

Пять крупнейших лун Урана. На рисунке они показаны в правильном расположении от планеты. Миранда - ближайший спутник голубой "звезды" (129 400 км), Оберон - самый отдаленный (583 500 км). Близнецы Ариэль и Умбриэль имеют практически одинаковые размеры: диаметр 1158 и 1169 км соответственно. Ближайшая луна Миранда находится на расстоянии всего 105 тыс км от "голубого хозяина", продолжительность одного оборота вокруг Урана - 1,4 суток. За орбитой Оберона, так же как и до орбиты Миранды, тоже есть спутники, только они очень маленькие (диаметром до 200 км) и более века их не удавалось обнаружить


В истории исследования планет, к Урану лишь один раз добралась земная космическая станция. Аппарат НАСА "Вояджер-2" пересек орбиту голубой планеты в 1986 году. Максимальное сближение составляло 81,5 тыс км. Аппарат провёл изучение структуры и состава атмосферы Урана, обнаружил 10 новых спутников, изучил уникальные погодные условия, вызванные осевым креном в 97,77°, и исследовал систему колец. 18 марта 2011 года орбиту Урана пересек зонд "Новые горизонты", запущенный с целью изучения карликовой планеты Плутон и его спутника Харон. В момент пересечения, Уран находился на противоположной стороне орбиты, поэтому аппарат не смог запечатлеть качественные снимки голубой планеты. Европейское космическое агентство планирует к 2021 году запустить проект под названием "Uranus Pathfinder", в основе которого будет положен запуск зонда к внешней границы Солнечной системы, в том числе изучение Урана и Нептуна






Планета Уран известна как один из ледяных гигантов. Он имеет массу, которая почти в 15 раз больше, чем у Земли. Он не имеет твердой поверхности, как Земля, а температура его поверхности состовляет -197 ° С (- 323 ° F). Некоторые области его атмосферы еще более холодные. Поэтому Уран является самой холодной планетой в нашей Солнечной системе. Уран является одной из внешних планет Солнечной системы и вращается в 20 раз дальше от Солнца, чем Земля. Уран назван в честь греческого бога неба.

Планета Уран был посещена только одним космическим аппаратом за последние 50 лет. Это был Вояджер-2 (Voyager), который был запущен в 1977 году для изучения Юпитера и Сатурна. Вояджер-2 прошел мимо планеты Уран в 1986 году. Он обнаружил 10 дополнительных спутников Урана. В настоящее время мы знаем о 27 известных спутников планеты.

В разделе фото планеты Уран размещены редкие фотографии этого газового гиганта, сделанные космическим телескопом Хаббл. Эти изображения Хаббла демонстрируют ряд интересных особенностей.

Во-первых, планета Уран имеет наклон оси 98 градусов. Это означает, она вращается вокруг Солнца все время одной стороной. Это единственная планета в нашей Солнечной системе с этой таким необычным наклоном, который мог быть вызван столкновением с большим объектом в момент зарождения планеты. Одним из последствий этого наклона - довольно экстремальные сезоны на планете Уран.

Вторая особенность планеты Уран - его кольца. В то время как они похожи на кольца Сатурна, кольца вокруг планеты Уран, как правило, темнее и менее обширным, чем тех, кто вокруг Сатурна. Их существование было подтверждено лишь в 1977 году группой ученых, во главе с Джерардом П. Койпером.

Третья особенность планеты Уран - его красочная атмосфера. Она состоит в основном из водорода и гелия с небольшим количеством метана, что дает ему сине-зеленый цвет, видимый на большинстве фотографиях Урана.

Уран является планетой, которая входит в состав Солнечной системы. Он занимает седьмую позицию от Солнца и имеет третий размер по радиусу среди планет Солнечной системы. По массе этот объект занимает четвертое место.

Впервые зафиксирована планета была в 1781 году астрономом с Англии Уильямом Гершелем. Название получила в честь бога неба в древней Греции Урана, который был сыном Кроноса и внуком самого Зевса.

Нужно отметить, что Уран является первой планетой, которую открыли в новое время с применением телескопа. Это открытие было первым открытием планеты с античных времен, что позволило расширить известные границы Солнечной системы. Несмотря на то что планета имеет достаточно большие размеры, ее ранее видели с Земли, но воспринимали как звезду со слабым свечением.

Сравнивая Уран с такими газовыми гигантами, как Юпитер и Сатурн, которые состоят из гелия и водорода, можно отметить, что в нем отсутствует водород в металлической форме. В составе планеты находится много льда в различных модификациях. В этом Уран очень схож с Нептуном, эти планеты ученые относят в отдельные категории под названием «ледяные гиганты». Все же атмосфера урана состоит из гелия и водорода, не так давно в атмосфере планеты был найден метан и добавки углеводородов. Атмосфера имеет ледяные облака, которые состоят из водорода и аммиака в твердой форме.

Необходимо отметить, что Уран является планетой с самой холодной атмосферой во всей Солнечной системе. Самые низкие зафиксированные данные температуры равны −224 °C. За счет этого ученые полагают, что атмосфера планеты состоит из нескольких слоев облаков, в которых водный горизонт занимает нижние слои, а верхний слой представлен метаном. Что касается недр планеты, то они состоят из горных пород и льда.

Как и все гиганты Солнечной системы, Уран также имеет магнитосферу и систему колец вокруг планеты. Этот объект имеет 27 постоянных спутников, которые отличаются диаметром и орбитами движения. Особенностью планеты является горизонтальное положение оси вращения, за счет этого планета лежит сбоку относительно Солнца.

Первые качественные снимки Урана человечество получило в 1986 году с применением аппарата «Вояжер-2». Снимки были сделаны с достаточно близкого расстояния, на них изображена невыразительная планета, на которой не видно облачных полос или штормов. Современные исследования доводят, что планета имеет сезонные изменения в атмосфере, также часто бывают штормы со скоростью движения ветра до 900 км/ч.

Открытие планеты

Наблюдение за Ураном было начато задолго до открытия У. Гершеля, поскольку наблюдатели думали, что это звезда. Первые документальные данные наблюдения за объектом датируются 1660 годом, их проводил Джон Флемстид. После этого в 1781 году изучением объекта занимался Пьер Моньер, который наблюдал планету более 12 раз.

Гершель является ученым, который впервые сделал вывод, что это планета, а не звезда. Свои наблюдения ученый начинал, изучая параллакс звезд, при этом он использовал телескоп собственного изготовления. Первое наблюдение за ураном Гершель осуществил 13.03.1781 года в саду возле собственного дома в городе Бат, который находится в Великобритании. При этом ученый в журнале сделал такую запись: «рядом со звездой ζ созвездия тельца находится туманная звезда или комета». Через 4 дня ученый сделал еще одну заметку: «при поиске наблюдаемой звезды или кометы оказалось, что объект поменял положение, а этого говорит, что это комета».

Дальнейшие наблюдения объекта при большом увеличении на телескопе показывали комету как размытое пятно, которое было слабо различимо, хотя при этом окружающие звезды были выразительными и яркими. Повторные исследования говорили, что это комета. В апреле этого же года ученый получил исследования коллеги с Королевского сообщества астрономов Н. Маскелайна, который говорил, что им не было найдено ни головы, ни хвоста в этой комете. За счет этого можно сделать вывод, что это либо комета с очень вытянутой орбитой, либо же еще одна планета.

Гершель продолжал описание как кометы, но в то же время большинство исследователей подозревали о другой природе объекта. Таким образом, Российским астрономом А.И. Лекселем было рассчитано расстояние к объекту, которое превышало расстояние от Земли к Солнцу и равно 4 астрономическим единицам. Также немецкий астроном И. Боде предположил, что открытый Гершелем объект может быть звездой, которая двигается далее орбиты Сатурна, кроме того, ученый отметил, что орбита движения очень схожа с планетарными орбитами. Окончательное подтверждение планетарной природы объекта сделал Гершель в 1783 году.

За это открытие Гершель был удостоен пожизненной стипендии от короля Георга III в размере 200 фунтов, с одним условием, что ученый переедет ближе к королю, чтобы он и его семья имели возможность наблюдать космические объекты в телескоп ученого.

Название планеты

За счет того, что Гершель является первооткрывателем планеты, он был удостоен чести от королевского сообщества астрономов назвать планету. Первоначально ученый хотел назвать планету в честь короля Георга III как «Звезда Георга», на латыни это «GeorgiumSidus». Данное название объяснялось тем, что в то время не было актуально называть планету в честь древнего бога, кроме того, это даст ответ на вопрос о том, когда была открыта планета, на который можно было ответить, что открытие выпадает на время правительства короля Георга III.

Также было предложение от французского ученого Ж. Ланда назвать планету в честь открывателя. Поступали предложения назвать в честь мифологической жены Сатурна, а именно Кибелой. Название Уран предложил немецкий астроном Боде, который мотивировал название тем, что этот бог был отцом Сатурна. Уже через год после смерти Гершеля первоначальное название «Георг» практически нигде не встречалось, хотя в Великобритании планету называли так порядка 70 лет.

Окончательно название Уран за планетой закрепилось с 1850 года, когда оно было закреплено в альманахе Его Величества. Нужно отметить, что Уран - единственная планета, название которой взято с римской мифологии, а не с греческой.

Вращение планеты и ее орбита

Планета Уран удалена от Солнца на расстояние в 2,8 миллиардов километров. Планета делает полный оборот вокруг Солнца за 84 земных года. Уран и Землю разделяют от 2,7 и до 2,85 миллиардов лет. Полуось орбиты планеты составляет 19,2 а.е. что равно почти 3 миллиардам километров. На таком расстоянии солнечное излучение равно 1/400 от Земной орбиты. Элементы орбиты Урана впервые были исследованы Пьером Лапласом. Дополнительные уточнения в расчеты внес Джон Адамс в 1841 году, он также уточнил гравитационное воздействие.

Период, за который Уран делает оборот вокруг собственной оси, равен 17 часам и 14 минутам. Как на всех планетах-гигантах, на Уране образуются мощные ветра, которые дуют параллельно вращению планеты. Данные ветра достигают скорости в 240 м/c. В силу этого некоторые детали атмосферы, расположенные в южных широтах, делают полный оборот вокруг планеты за 14 часов.

Наклон оси

Особенностью планеты является наклон оси вращения к плоскости орбиты, этот наклон равен углу в 97,86°. За счет этого планета при вращении лежит на боку и вращается ретроградно. Это положение отличает планету от других, времена года здесь наступают совсем иным образом. Вращение всех планет Солнечной системы можно сравнить с движением волчка, а вращение Урана больше схоже с катящимся шаром. Ученые предполагают, что подобный наклон планеты был за счет столкновения планеты с планетозималью еще во время формирования Урана.

При солнцестоянии на Уране один из полюсов повернут полностью к Солнцу, при этом на экваторе происходит очень быстрая смена дня и ночи, а противоположного полюса не достигают солнечные лучи. Через половину уранского года наступает противоположная ситуация, поскольку планета поворачивается к Солнцу другим полюсом. Интересным фактом является то, что каждый из полюсов Урана по 42 земных года находится в полной темноте, а потом 42 года освещен Солнцем.

Несмотря на то что полюса планеты получают максимальное количество тепла, все же на экваторе температура постоянно выше. Почему так происходит, до сих пор ученым не известно. Также положение оси остается загадкой, учеными выдвинуты только несколько гипотез, которые так и не подтверждены научными фактами. Наиболее популярной гипотезой наклона оси Урана является то, что во время формирования планет Солнечной системы в Уран врезалась так называемая протопланета, которая имела размер приблизительно такой же, как и Земля. Но это не объясняет, почему ни один спутник планеты не имеет такого наклона оси. Также существует теория, по которой планета имела большой спутник, раскачавший ось планеты, а в дальнейшем он был утерян.

Видимость планеты

На протяжении более десяти лет, с 1995 года по 2006 год, визуальная звездная величина планеты Уран колебалась от +5,6m и до +5,9 m, это позволяло созерцать планету с Земли без применения оптических приборов. В это время угловой радиус планеты колебался от 8 и до 10 угловых секунд. При чистом ночном небе Уран можно обнаружить невооруженным глазом, при использовании бинокля планета видна даже с городских условий. Наблюдая за объектом с применением любительского телескопа, можно рассмотреть диск бледно-голубого цвета, который имеет потемнение по краям. Используя мощные телескопы с объективом в 25 сантиметров, можно разглядеть даже самый большой спутник планеты под названием Титан.

Физические характеристики Урана

Планета в 14,5 раза тяжелее Земли, при этом Уран является наименее массивным среди всех планет-гигантов, которые входят в Солнечную систему. Но плотность планеты незначительна и равна 1,270 г/см³, что позволяет занять второе место среди планет с наименьшей плотностью после Сатурна. Несмотря на то что диаметр планеты больше чем у Нептуна, масса Урана все же меньше. Это в свою очередь подтверждает выдвинутую учеными гипотезу, что Уран состоит изо льдов метана, аммиака и воды. Гелий и водород в составе планеты занимают незначительную часть от основной массы. По гипотезам ученых горные породы составляют ядро планеты.

Говоря о строении Урана, принято разделять его на три основные составляющие части: внутренняя часть (ядро) представлено каменными породами, средняя состоит из нескольких ледяных оболочек, а наружная представлена гелиево-водородной атмосферой. На ядро планеты выпадает приблизительно 20% радиуса Урана, на ледяную мантию – 60%, остальные 20% занимает атмосфера. Наибольшую плотность имеет ядро планеты, где она достигает показателя в 9 г/см³, кроме того, эта область имеет большое давление, доходящее до отметки в 800 Гпа.

Необходимо уточнить, что ледяные оболочки не имеют общепринятой физической формы льда, они состоят из плотной жидкости, которая имеет очень высокую температуру. Это вещество является смесью метана, воды и аммиака, оно обладает отличными электропроводными качествами. Описанная схема строения не является однозначно принятой и доказанной на 100%, в силу этого выдвигаются и другие варианты строения Урана. Современная техника и методы изучения не могут однозначно дать ответ на все интересующие человечество вопросы.

Все же планету принято воспринимать как сфероид сплющенной формы, который имеет радиус у полюсов около 24,55 и 24,97 тысяч километров.

Особенностью Урана также являются значительно меньшие показатели внутреннего тепла, чем у других планет-гигантов. Ученым еще не удалось выяснить причину низкого теплового потока этой планеты. Даже во многом схожий и меньший Нептун излучает в 2,6 раза больше тепла в космическое пространство, чем поступает от Солнца. Тепловое излучение Урана очень слабое и достигает показателя в 0,047 Вт/м², это в 0,075 Вт/м² меньше, чем излучает Земля. Более детальные исследования показали, что планета излучает около 1% тепла, которое получает от Солнца. Самые низкие температуры на Уране были зафиксированы в тропопаузе и равны 49 К, данный показатель делает планету самой холодной во всей Солнечной системе.

В силу отсутствия большого теплового излучения ученым очень сложно высчитать температуру недр планеты. Все же выдвигаются гипотезы о подобности Урана к другим гигантам Солнечной системы, в недрах этой планеты может быть вода в жидком агрегатном состоянии. За счет этого можно делать выводы, что на Уране возможно существование живых организмов.

Атмосфера Урана

Несмотря на то что планета не имеет привычной твердой поверхности, достаточно сложно говорить о распределении на поверхность и атмосферу. Все же наиболее удаленную часть от планеты считают атмосферой. По предварительным подсчетам ученых следует полагать, что атмосфера удалена от основной части планеты на расстояние в 300 километров. Температура данного слоя равна 320 К при давлении в 100 бар.

Корона атмосферы Урана в два раза превышает диаметр планеты от поверхности. Атмосфера планеты разделена на три слоя:

  • Тропосфера с давлением около 100 бар, занимает промежуток от -300 и до 50 километров.
  • Стратосфера имеет давление от 0,1 до 10−10 бар.
  • Термосфера, или корона, удалена от поверхности планеты на 4-50 тысяч километров.

В составе атмосферы Урана находятся такие вещества, как водород в молекулярном состоянии и гелий. Нужно отметить, что гелий находится не в середине планеты, как у других гигантов, а в атмосфере. Третьей основной составляющей атмосферы планеты является метан, который можно увидеть в инфракрасном спектре, но с высотой его доля значительно снижается. Верхние слои также имеют такие вещества, как этан, диацетилен, углекислый и угарный газ, частицы водяной пары.

Кольца Урана

Эта планета имеет целую систему колец, которые слабо выражены. Они состоят из темных частиц очень малого диаметра. Современные технологии позволили ученым более детально ознакомиться с планетой и ее структурой, при этом было зафиксировано 13 колец. Наиболее ярким является кольцо ε. Кольца планеты относительно молоды, данный вывод можно сделать за счет малого расстояния между ними. Формирование колец проходило параллельно с формированием самой планеты. Существуют предположения, что кольца могли быть сформированы из частиц спутников Урана, которые были разрушены при столкновении между собой.

Первые упоминания о кольцах были сделаны Гершелем, но это вызывает сомнения, поскольку на протяжении двух веков никто не видел колец вокруг планеты. Официальное подтверждение присутствия колец в Уране было сделано только 10.03.1977 года.

Спутники Урана

Уран имеет 27 постоянных естественных спутников, которые отличаются меду собой диаметром, составом и орбитами вращения вокруг планеты.

Самые крупные естественные спутники Урана:

  • Умбриэль;

Названия спутников планеты были подобраны из произведений А. Поупа и У. Шекспира. Несмотря на большое количество спутников, их общая масса очень мала. Масса всех спутников Урана наполовину меньше массы Тритона - спутника Нептуна. Самый большой спутник Урана под названием Титания имеет радиус всего в 788,9 километров, а это половина радиуса нашей Луны. Большинство спутников имеют низкое альбедо, за счет того, что они состоят изо льдов и горных пород в соотношении 1:1.

Среди всех спутников самым молодым считают Ариэль, поскольку его поверхность имеет наименьшее количество ударных кратеров от метеоритов. А самым старым спутником считают Умбриэль. Интересным спутником является Миранда из-за большого количества каньонов глубиной до 20 километров, которые меняются хаотическими террасами.

Современные технологии не позволяют человечеству обрести ответы на все вопросы, касающиеся Урана, но все же нам уже много известно, и на этом исследования не заканчиваются. В ближайшем будущем планируется запуск космических аппаратов к планете. В планах НАСА существует проект запуска в 2020 году под названием Uranusorbiter.

Фаза пролета NE (Near Encounter) началась 22 января за 54 часа до встречи с Ураном. В этот же день планировался запуск «Челленджера», в экипаж которого была включена школьная учительница Криста МакОлифф. По свидетельству руководителя группы планирования миссии Voyager Чарлза Колхейза (Charles Е. Kohlhase), Лаборатория реактивного движения направила в NASA официальную просьбу сдвинуть старт шаттла на неделю, чтобы «развести» два высокоприоритетных события, но получила отказ. Причина была связана не только с напряженным графиком полетов по программе Space Shuttle. Почти никто не знал, что по инициативе Рональда Рейгана в программу полета «Челленджера» была включена церемония выдачи Кристой символической команды «Вояджеру» на исследование Урана. Увы, старт шаттла в силу различных причин задержался до 28 января - дня, когда «Челленджер» потерпел катастрофу.

Итак, 22 января Voyager 2 начал исполнять первую пролетную программу В751. Помимо регулярной съемки спутников, она включала мозаику колец Урана и цветную съемку Умбриэля с расстояния около 1 млн км. На одном из снимков 23 января Брэдфорд Смит нашел еще один спутник планеты - 1986 U9; впоследствии ему дали имя VIII Бьянка.


Интересная деталь: в 1985 г. советские астрономы Н. Н. Горькавый и А. М. Фридман попытались объяснить структуру колец Урана орбитальными резонансами с еще не открытыми спутниками планеты. Из предсказанных ими объектов четыре - Бьянка, Крессида, Дездемона и Джульетта - были найдены в действительности командой «Вояджера», и будущий автор «Астровитянки» получил Государственную премию СССР за 1989 год.
Тем временем навигационная группа выдала самые свежие целеуказания для приборов в программу В752, которая была загружена и активизирована за 14 часов до встречи. Наконец, 24 января в 09:15 оперативное дополнение LSU было отправлено на борт и принято за два часа до начала исполнения. Voyager 2 шел с опережением графика на 69 секунд, так что «подвижный блок» программы пришлось сместить на один шаг по времени, то есть на 48 сек.
Таблица основных баллистических событий этапа пролета Урана представлена ниже. В первой ее половине приведены расчетные времена - бортовое по Гринвичу и относительно максимального сближения с планетой - и минимальные расстояния до Урана и его спутников по прогнозу августа 1985 г. Во второй половине даны фактические значения из работы Роберта Джейкобсона (Robert A. Jackobson) с коллегами, опубликованной в июне 1992 г. в The Astronomical Journal. Здесь приводится эфемеридное время ЕТ, которое используется в модели движения тел Солнечной системы и которое во время описываемых событий было на 55.184 сек больше UTC.

Основные баллистические события встречи с Ураном 24 января 1986 года
Время, SCET Время от пролета, час:мин:сек Событие Радиус объекта, км Расстояние от центра объекта, км
Предварительный прогноз

Нисходящий узел орбиты, плоскость колец

Уран, минимальное расстояние

Прохождение за кольцом ε

Прохождение за кольцом 6

Вход в тень

Заход за Уран

Выход из тени

Выход из-за Урана

Прохождение за кольцом 6

Прохождение за кольцом ε

Результаты обработки навигационной и фотографической информации

Титания, минимальное расстояние

Оберон, минимальное расстояние

Ариэль, минимальное расстояние

Миранда, минимальное расстояние

Уран, минимальное расстояние

Заход за Уран

Умбриэль, минимальное расстояние

Выход из-за Урана


Следует отметить, что изменения характера радиосигнала в ходе пролета регистрировались на Земле с задержкой на 2 час 44 мин 50 сек, а вот снимки записывались на борту, и передача их в реальном масштабе времени не предполагалась. Эта волнующая процедура была назначена на 25 января.
В день встречи с Ураном на борту «Вояджера» выдал пять сбоев компьютер подсистемы ориентации и приводов AACS (Attitude and Articulation Control System). К счастью, на выполнении программы они не сказались.
В пятницу 24 января начиная с 04:41 UTC в течение примерно четырех часов фотополяриметр PPS и УФ-спектрометр UVS регистрировали прохождение звезды σ Стрельца позади колец ε и δ. В 08:48 были сделаны и записаны наиболее качественные снимки Оберона, а 19 минутами позже - компоненты для сборки цветной фотографии Титании. В 09:31 аппарат выполнил единственный снимок только что открытого спутника 1985 U1, не входивший в первоначальную программу (для этого пришлось уменьшить на один число кадров Миранды). В 11:45 были сделаны лучшие кадры Умбриэля, а в 14:16 - Титании. Еще через 20 мин была проведена цветная съемка Ариэля.



В 14:45 аппарат перенацелился для регистрации экваториального плазменного слоя и для съемки Миранды и в 15:01 сделал ее цветные фотографии. Затем он вновь отвлекся на Ариэль, сделав в 16:09 качественные снимки этого спутника. Наконец, в 16:37 Voyager 2 начал мозаику из семи кадров Миранды с расстояний от 40300 до 30200 км, а еще через 28 минут прошел примерно в 29000 км мимо нее, как и планировалось. Сразу после съемки Миранды аппарат развернулся антенной HGA к Земле, чтобы участвовать в высокоточных допплеровских измерениях.

В 17:08 телесистема ISS сделала четыре снимка колец на фоне планеты перед самым прохождением через их плоскость. Радиоаппаратура PRA и прибор для изучения плазменных волн PWS вели в это время запись с повышенной частотой опроса с задачей оценки плотности пылевых частиц.
24 января 1986 г. в 17:58:51 UTC, или в 17:59:46.5 ЕТ, бортового времени американский КА Voyager 2 прошел на минимальном расстоянии от центра Урана - оно составило 107153 км. Отклонение от расчетной точки не превысило 20 км. Баллистическим результатом гравитационного маневра у Урана стало довольно скромное увеличение гелиоцентрической скорости «Вояджера» с 17.88 до 19.71 км/с.
После этого аппарат был сориентирован так, чтобы профотометрировать два прохождения звезды β Персея за всей системой колец. Первое началось в 18:26, а второе - в 19:22. Линейное разрешение при этих измерениях достигало 10 м - на порядок лучше, чем давала камера ISS. Параллельно с 19:24 до 20:12 проводилось радиопросвечивание колец - теперь уже Voyager оказался за ними с точки зрения Земли. Телеметрия КА была выключена, и использовалась лишь несущая сигнала Х-диапазона.
В 20:25 аппарат вошел в тень Урана, а еще через 11 минут скрылся за диском планеты. Затмение продолжалось до 21:44, а радиотень - до 22:02. УФ-спектрометр отслеживал заход Солнца, чтобы установить состав атмосферы, а камера ISS в тени в течение 20 минут снимала кольца «на просвет». Разумеется, затмение Земли Ураном использовалось и для радиозондирования его атмосферы с целью расчета давления и температуры. Аппарат по заранее заложенной программе и в соответствии с временной поправкой в LSU отслеживал в каждый момент ту точку лимба, за которой с точки зрения Земли и с учетом рефракции он находился. В ходе этого эксперимента передатчик S-диапазона был включен на полную мощность, а Х-диапазона - на малую, так как на оба сигнала мощности бортового радиоизотопного генератора уже не хватало. В Пасадене радиосигнал «Вояджера» был вновь принят около 16:30 местного времени, но телеметрия не включалась еще два часа - пока не закончилось повторное радиопросвечивание системы колец (22:35-22:54).
В ходе пролета УФ-спектрометр UVS вел съемку полярных сияний на Уране, отследил погружение у Пегаса в его атмосферу и выполнил сканирование лимба планеты. ИК-аппаратура IRIS изучала тепловой баланс и состав атмосферы планеты, а фотополяриметр PPS помимо затмений измерял показатель поглощения Ураном солнечной энергии.
25 января аппарат уходил от планеты, имея приблизительно одинаковую с ней угловую скорость и ориентируясь на Фомальгаут и Ахернар. Измерения параметров плазмы и частиц вели приборы LPS и LECP, а УФ-спектрометр регистрировал погружение звезды ν Близнецов в атмосферу планеты. Кроме того, в 12:37 камера ISS повторила мозаику колец с расстояния 1040000 км.
26 января, через 42 часа после Урана, началась послепролетная фаза РЕ (Post Encounter) с программой В771. Вплоть до 3 февраля аппарат передавал записанную информацию, параллельно снимая на отлете и при неблагоприятной фазе планету и ее кольца. 2 февраля было повторно измерено тепловое излучение Урана.
В рамках следующей программы В772 были выполнены малый научный маневр 5 февраля и калибровка магнитометра 21 февраля. Послепролетные наблюдения были закончены 25 февраля.
14 февраля была проведена коррекция ТСМ-В15, задающая предварительные условия пролета Нептуна. Следует отметить, что без этого маневра Voyager 2 все равно достиг бы восьмой планеты 27 августа 1989 г. и в 05:15 UTC прошел бы примерно в 34000 км от Нептуна. Более того, аппарат уже имел в памяти уставки для ориентации на Землю остронаправленной антенны на случай прекращения работы командного приемника.
Цель коррекции 14 февраля 1986 г. состояла в том, чтобы сместить момент прибытия примерно на двое суток и провести аппарат ближе к планете и ее главному спутнику Тритону, оставив при этом максимум свободы при окончательном выборе траектории. Двигатели «Вояджера» были включены на 2 час 33 мин - это была их самая продолжительная работа за весь полет. Расчетное приращение скорости было 21.1 м/с с основной компонентой вектора на разгон; фактически скорость до маневра составляла 19 698 м/с, а после - 19 715 м/с.
Параметры гиперболической гелиоцентрической орбиты «Вояджера» после коррекции составили:

Наклонение- 2.49°;
- минимальное расстояние от Солнца - 1.4405 а.е. (215.5 млн км);
- эксцентриситет - 5.810.

Двигаясь по новой траектории, аппарат должен был достичь Нептуна 25 августа в 16:00 UTC и пройти на высоте всего 1300 км над его облаками. Минимальное расстояние от Тритона было определено в 10000 км.
Средства на полет к Нептуну и его исследование были впервые запрошены в проекте бюджета 1986 ф.г., одобрены и с этого времени выделялись в полном объеме.

«До туманных топей Оберона»

Планета, ее спутники и кольца


Подводя предварительный итог проведенной работе, 27 января бессменный научный руководитель проекта Эдвард Стоун сказал: «Система Урана просто полностью отличается от всего, что мы видели раньше». Что же нашел Voyager 2? Что удалось увидеть сразу и что открылось ученым лишь после тщательной обработки (первые ее результаты легли в основу серии статей в номере Science за 4 июля 1986 г., а уточнения публиковались на протяжении еще нескольких лет)?
25 января в Лаборатории реактивного движения принимали записанные «Вояджером» фотографии спутников Урана, а 26 января они были представлены общественности. Гвоздем программы, конечно, оказались снимки Миранды с расстояния всего 31000 км с разрешением 600 м: тело со столь сложным рельефом еще не встречалось ученым в Солнечной системе! Планетолог Лоренс Содерблом (Laurence A. SoderbLom) охарактеризовал его как фантастический гибрид геологических деталей разных миров - долины и потоки Марса, разломы Меркурия, покрытые желобами равнины Ганимеда, уступы шириной по 20 км и три невиданных прежде свежих «овоида» длиной до 300 км, местами расчерченных «в линеечку» - по меньшей мере десять типов рельефа сошлись на небесном теле каких-то 500 км в диаметре...

"ВОЯДЖЕР-2": УРАН


Миранда с расстояния в 31 000 км.
"ВОЯДЖЕР-2": УРАН

Миранда с расстояния в 36 000 км.
"ВОЯДЖЕР-2": УРАН


Экзотическая картина требовала нестандартных объяснений: быть может, в процессе дифференциации Миранда неоднократно сталкивалась с другими телами и собиралась из обломков вновь, и то, что в итоге застыло и оказалось перед нами, включает внутренние части первоначального спутника. Заметный наклон плоскости орбиты Миранды к экватору планеты (4°) мог остаться свидетельством таких столкновений. Низкая температура поверхности (86 К в подсолнечной точке) исключала возможность современного вулканизма, но приливное трение могло сыграть свою роль в истории Миранды.

Миранда с расстояния в 42 000 км.
"ВОЯДЖЕР-2": УРАН

На остальных четырех больших спутниках камера «Вояджера» нашла более привычные ландшафты: кратеры, лучи, долины и эскарпы.
На Обероне был обнаружен особенно крупный кратер с ярким центральным пиком, дно которого было частично покрыто очень темным материалом. Некоторые из более мелких ударных кратеров диаметром 50-100 км были окружены яркими лучами, как на Каллисто, а на их дне также фиксировались темные отложения последующих эпох. Интересной и неожиданной деталью оказалась гора, выступавшая над краем спутника на экваторе примерно на б км. Если в действительности это был центральный пик невидимого «Вояджеру» кратера, его полная высота могла быть 20 км и даже больше.