Биографии Характеристики Анализ

Где находится рибоза. Должны ли мы принимать рибозу? Восстанавливает концентрацию АТФ в мышцах после интенсивной тренировки

Как подсказывает окончание «оза», мы имеем дело с сахаром. Рибоза в очень малых дозах присутствует в рационе нашего питания, в частности она входит в состав нуклеиновой кислоты, содержащейся в мясе. Буква «А» акронима АТФ означает молекулу аденозина. А аденозин образуется в результате соединения молекулы аде — нина и молекулы D-рибозы. Это наводит на мысль, что рибоза играет определенную роль в образовании АТФ.

Применять рибозу в спорте начали недавно, хотя этот вид сахара уже давно прописывали для лечения, например, сердечной недостаточности. После пересадки сердца шансы на приживание значительно увеличиваются, если организм получает рибозу. Если спортсмены не использовали рибозу, то только из-за ее высокой стоимости. Однако новые технологии экстракции сделали рибозу более доступной, что обусловило ее появление на рынке в качестве добавки.

1. Рибоза и АТФ

Спортсмены используют рибозу для ускорения синтеза АТФ, возникающего в результате интенсивных и продолжительных физических нагрузок. Рибоза также влияет на уридинтрифосфат, о котором мы расскажем ниже. Разумеется, цель спортсменов заключается в том, чтобы повысить свою силу, вернее, предотвратить слишком большие ее потери, когда непродолжительные, но интенсивные нагрузки повторяются через очень короткие промежутки времени, отведенные для отдыха. Идеальный потребитель рибозы — это спортсмены, занимающиеся развитием мускулатуры, или спринтеры.

Рибоза оказывает лишь незначительное воздействие на мышцу, находящуюся в состоянии покоя. Напротив, она ускоряет внутриклеточный синтез АТФ, если мышца была интенсивно задействована при физических нагрузках. Рибоза также способна повышать внеклеточный уровень АТФ. В данном случае АТФ действует как преобразователь нервного импульса, увеличивающего силу и снижающего усталость на церебральном уровне. Одновременно он оказывает сосудорасширяющий эффект.

2. Воздействие рибозы на организм спортсменов

Исследование, лучше всех прочих установившее свойства, которые можно ожидать от рибозы, было проведено J. Antonio (2002 b). В течение четырех недель молодые мужчины, развивавшие мускулатуру, получали либо плацебо, либо десять граммов рибозы. При выполнении жима лежа их максимальная сила увеличилась на 2,2 килограмма при приеме плацебо против 3,6 килограмма при приеме рибозы. Общее количество повторов жима лежа, выполненных с эквивалентом веса тела, в течение десяти серий выросло на 19 процентов при приеме рибозы против 12 процентов при приеме плацебо. Несмотря на прибавку в силе, при приеме рибозы не было зафиксировано увеличения мышечной массы. Мышечная масса наиболее комфортно чувствует себя при условии практикования каких-либо диет от звезд — http://dietwink.com/category/diety/diety-zvezd/ .

Рибозу часто описывают как добавку, способствующую восстановлению организма. Однако необходимо прояснить суть столь двусмысленной формулировки. Если принять рибозу до интенсивных и повторяющихся физических нагрузок, она уменьшит степень потери силы, что неизбежно происходит от серии к серии. Однако мы не думаем, что рибоза ускоряет восстановление между двумя тренировками.

3. Неодинаковая реакция

Исследования показывают, что многие люди не слишком восприимчивы к рибозе, особенно если принимают ее в малых дозах (один грамм в день). Дозировка должна быть достаточно высокой, чтобы на рибозу стало реагировать больше людей. Похоже, преимущества рибозы увеличиваются параллельно с ростом объема физических нагрузок.

4. Побочные эффекты рибозы

Одна из серьезных проблем, создаваемых рибозой, состоит в ее сильном гипогликемизирующем действии. Если человек употребит рибозу натощак или после приема совсем незначительного количества пищи, у него может произойти упадок сил, ему будет трудно сконцентрироваться. Из-за нехватки топлива, поступающего в мозг, может возникнуть головная боль. Рибозу следует

Рибоза - добавка, продолжающая оставаться недоступной принимать только после того, как в организм поступило достаточное количество углеводов. Тем более, приняв рибозу, не ложитесь отдыхать в ожидании тренировки. Не прекращайте активной деятельности! Но самое главное — начинайте принимать рибозу с малых доз, постепенно их увеличивая. Не начинайте прием сразу с десяти граммов. Сначала приучите к рибозе свой организм.

Рибозу часто сочетают с креатином. Но мы советуем вам избегать подобной комбинации, поскольку креатин обладает свойством незначительно снижать уровень сахара, что, как нам кажется, неполезно перед физическими нагрузками.

Нам представляется важным принимать рибозу за час до тренировок или соревнований. Но после тренировок ее использовать нет ни малейшего смысла, хотя это часто предписывают. Вместо того чтобы ускорять восстановление организма, она, наоборот, может замедлить его, вызвав ломоту. Вероятно, прием рибозы после тренировок можно объяснить тем фактом, что в ходе некоторых исследований не было выявлено ее положительное влияние. Еще одна проблема заключается в том, что при проведении отдельных исследований доза рибозы была слишком низкой, чтобы оказать существенное действие.

    Моносахариды: классификация; стереоизомерия, D– и L–ряды; открытая и циклические формы на примере D–глюкозы и 2–дезокси–D–рибозы, цикло–оксотаутомерия; мутаротация. Представители: D–ксилоза, D–рибоза, D–глю­коза, 2–дезокси–D–рибоза, D–глюкозамин.

Углеводы - гетерофункциональные соединения, являющиеся альдегидо- или кетономногоатомными спиртами или их производными. Класс углеводов включает разнообразные соединения - от низкомолекулярных, содержащих от 3 до 10 атомов углерода до полимеров с молекулярной массой в несколько миллионов. По отношению к кислотному гидролизу и по физико-химическим свойствам они подразделяются на три большие группы: моносахариды, олигосахариды и полисахариды .

Моносахариды (монозы) - углеводы, неспособные подвергаться кислотному гидролизу с образованием более простых сахаров. Монозы классифицируют по числу углеродных атомов, характеру функциональных групп, стереоизомерным рядам и аномерным формам. По функциональным группам моносахариды подразделяются на альдозы (содержат альдегидную группу) и кетозы (содержат карбонильную группу).


По числу углеродных атомов в цепи: триозы (3), тетрозы (4), пентозы (5), гексозы (6), гептозы (7) и т. д. до 10. Наиболее важное значение имеют пентозы и гексозы. По конфигурации последнего хирального атома углерода моносахариды делятся на стереоизомеры D- и L-ряда. В обменных реакциях в организме принимают участие, как правило, стереоизомеры D-ряда (D-глюкоза, D-фруктоза, D-рибоза, D-дезоксирибоза и др.)

В целом название индивидуального моносахарида включает:

Префикс, описывающий конфигурацию всех асимметрических атомов углерода;

Цифровой слог, определяющий число атомов углерода в цепи;

Суффикс -оза - для альдоз и -улоза - для кетоз, причем локант оксо- группы указывают только в том случае, если она находится не при атоме С-2.

Строение и стереоизомерия моносахаридов.

Молекулы моносахаридов содержат несколько центров хиральности, поэтому существует большое число стереоизомеров, соответствующих одной и той же структурной формуле. Так, число стереоизомеров альдопентоз равно восьми (2 n , где n = 3 ), среди которых 4 пары энантиомеров. У альдогексоз будет уже 16 стереоизомеров, т. е. 8 пар энантиомеров, так как в их углеродной цепи содержится 4 асимметрических атома углерода. Это аллоза, альтроза, галактоза, глюкоза, гулоза, идоза, манноза, талоза. Кетогексозы содержат по сравнению с соответствующими альдозами на один хиральный атом углерода меньше, поэтому число стереоизомеров (2 3) уменьшается до 8 (4 пары энантиомеров).

Относительная конфигурация моносахаридов определяется по конфигурации наиболее удаленного от карбонильной группы хирального атома углерода путем сравнения с конфигурационным стандартом - глицериновым альдегидом. При совпадении конфигурации этого атома углерода с конфигурацией D-глицеринового альдегида моносахарид в целом относят к D-ряду. И, наоборот, при совпадении с конфигурацией L-глицеринового альдегида, считают, что моносахарид принадлежит к L-ряду. Каждой альдозе D-ряда соответствует энантиомер L-ряда с противоположной конфигурацией всех центров хиральности.

(! ) Положение гидроксильной группы у последнего центра хиральности спра­ва свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. так же, как и в стереохимическом стандарте - глицерино­вом альдегиде.

Природная глюкоза является стереоизомером D -ряда . В равновесном состоянии растворы глюкозы обладают правым вращением (+52,5º), поэтому глюкозу иногда называют декстрозой. Название виноградный сахар глюкоза получила в связи с тем, что ее больше всего содержится в соке винограда.

Эпимерами называются диастереомеры моносахаридов, различающиеся конфигурацией только одного асимметрического атома углерода. Эпимером D-глюкозы по С 4 является D-галактоза, а по С 2 - манноза. Эпимеры в щелочной среде могут переходить друг в друга через ендиольную форму, и этот процесс называется эпимеризацией .

Таутомерия моносахаридов. Изучение свойств глюкозы показало:

1) спектрах поглощения растворов глюкозы отсутствует полоса, соответствующая альдегидной группе;

2) растворы глюкозы дают не все реакции на альдегидную группу (не взаимодействуют с NaHSО 3 и фуксинсернистой кислотой);

3) при взаимодействии со спиртами в присутствии «сухого» НСl глюкоза присоединяет, в отличие от альдегидов, только один эквивалент спирта;

4) свежеприготовленные растворы глюкозы мутаротируют в течение 1,5–2 часов меняют угол вращения плоскости поляризованного света.

Циклические формы моносахаридов по химической природе являются циклическими полуацеталями , которые образуются при взаимодействии альдегидной (или кетонной) группы со спиртовой группой моносахарида. В результате внутримолекулярного взаимодействия (А N механизм ) электрофильный атом углерода карбонильной группы атакуется нуклеофильным атомом кислорода гидроксильной группы. Образуются термодинамически более устойчивые пятичленные (фуранозные ) и шестичленные (пиранозные ) циклы. Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать клешневидную конформацию.

Представленные ниже графические изображе­ния циклических форм называются формулами Фишера (можно встретить и название «формулы Колли-Толленса»).


В этих реакциях С 1 атом из прохирального, в результате циклизации, становится хиральным (аномерный центр ).

Стереоизомеры, отличающиеся конфигурацией атома С-1 альдоз или С-2 кетоз в их циклической форме, называются аномерами , а сами атомы уг­лерода называются аномерным центром .

Группа ОН, появившаяся в результате циклизации, является полуацетальной. Она называется еще гликозидной гидроксильной группой. По свойствам она значительно отличается от остальных спиртовых групп моносахарида.

Образование дополнительного хирального центра приводит к возникновению новых стереоизомерных (аномерных) α- и β-форм. α-Аномерной формой называется такая, у которой полуацетальный гидроксил находится с той же стороны, что и гидроксил у последнего хирального центра, а β-формой - когда полуацетальный гидроксил находится по другую сторону, чем гидроксил у последнего хирального центра. Образуется 5 взаимно друг в друга переходящих таутомерных форм глюкозы. Такой вид таутомерии называется цикло-оксо-таутомерией . Таутомерные формы глюкозы находятся в растворе в состоянии равновесия.

В растворах моносахаридов преобладает циклическая полуацетальная форма (99,99 %) как более термодинамически выгодная. На долю ациклической формы, содержащей альдегидную группу, приходится менее 0,01 %, в связи с этим не идет реакция с NaHSO 3 , реакция с фуксинсернистой кислотой, а спектры поглощения растворов глюкозы не показывают наличия полосы, характерной для альдегидной группы.

Таким образом, моносахариды - циклические полуацетали альдегидо- или кетоно- многоатомных спиртов, существующие в растворе в равновесии со своими таутомерными ациклическими формами.

У свежеприготовленных растворов моносахаридов наблюдается явление мутаротации - изменения во времени угла вращения плоскости поляризации света. Аномерные α- и β-формы имеют различный угол вращения плоскости поляризованного света. Так, кристаллическая α,D-глюкопираноза при растворении ее в воде имеет начальный угол вращения +112,5º, а затем он постепенно уменьшается до +52,5º. Если растворить β,D-глюкопиранозу, ее начальный угол вращения + 19,3º, а затем он увеличивается до +52,5º. Это объясняется тем, что в течение некоторого времени устанавливается равновесие между α- и β-формами: 2/3 β-формы → 1/3 α-формы.

Предпочтительность образования того или другого аномера во многом определяется их конформационным строением. Наиболее выгодной для пиранозного цикла является конформация кресла , а для фуранозного цикла - конверта или твист -конформация. Наиболее важные гексозы - D-глюкоза, D-галактоза и D-манноза - существуют исключительно в конформации 4 С 1 . Более того, D-глюкоза из всех гексоз содержит максимальное число экваториальных заместителей в пиранозном цикле (а ее β-аномер - все).

У β-конформера все заместители находятся в наиболее выгодном экваториальном положении, поэтому этой формы в растворе 64 %, а α-конформер имеет аксиальное расположение полуацетального гидроксила. Именно α-конформер глюкозы содержится в организме человека и участвует в процессах метаболизма. Из β-конформера глюкозы построен полисахарид - клетчатка.

Формулы Хеуорса . Циклические формулы Фишера удачно описывают конфигурацию моносахаридов, однако они далеки от реальной геометрии мо­лекул. В перспективных формулах Хеуорса пиранозный и фуранозный циклы изображают в виде плоских правильных многоугольников (соответственно шести- или пятиугольника), лежащих горизонтально. Атом кислорода в цикле располагается в удалении от наблюдателя, причем для пираноз - в правом углу.

Атомы водорода и заместители (главным образом, группы СH 2 OH, если таковая имеется, и он) располагают над и под плоскостью цикла. Символы атомов углерода, как это принято при написании формул циклических соеди­нений, не показывают. Как правило, опускают и атомы водорода со связями к ним. Связи С-С, находящиеся ближе к наблюдателю, для наглядности иног­да показывают жирной линий, хотя это не обязательно.

Для перехода к формулам Хеуорса от циклических формул Фишера по­следнюю необходимо преобразовать так, чтобы атом кислорода цикла распо­лагался на одной прямой с атомами углерода, входящими в цикл. Если преобразованную формулу Фишера расположить гори­зонтально, как требует написание формул Хеуорса, то заместители, находив­шиеся справа от вертикальной линии углеродной цепи, окажутся под плоско­стью цикла, а те, что были слева, - над этой плоскостью.

Описанные выше преобразования показывают также, что полуацеталь­ный гидроксил у α-аномеров D-ряда находится под плоскостью цикла, у β-аномеров - над плоскостью. Кроме того, боковая цепь (при С-5 в пиранозах и при С-4 в фуранозах) располагается над плоскостью цикла, если она свя­зана с атомом углерода D-конфигурации, и снизу, если этот атом имеет L-кон­фигурацию.

Представители .

D -Ксилоза - «древесный сахар», моносахарид из группы пентоз с эмпирической формулой C 5 H 10 O 5 , принадлежит к альдозам. Содержится в эмбрионах растений в качестве эргастического вещества, а также является одним из мономеров полисахарида клеточных стенок гемицелюллозы.

D–Рибоза представляет собой вид простых сахаров, образующих углеводный остов РНК, управляя, таким образом, всеми жизненными процессами. Рибоза также участвует в производстве аденозинтрифосфорной кислоты (АТФ) и является одним из ее структурных компонентов.

2–Дезокси–D–рибоза - компо­нент дезоксирибонуклеиновых кислот (ДНК). Это исторически сложившееся название не является строго номенклатурным, так как в молекуле содержатся только два центра хиральности (без учета атома С-1 в циклической форме), поэтому это соединение с равным правом может быть названо 2-дезокси-D-арабинозой. Более правильное название для открытой формы: 2-дезокси-D-эритро-пентоза (D-эритро-конфигурация выделена цветом).

D–глюкозамин вещество, вырабатываемое хрящевой тканью суставов, является компонентом хондроитина и входит в состав синовиальной жидкости.

    Моносахариды: открытая и циклические формы на примере D–галактозы и D–фруктозы, фуранозы и пиранозы; – и β–аномеры; наиболее устойчивые конформации важнейших D–гексопираноз. Представители: D–галактоза, D–манноза, D–фруктоза, D–галактозамин (вопр. 1).

Таутомерные формы фруктозы образуются так же, как и таутомерные формы глюкозы, по реакции внутримолекулярного взаимодействия (А N). Электрофильным центром является атом углерода карбонильной группы у С 2, а нуклеофилом - кислород ОН-группы у 5 или 6 атома углерода.

Представители.

D–галактоза в животных и растительных организмах, в том числе в некоторыхмикроорганизмах. Входит в состав дисахаридов - лактозы и лактулозы. При окислении образует галактоновую, галактуроновуюи слизевую кислоты.

D–манноза компонент многих полисахаридов и смешанных биополимеров растительного, животного и бактериального происхождения.

D–фруктоза - моносахарид, кетогексоза, в живых организмах присутствует исключительно D-изомер, в свободном виде - почти во всех сладких ягодах и плодах - в качестве моносахаридного звена входит в состав сахарозы и лактулозы.

"

Профессиональные спортсмены и те, кто хотят существенно улучшить свои спортивные показатели, уже давно по достоинству оценили преимущества спортивного питания и пищевых добавок, которые позволяют увеличить выносливость и силу мышц, а также способствуют увеличению их объёма и скорейшему восстановлению. Сегодня на рынке спортивного питания существует достаточно большое разнообразие спортивных пищевых добавок, каждая из которых имеет свои индивидуальные свойства и особенности. Для того, чтобы получить желаемый результат, необходимо тщательно подходить к выбору спортивного питания, отдавая предпочтение тому, которое больше всего удовлетворяет вашим требованиям и окажет желаемый эффект. Одна из новинок в мире спортивных пищевых добавок – это рибоза, постепенно завоёвывающая признание и популярность среди спортсменов.

Что такое рибоза

Рибоза представляет собой природный углевод, который достаточно часто встречается в жизни, однако, содержание рибозы в нашем организме ограничено, несмотря на то, что она является полезным веществом, принимающим участие в протекании обменных процессов и обладающим весьма большим количеством свойств и физиологических функций, влияющих на синтез волокон и метаболизм. Как известно, рибоза входит в состав нуклеиновых кислот и выступает в роли источника энергии. Именно поэтому её используют как спортивную добавку при интенсивных физических нагрузках, которые требуют больших затрат силы. Кроме того, рибоза способствует скорейшему восстановлению повреждённых мышечных тканей, благодаря чему, они способны справляться с большими нагрузками. Регулярно употребляя рибозу, можно повысить выносливость и результативность тренировок, а также избавиться от нежелательных последствий в виде длительных болевых ощущений в мышцах после интенсивных спортивных занятий.

Свойства рибозы

Как уже было сказано ранее, рибоза обладает большим количеством свойств и оказывает положительное воздействие на процессы, протекающие в организме человека. Она принимает участие в аэробном энергообмене, являясь составной частью витамина В2. Рибоза задействуется в процессе синтеза некоторых нуклеидов, являющихся источником энергии, необходимой для сокращения мышц. Кроме того, она способствует накоплению в организме нуклеиновых кислот, отвечающих за последовательность синтеза волокон и отдельных клеток. Стоит также упомянуть о том, что именно рибоза определяет структуру генов и хромосом, благодаря чему ускоряется процесс расшифровки генетической информации, необходимой для синтеза протеинов. Нередко рибоза используется как профилактическое средство при ишемической болезни сердца, увеличивая в организме уровень глюкозы. Данная пищевая добавка может выступать в роли антиоксиданта, борющегося со свободными радикалами.

Что касается спорта, то рибоза ускоряет усвояемость организмом креатина и способствует повышению работоспособности и выносливости. При употреблении рибозы в качестве спортивной добавки улучшается процесс восстановления организма после интенсивных нагрузок, сокращая этот период до нескольких дней. При подготовке к соревнованиям необходимо пополнять запасы рибозы в организме, особенно тем, кто часто посещает спортзал, либо занимается пауэрлифтингом.

Применение рибозы

С недавних пор рибоза стала выпускаться в виде отдельной спортивной пищевой добавки, которая может быть представлена в форме порошка или в жидкой форме. Несмотря на всю пользу этого вещества, рибозу рекомендуют принимать в комплексе с другими спортивными добавками, так как она способна в разы усилить их действие.

Наиболее удачной комбинацией с рибозой считается креатин. Такая смесь повышает усвояемость креатина, необходимого для восстановления мышечных тканей и повышения выносливости организма, а также существенно увеличивает силовую работоспособность, благодаря чему можно справиться с большими нагрузками без вреда для здоровья. Рибозу можно встретить не только в виде отдельной добавки, но и в составе уже готовых комплексов. Чаще всего она смешивается с креатином, углеводами и глютамином. Выбирая для себя спортивное питание, обращайте внимание на процентное содержание элементов, входящих в его состав, отдавая предпочтение тем, в которых они максимально сбалансированы.

Дозировка и режим приёма рибозы

Несмотря на всю свою полезность, рибоза необходима в качестве дополнительной пищевой добавки лишь тем, кто регулярно подвергает свой организм интенсивным физическим нагрузкам. Минимальное количество рибозы, которое рекомендовано для спортсменов, составляет 2,2 грамма в день, но, некоторые производители советуют увеличить это число до четырёх граммов с целью повышения результатов. Как правило, рибозу принимают один раз в день, незадолго до начала тренировки или после её окончания. Однако, при употреблении рибозы в комплексе с креатином, необходимо употреблять по 1,5 грамма рибозы четыре раза в день в течение пяти дней, сочетая её приёмы с приёмами креатина. После окончания курса следует вернуться к обычному режиму приёма рибозы. В некоторых случаях для усиления эффекта рибозу сочетают не только с креатином, но и с сывороточным протеином, который необходим для восстановления мышц и регенерации волокон.

Возможные побочные эффекты рибозы

В процессе приёма рибозы, как и любых других спортивных пищевых добавок, необходимо придерживаться определённых рекомендаций, соблюдая режим и дозировку. В случае передозировки или индивидуальной непереносимости рибоза может стать причиной возникновения аллергической реакции, степень выраженности которой зависит от дозы употребляемой рибозы и её концентрации в спортивном питании. В некоторых случаях рибоза может вызывать нарушения дыхания и желудочно-кишечные расстройства. Именно поэтому, не следует пренебрегать рекомендациями и использовать рибозу в больших количествах, надеясь на более стремительные результаты.

D-рибоза – это пятиуглеродный моносахарид. Очень простое и эффективное средства поддержания общего уровня «энергии».

В заметки про я упоминал, 3 принципиальных пути расхода глюкозы (еще точнее глюкозы-6-фосфата):

Гликолиз (синтез пирувата с выделением АТФ и NADH):

Синтез различных амино-кислот и белков;

Синтез ацетил Кофермента А:

Окисление ацетил КоА в цикле Кребса;

Синтез жировых кислот из ацетил КоА для запасания энергии;

Синтез гликогена в печени и мышцах;

Пентозо-фосфатный путь:

Синтез 5-углеродных сахаров;

Синтез NADPH;

D-рибоза, роль в клетке

D-рибоза и Деокси- D-рибоза являются структурными компонентами нуклеодитов РНК и ДНК соответственно .

Заметка для увлеченных . Как интересный варианта «размятия мозгов» на почве рибозы :

  • Почему в ДНК деокси-рибоза, а в РНК
  • Почему именно D-рибоза является неотъемлемой частью нуклеодитов (а не C6 глюкоза/фруктоза/галактозу и не C4 эритроза, например)?
  • Что наличие рибозы в нуклеотидах говорит нам об эволюционном прошлом генетического аппарата?

К счастью или к сожалению данные вопросы в рамках этой заметки не требуют фокуса.

Одна важная нуклеиновая кислота, частью которой является D-рибоза, это АТФ, аденозин-трифосфат, энергетическая «валюта» всего организма .

Также важно упомянуть NADPH – мощный клеточный восстановитель. Дегидрогеназы, ферменты, катализирующие реакции окисления/восстановления используют NADPH как кофермент реакций восстановления. Фермент окисляет NADPH, чтобы восстановить какую-либо нужную молекулу.

Восстановление NADPH происходит в ходе пентозо-фосфатного пути и с использованием 5-углеродных моносахаридов.

D-рибоза и синтез АТФ

С экзогенной рибозой мы сразу получаем структурный компонент пентозо-фосфатного пути.

Восстановление АТФ зависит от количества фосфорибосил-пирофостафа (PRPP на картинке выше) и D-рибоза напрямую способствует восстановлению PRPP и уровня АТФ.

Данные говорят о том, что D-рибоза способствовала ускоренному восстановлению уровня АТФ при обратимой ишемии миокарда.

Вся статья о рибозе и сердечно-сосудистых заболеваниях построена на логике: ишемия (недостаток кровоснабжения и, как следствие, питания клеток) миокарда – сниженное количество АТФ, которое помогает восстанавливать

Другие области применения рибозы

D-рибоза не смогла ничего добавить спортивным результатам здоровых и/или тренированных людей . Проблема в том, что наши спортивные достижения физиологически ограничиваются способностью организма доставлять кислород и способностью клеток его утилизировать. Это работа сердечно-сосудистой системы, митохондрии, а у элитных спортсменов уже и возможность легких может стать «бутылочным горлышком». Не очень понятно, как 5-углеродные основы должны были улучшить результаты тренировок. Мне кажется, что путаница между восстановлением уровнем АТФ и спортивной физиологией в целом.

Зато D-рибоза показала неплохие результаты у людей с хронической усталостью и фибромиалгией .

D-рибоза. Безопасность применения

У молекулы высокая абсорбция в ЖКТ (88-100%) . За биодоступность беспокоиться не приходится.

Перорально побочные эффекты (со стороны ЖКТ: тошнота, жидкий стул итд) были при повышении дозировки в 200 мг на 1 кг веса (обычная дозировка всего 2 грамма) .

Внутривенно не было побочных эффектов даже при дозировке в 222 мг на 1 кг веса .

Возможные побочные эффекты:

  • Заметная стимуляция со сложностью уснуть (у меня этой проблемы нет при принятии даже в 21-22);
  • Легкая временная гипогликемия через некоторое время после принятия (не ощущал, но при приеме с декстрозой эта проблема устранялась);
  • Давайте оставить возможность дистресса ЖКТ для особо чувствительных

В одном из исследований рибоза поднимала уровень гликизированного гемоглобина в 3 раза выше, чем глюкоза. Но это in vitro (пробирочное) исследование. У моносахаридов в пробирке не было возможности абсорбироваться иначе.

D-рибоза. Личный опыт

D-рибоза обладает для меня явным тонизирующим эффектом. Влияния на результаты тренировок нет. Но ощущения прилива сил помогают, конечно же, настроиться на тренировки.

Для меня в паре с Ежовиком (Lion’s Mane) на текущий момент — это стандартная комбинация, когда я хочу морально и физически взбодриться перед важным заданием. Не физическим, скорее интеллектуальным.

Jarrow Formulas, Порошок D-рибозы, 200 г – применяю порошок от Jarrow (в ссылке кодов нет, не аффилирован); этот производитель есть в cGMP списках (независимый контроль всех этапов производства) FDA. Можно быть уверенным в содержимом.

D-рибоза. Выводы

  • D-рибоза – это 5-углеродный моносахарид, который мы синтезируем из глюкозы в процессе пентозо-фостатного пути;
  • D-рибоза позволяет:
    • (с некоторой степенью спекуляции) поддерживать целостность ДНК/РНК, так как это структурный компонент нуклеиновых кислот;
    • Наличие рибозы может быть rate-limiting step в восстановлении уровня АТФ, D-рибоза ускоряет восстановление уровня АТФ, что может помочь тканям с ишемией; кардиология, неврология;
    • Восстанавливать NADPH, который “тратят” дегидрогеназы во время реакций восстановления;
  • С практической точки зрения:
    • Явный тонизирующий эффект;
    • Высокая биодоступность, в рекомендованных дозировках почти полное отсутствие нежелательных явлений;
    • На спортивные результаты не повлияет, но для каждодневной жизни даст дополнительный приток сил.

Лекция Углеводы

Этим названием обозначаются широко распространенные в природе вещества. Они возникают в растительных организмах в результате сложной химической реакции, в которой участвуют вода, углекислый газ из воздуха и солнечная энергия, причем реакция происходит с участием зерен хлорофилла, находящегося в зеленой части растений.

Итак, углеводы (сахара) - одна из наиболее важных и распро­страненных групп природных органических соединений. Общая формула C m H 2 n O n (m и n ³3).

В растительном организме до 80% (сухого веса), а в животных организмах - до 2% (сухого веса) составляют углеводы.

В организме животных и человека углеводы (сахара) поступа­ют с различными пищевыми продуктами растительного проис­хождения, т.к. сахара не могут синтезироваться в организмах животного происхождения.

В растениях же углеводы образуются в процессе фотосинтеза из воды и углекислого газа (см. выше):

Углеводы имеют разное строение, их можно разделить на две группы: простые и сложные углеводы.

Простыми углеводами (моносахаридами) называются такие соединения, которые не могут гидролизоваться с образованием более простых углеводов.

Сложными углеводами (полисахаридами) называют такие со­единения, которые могут гидролизоваться с образованием про­стых углеводов.

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Понятие о пространственных изомерах углеводов. Циклические формы моносахаридов

В молекулах моносахаридов может содержаться от трех до девяти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на -оза. В зависимости от числа атомов углерода в молекуле моноса­хариды делятся на тетрозы, пентозы, гексозы и т.д. Наибольшее значение имеют гексозы и пентозы.

Рибоза и дезоксирибоза

В природе часто встречаются пентозы. Из них большой инте­рес представляют рибоза и дезоксирибоза, т.к. они входят в состав нуклеиновых кислот.

Название «дезоксирибоза» показывает, что по сравнению с рибозой в ее молекуле на одну-ОН группу меньше.

Молекулы рибозы и дезоксирибозы могут иметь как линей­ное, так и циклическое строение:

Важнейшими представителями гексоз являются глюкоза и фруктоза, на примере которых рассмотрим строение, номенкла­туру, изомерию и свойства моносахаридов.

Строение

Глюкоза и фруктоза являются изомерами и имеют молеку­лярную формулу С 6 Н 12 О 6 .

Строение моносахаридов было установлено с помощью реакций:

1) Восстановления глюкозы йодистым водородом, в результате этой реакции образуется 2-иодгексан.

2) Глюкоза вступает в реакцию с аммиачным раствором оксида серебра, что говорит о наличии в молекуле глюкозы альдегид­ной группы:

(С 5 Н 11 О 5)СОН+2OH®(C 5 H 11 O 5)COONH 4 +2Ag¯+3NH 3 +H 2 O

3) Глюкоза окисляется бромной водой в глюконовую кислоту:

(С 5 Н 11 О 6)СОН+Br 2 +Н 2 O®(С 5 Н 11 O 5)СООН+2HBr

4) При взаимодействии глюкозы с гидроксидом меди происходит окрашивание раствора в синий цвет - это качественная реак­ция для многоатомных спиртов. Количественные эксперимен­ты показали, что в молекуле глюкозы 5 гидроксильных групп. Таким образом, глюкоза - это пятиатомный альдегидоспирт.

5) В молекуле фруктозы также установлено наличие 5 спиртовых групп, но при энергичном окислении фруктоза образует две оксикислоты с двумя и четырьмя атомами углерода. Такое поведение характерно для кетонов. Таким образом, фрукто­за - многоатомный кетоноспирт:

Следовательно, моносахариды - это многоатомные альдегидо- или кетоноспирты.

Однако ряд экспериментальных фактов не находит объясне­ния в рамках такого строения моносахаридов: 1) моносахариды не дают некоторые реакции, характерные для альдегидов; в частности, они не образуют бисульфитных соеди­нений при взаимодействии с NaHSO 3 ;

2) при измерении оптической активности свежеприготовленных растворов глюкозы оказалось, что она с течением времени па­дает;

3) при нагревании моносахаридов с метиловым спиртом в присут­ствии HСl выпадает кристаллический осадок гликозида, кото­рый легко гидролизуется с образованием одной молекулы спирта.

Все эти факты нашли объяснение, когда предположили, что каждый моносахарид может существовать в виде несколь­ких таутомерных форм. В растворе, кроме развернутых цепей, существуют и циклические формы, которые образуются при внутримолекулярном взаимодействии альдегидной группы и гидроксильной группы при пятом атоме углерода:

Наличие циклической формы объясняет все вышеприведен­ные аномалии следующим образом:

1) в растворах преобладают циклические формы моносахаридов, открытые формы находятся в небольших количествах;

2) изменение оптической активности связано с установлением равновесия между открытой и циклической формами.

Образование гликозидов объясняется наличием гликозидного, или полуацетального гидроксила, который отличается большей ре­акционной способностью, чем остальные гидроксиды. Поэтому он легко взаимодействует со спиртами с образованием гликозидов. Хеуорс предложил изображать циклические формы Сахаров так, чтобы отчетливо были видны и кольцо, и заместители:

Циклические формы моносахаридов могут содержать пять или шесть атомов в цикле. Сахара с шестичленным циклом назы­ваются пиранозами, например, глюкоза - глюкопираноза; цик­лические формы Сахаров с пятичленным циклом называются фуранозами. Глюкоза с пятичленным циклом - глюкофураноза, а фруктоза с пятичленным циклом - фруктофураноза.

Номенклатура и изомерия моносахаридов Названия моносахаридов содержат греческие названия числа

атомов и окончание -оза (см. выше).

Наличие альдегидной и кетонной группы обозначается прибавлением слов альдоза, кетоза. Глюкоза - альдогексоза, фруктоза - кетогексоза.

Изомерия обусловлена наличием:

1) альдегидной или кетонной группы;

2) асимметричного атома углерода;

3) таутомерии (т.е. равновесия между разными формами молекулы).

Получение моносахаридов

1) В природе глюкоза и фруктоза (наряду с другими моносахари­дами) образуются в результате реакции фотосинтеза:

Исходя из этого можно сделать вывод, что ряд моносахаридов встречается в природе в свободном виде, например фруктоза и глюкоза содержатся в фруктах, фруктоза - в меде и т.д.

2) Гидролиз полисахаридов. Например, на производстве глюкозу чаще всего получают гидролизом крахмала в присутствии сер­ной кислоты:

3) Неполное окисление многоатомных спиртов.

4) Синтез из формальдегида в присутствии гидроксида кальция (предложен А. М. Бутлеровым в 1861 г.):

Физические свойства

Моносахариды представляют собой твердые вещества, спо­собные кристаллизоваться, гигроскопичны, хорошо растворимы в воде. Водные растворы их имеют нейтральную реакцию на лак­мус, большинство - сладкие на вкус. В спирте растворяются плохо, в эфире нерастворимы.

Глюкоза - бесцветное кристаллическое вещество, сладкое на вкус, хорошо растворимо в воде. Из водного раствора ее выделяют в виде кристаллогидрата С 6 Н 12 О 6 Н 2 О.

Химические свойства

Химические свойства моносахаридов обусловлены наличием в их молекулах различных функциональных групп.

1. Окисление моносахаридов:

(С 5 Н 11 O 6)СОН+2OH®(C 6 H 11 O 5)COONH 4 +2Ag¯+3NH 3 +H 2 O

2. Реакция спиртовых гидроксидов:

а) взаимодействие с гидроксидом меди (II) с образованием алкоголята меди (II);

б) образование простых эфиров;

в) образование сложных эфиров при взаимодействии с карбоновыми кислотами - реакция этерификации. Например, вза­имодействие глюкозы с уксусной кислотой или ее хлорангидридом:

3. Образование гликозидов (см. выше).

4. Брожение. Брожение - это сложный процесс, при котором происходит расщепление моносахаридов под влиянием раз­личных микроорганизмов. Различают брожение:

а) спиртовое:

Химические свойства глюкозы показаны также в табл. 41.

Применение глюкозы

Глюкоза - ценный питательный продукт. В организме она подвергается сложному биохимическому превращению, при этом высвобождается энергия, которая накапливается в процессе фо­тосинтеза, который протекает ступенчато, и поэтому энергия вы­деляется медленно (см. рис. 51).

Большое значение имеют процессы брожения глюкозы. На­пример, при квашении капусты, огурцов, скисании молока про­исходит молочнокислое брожение глюкозы, так же как при сило­совании кормов. Широко используется на практике спиртовое брожение глюкозы, например, при производстве пива.

Фруктоза

Фруктоза имеет такую же, как и глюкоза, молекулярную формулу (С 6 Н 12 О 6), но является не полиоксиальдегидом, а полиоксикетоном. Молекула фруктозы содержит три асимметричес­ких атома углерода, причем конфигурация у них такая же, как и у соответствующих атомов в молекуле глюкозы. Итак, фрукто­за - изомер и «близкий родственник» глюкозы. Она хорошо рас­творима в воде, имеет сладкий вкус (примерно в 3 раза слаще глюкозы).

Фруктоза также наиболее часто встречается в циклических формах (a- или b-), но, в отличие от глюкозы, в пятичленных. В водных растворах фруктозы имеет место равновесие:

Фруктоза и глюкоза в больших количествах содержатся в сладких фруктах, пчелином меде.