Biografije Karakteristike Analiza

Trigonometrijske jednadžbe Osnovne metode rješavanja trigonometrijskih jednadžbi

Zahtijeva poznavanje osnovnih formula trigonometrije – zbroj kvadrata sinusa i kosinusa, izražavanje tangensa kroz sinus i kosinus i dr. Za one koji su ih zaboravili ili ih ne znaju, preporučujemo čitanje članka "".
Dakle, znamo osnovne trigonometrijske formule, vrijeme je da ih upotrijebimo u praksi. Rješavanje trigonometrijskih jednadžbi s pravim pristupom, to je prilično uzbudljiva aktivnost, poput, na primjer, rješavanja Rubikove kocke.

Već iz samog naziva jasno je da je trigonometrijska jednadžba jednadžba u kojoj je nepoznanica pod predznakom trigonometrijske funkcije.
Postoje takozvane najjednostavnije trigonometrijske jednadžbe. Evo kako izgledaju: sinx = a, cos x = a, tan x = a. Razmotrimo kako riješiti takve trigonometrijske jednadžbe, radi jasnoće koristit ćemo već poznati trigonometrijski krug.

sinx = a

cos x = a

tan x = a

krevetić x = a

Svaka trigonometrijska jednadžba rješava se u dvije faze: jednadžbu svodimo na njezin najjednostavniji oblik, a zatim je rješavamo kao jednostavnu trigonometrijsku jednadžbu.
Postoji 7 glavnih metoda kojima se rješavaju trigonometrijske jednadžbe.

  1. Supstitucija varijable i metoda supstitucije

  2. Riješite jednadžbu 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Koristeći formule redukcije dobivamo:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Zamijenite cos(x + /6) s y da biste pojednostavili i dobili uobičajenu kvadratnu jednadžbu:

    2g 2 – 3g + 1 + 0

    Korijeni su y 1 = 1, y 2 = 1/2

    Sada idemo obrnutim redom

    Zamjenjujemo pronađene vrijednosti y i dobivamo dvije mogućnosti odgovora:

  3. Rješavanje trigonometrijskih jednadžbi faktorizacijom

  4. Kako riješiti jednadžbu sin x + cos x = 1?

    Pomaknimo sve ulijevo tako da 0 ostane desno:

    sin x + cos x – 1 = 0

    Upotrijebimo gore spomenute identitete da pojednostavimo jednadžbu:

    sin x - 2 sin 2 (x/2) = 0

    Rastavimo na faktore:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Dobivamo dvije jednadžbe

  5. Svođenje na homogenu jednadžbu

  6. Jednadžba je homogena s obzirom na sinus i kosinus ako su svi njezini članovi relativni na sinus i kosinus istog stupnja i istog kuta. Za rješavanje homogene jednadžbe postupite na sljedeći način:

    a) prebaci sve svoje članove na lijevu stranu;

    b) sve zajedničke faktore izvadite iz zagrada;

    c) izjednačiti sve faktore i zagrade s 0;

    d) u zagradama se dobiva homogena jednadžba nižeg stupnja, koja se pak dijeli na sinus ili kosinus višeg stupnja;

    e) riješite dobivenu jednadžbu za tg.

    Riješite jednadžbu 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Upotrijebimo formulu sin 2 x + cos 2 x = 1 i riješimo se otvorena dva s desne strane:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Podijeli s cos x:

    tg 2 x + 4 tg x + 3 = 0

    Zamijenite tan x s y i dobit ćete kvadratnu jednadžbu:

    y 2 + 4y +3 = 0, čiji su korijeni y 1 =1, y 2 = 3

    Odavde nalazimo dva rješenja izvorne jednadžbe:

    x 2 = arctan 3 + k

  7. Rješavanje jednadžbi kroz prijelaz na polukut

  8. Riješite jednadžbu 3sin x – 5cos x = 7

    Prijeđimo na x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Pomaknimo sve ulijevo:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Podijeli s cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Uvođenje pomoćnog kuta

  10. Za razmatranje, uzmimo jednadžbu oblika: a sin x + b cos x = c,

    gdje su a, b, c neki proizvoljni koeficijenti, a x je nepoznanica.

    Podijelimo obje strane jednadžbe sa:

    Sada koeficijenti jednadžbe, prema trigonometrijskim formulama, imaju svojstva sin i cos, naime: njihov modul nije veći od 1, a zbroj kvadrata = 1. Označimo ih redom kao cos i sin, gdje - ovo je takozvani pomoćni kut. Tada će jednadžba poprimiti oblik:

    cos * sin x + sin * cos x = C

    ili sin(x + ) = C

    Rješenje ove najjednostavnije trigonometrijske jednadžbe je

    x = (-1) k * arcsin C - + k, gdje je

    Treba napomenuti da su oznake cos i sin međusobno zamjenjive.

    Riješite jednadžbu sin 3x – cos 3x = 1

    Koeficijenti u ovoj jednadžbi su:

    a = , b = -1, pa obje strane podijelite s = 2

Najjednostavnije trigonometrijske jednadžbe rješavaju se u pravilu pomoću formula. Podsjećam vas da su najjednostavnije trigonometrijske jednadžbe:

sinx = a

cosx = a

tgx = a

ctgx = a

x je kut koji treba pronaći,
a je bilo koji broj.

A evo i formula s kojima možete odmah zapisati rješenja ovih najjednostavnijih jednadžbi.

Za sinus:


Za kosinus:

x = ± arccos a + 2π n, n ∈ Z


Za tangentu:

x = arctan a + π n, n ∈ Z


Za kotangens:

x = arcctg a + π n, n ∈ Z

Zapravo, ovo je teorijski dio rješavanja najjednostavnijih trigonometrijskih jednadžbi. Štoviše, sve!) Baš ništa. Međutim, broj pogrešaka na ovu temu jednostavno je izvan tablica. Pogotovo ako primjer malo odstupa od predloška. Zašto?

Da, jer puno ljudi piše ova pisma, a da uopće ne razumije njihovo značenje! Oprezno zapisuje, da se nešto ne dogodi...) Ovo treba srediti. Trigonometrija za ljude, ili ipak ljudi za trigonometriju!?)

Idemo to shvatiti?

Jedan kut će biti jednak arccos a, drugi: -arccos a.

I uvijek će tako ispasti. Za bilo koje A.

Ako mi ne vjerujete, prijeđite mišem preko slike ili dodirnite sliku na tabletu.) Promijenio sam broj A na nešto negativno. U svakom slučaju, imamo jedan kut arccos a, drugi: -arccos a.

Stoga se odgovor uvijek može napisati kao dva niza korijena:

x 1 = arccos a + 2π n, n ∈ Z

x 2 = - arccos a + 2π n, n ∈ Z

Spojimo ove dvije serije u jednu:

x= ± arccos a + 2π n, n ∈ Z

I to je sve. Dobili smo opću formulu za rješavanje najjednostavnije trigonometrijske jednadžbe s kosinusom.

Ako shvatite da to nije nekakva nadznanstvena mudrost, ali samo skraćena verzija dva niza odgovora, Također ćete moći rješavati zadatke "C". S nejednakostima, s odabiranjem korijena iz zadanog intervala... Tu odgovor s plus/minusom ne funkcionira. Ali ako se prema odgovoru odnosite poslovno i podijelite ga na dva odvojena odgovora, sve će biti riješeno.) Zapravo, to je razlog zašto to istražujemo. Što, kako i gdje.

U najjednostavnijoj trigonometrijskoj jednadžbi

sinx = a

također dobivamo dva niza korijena. Stalno. A mogu se i ove dvije serije snimiti u jednom redu. Samo će ovaj redak biti složeniji:

x = (-1) n arcsin a + π n, n ∈ Z

Ali suština ostaje ista. Matematičari su jednostavno osmislili formulu kako bi napravili jedan umjesto dva unosa za niz korijena. To je sve!

Provjerimo matematičare? I nikad se ne zna...)

U prethodnoj lekciji detaljno je obrađeno rješenje (bez ikakvih formula) trigonometrijske jednadžbe sa sinusom:

Odgovor je rezultirao s dva niza korijena:

x 1 = π /6 + 2π n, n ∈ Z

x 2 = 5π /6 + 2π n, n ∈ Z

Ako istu jednadžbu riješimo pomoću formule, dobit ćemo odgovor:

x = (-1) n arcsin 0,5 + π n, n ∈ Z

Zapravo, ovo je nedovršen odgovor.) Učenik to mora znati arcsin 0,5 = π /6. Kompletan odgovor bi bio:

x = (-1)n π /6+ π n, n ∈ Z

Ovo postavlja zanimljivo pitanje. Odgovorite putem x 1; x 2 (ovo je točan odgovor!) i kroz lonely x (i ovo je točan odgovor!) - jesu li to ista stvar ili ne? Sada ćemo saznati.)

Zamjenjujemo u odgovoru sa x 1 vrijednosti n =0; 1; 2; itd., brojimo, dobivamo niz korijena:

x 1 = π/6; 13π/6; 25π/6 i tako dalje.

S istom zamjenom u odgovoru sa x 2 , dobivamo:

x 2 = 5π/6; 17π/6; 29π/6 i tako dalje.

Sada zamijenimo vrijednosti n (0; 1; 2; 3; 4...) u opću formulu za jednostruku x . Odnosno, dižemo minus jedan na nultu potenciju, zatim na prvu, drugu itd. Pa, naravno, zamijenit ćemo 0 u drugi član; 1; 2 3; 4, itd. I brojimo. Dobijamo seriju:

x = π/6; 5π/6; 13π/6; 17π/6; 25π/6 i tako dalje.

To je sve što možete vidjeti.) Opća formula nam daje potpuno iste rezultate kao što su dva odgovora zasebno. Samo sve odjednom, po redu. Matematičari se nisu prevarili.)

Također se mogu provjeriti formule za rješavanje trigonometrijskih jednadžbi s tangensom i kotangensom. Ali nećemo.) Već su jednostavni.

Posebno sam napisao sve ove zamjene i provjere. Ovdje je važno razumjeti jednu jednostavnu stvar: postoje formule za rješavanje elementarnih trigonometrijskih jednadžbi, samo kratak sažetak odgovora. Radi ove sažetosti, morali smo umetnuti plus/minus u rješenje kosinusa i (-1) n u rješenje sinusa.

Ovi umeci ni na koji način ne smetaju u zadacima u kojima samo trebate napisati odgovor na elementarnu jednadžbu. Ali ako trebate riješiti nejednadžbu ili trebate učiniti nešto s odgovorom: odabrati korijene na intervalu, provjeriti ODZ itd., ovi umetci mogu lako uznemiriti osobu.

Što bih trebao napraviti? Da, ili napiši odgovor u dvije serije, ili riješi jednadžbu/nejednadžbu pomoću trigonometrijske kružnice. Tada ti umetci nestaju i život postaje lakši.)

Možemo sažeti.

Za rješavanje najjednostavnijih trigonometrijskih jednadžbi postoje gotove formule odgovora. Četiri komada. Dobri su za trenutno zapisivanje rješenja jednadžbe. Na primjer, trebate riješiti jednadžbe:


sinx = 0,3

Lako: x = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Nema problema: x = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Lako: x = arctan 1,2 + π n, n ∈ Z


ctgx = 3,7

Jedan ostao: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Ako ti, sjajeći znanjem, odmah napišeš odgovor:

x= ± arccos 1.8 + 2π n, n ∈ Z

onda već blistaš, ovo... ono... iz lokve.) Točan odgovor: nema rješenja. Ne razumijem zašto? Pročitajte što je ark kosinus. Osim toga, ako na desnoj strani izvorne jednadžbe postoje tablične vrijednosti sinusa, kosinusa, tangensa, kotangensa, - 1; 0; √3; 1/2; √3/2 i tako dalje. - nedorečen će odgovor kroz lukove. Lukovi se moraju pretvoriti u radijane.

A ako naiđete na nejednakost, npr

onda je odgovor:

x πn, n ∈ Z

ima rijetkih gluposti, da...) Ovdje trebate riješiti pomoću trigonometrijske kružnice. Što ćemo učiniti u odgovarajućoj temi.

Za one koji herojski čitaju ove retke. Jednostavno ne mogu ne cijeniti vaš ogromni trud. Bonus za vas.)

Bonus:

Kada zapisuju formule u alarmantnoj borbenoj situaciji, čak i iskusni štreberi često se zbune gdje πn, I gdje 2π n. Evo jednostavnog trika za vas. U svatko formule vrijedan πn. Osim jedine formule s ark kosinusom. Stoji tamo 2πn. Dva peen. ključna riječ - dva. U ovoj istoj formuli postoje dva znak na početku. Plus i minus. Tu i tamo - dva.

Pa ako si napisao dva znak ispred ark kosinusa, lakše je zapamtiti što će se dogoditi na kraju dva peen. A događa se i obrnuto. Osoba će propustiti znak ± , dolazi do kraja, piše ispravno dva Pien, i on će doći k sebi. Nešto je naprijed dva znak! Osoba će se vratiti na početak i ispraviti grešku! Kao ovo.)

Ako vam se sviđa ova stranica...

Usput, imam još nekoliko zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoju razinu. Testiranje uz trenutnu provjeru. Učimo - sa zanimanjem!)

Možete se upoznati s funkcijama i derivacijama.

Održavanje vaše privatnosti važno nam je. Iz tog razloga razvili smo Politiku privatnosti koja opisuje kako koristimo i pohranjujemo vaše podatke. Pregledajte naše prakse privatnosti i javite nam ako imate bilo kakvih pitanja.

Prikupljanje i korištenje osobnih podataka

Osobni podaci odnose se na podatke koji se mogu koristiti za identifikaciju ili kontaktiranje određene osobe.

Od vas se može tražiti da date svoje osobne podatke u bilo kojem trenutku kada nas kontaktirate.

U nastavku su navedeni neki primjeri vrsta osobnih podataka koje možemo prikupljati i kako možemo koristiti takve podatke.

Koje osobne podatke prikupljamo:

  • Kada podnesete prijavu na stranici, možemo prikupiti razne podatke, uključujući vaše ime, broj telefona, adresu e-pošte itd.

Kako koristimo vaše osobne podatke:

  • Osobni podaci koje prikupljamo omogućuju nam da vas kontaktiramo s jedinstvenim ponudama, promocijama i drugim događajima i nadolazećim događajima.
  • S vremena na vrijeme možemo koristiti vaše osobne podatke za slanje važnih obavijesti i komunikacija.
  • Osobne podatke također možemo koristiti u interne svrhe, kao što je provođenje revizija, analiza podataka i raznih istraživanja kako bismo poboljšali usluge koje pružamo i dali vam preporuke u vezi s našim uslugama.
  • Ako sudjelujete u izvlačenju nagrada, natjecanju ili sličnoj promociji, možemo koristiti podatke koje nam dostavite za upravljanje takvim programima.

Otkrivanje informacija trećim stranama

Podatke koje smo dobili od vas ne otkrivamo trećim stranama.

Iznimke:

  • Ako je potrebno - u skladu sa zakonom, sudskim postupkom, u sudskom postupku i/ili na temelju javnih zahtjeva ili zahtjeva državnih tijela na području Ruske Federacije - za otkrivanje Vaših osobnih podataka. Također možemo otkriti podatke o vama ako utvrdimo da je takvo otkrivanje potrebno ili prikladno za sigurnosne svrhe, provedbu zakona ili druge javne svrhe.
  • U slučaju reorganizacije, spajanja ili prodaje, možemo prenijeti osobne podatke koje prikupimo primjenjivoj trećoj strani nasljedniku.

Zaštita osobnih podataka

Poduzimamo mjere opreza - uključujući administrativne, tehničke i fizičke - kako bismo zaštitili vaše osobne podatke od gubitka, krađe i zlouporabe, kao i neovlaštenog pristupa, otkrivanja, izmjene i uništenja.

Poštivanje vaše privatnosti na razini tvrtke

Kako bismo osigurali sigurnost vaših osobnih podataka, našim zaposlenicima priopćavamo standarde privatnosti i sigurnosti i strogo provodimo prakse privatnosti.

Videotečaj "Get A" uključuje sve teme potrebne za uspješno polaganje Jedinstvenog državnog ispita iz matematike sa 60-65 bodova. Potpuno svi zadaci 1-13 profilnog jedinstvenog državnog ispita iz matematike. Prikladno i za polaganje osnovnog jedinstvenog državnog ispita iz matematike. Ako želite položiti Jedinstveni državni ispit s 90-100 bodova, trebate riješiti 1. dio za 30 minuta i bez grešaka!

Pripremni tečaj za Jedinstveni državni ispit za razrede 10-11, kao i za učitelje. Sve što vam je potrebno za rješavanje prvog dijela Jedinstvenog državnog ispita iz matematike (prvih 12 problema) i problema 13 (trigonometrija). A ovo je više od 70 bodova na Jedinstvenom državnom ispitu, a bez njih ne može ni student sa 100 bodova ni student humanističkih znanosti.

Sva potrebna teorija. Brza rješenja, zamke i tajne jedinstvenog državnog ispita. Analizirani su svi tekući zadaci 1. dijela iz FIPI Banke zadataka. Tečaj je u potpunosti u skladu sa zahtjevima Jedinstvenog državnog ispita 2018.

Tečaj sadrži 5 velikih tema, svaka po 2,5 sata. Svaka tema je dana od nule, jednostavno i jasno.

Stotine zadataka Jedinstvenog državnog ispita. Riječni problemi i teorija vjerojatnosti. Jednostavni i lako pamtljivi algoritmi za rješavanje problema. Geometrija. Teorija, referentni materijal, analiza svih vrsta zadataka Jedinstvenog državnog ispita. Stereometrija. Varljiva rješenja, korisne varalice, razvoj prostorne mašte. Trigonometrija od nule do problema 13. Razumijevanje umjesto natrpavanja. Jasna objašnjenja složenih pojmova. Algebra. Korijeni, potencije i logaritmi, funkcija i izvod. Osnova za rješavanje složenih problema 2. dijela Jedinstvenog državnog ispita.

Pri rješavanju mnogih matematički problemi, posebno onih koji se javljaju prije 10. razreda, jasno je definiran redoslijed radnji koje će dovesti do cilja. Takvi problemi uključuju, na primjer, linearne i kvadratne jednadžbe, linearne i kvadratne nejednadžbe, frakcijske jednadžbe i jednadžbe koje se svode na kvadratne. Princip uspješnog rješavanja svakog od navedenih problema je sljedeći: potrebno je utvrditi koju vrstu problema rješavate, zapamtiti potreban redoslijed radnji koje će dovesti do željenog rezultata, tj. odgovorite i slijedite ove korake.

Očito je da uspjeh ili neuspjeh u rješavanju određenog problema ovisi uglavnom o tome koliko je ispravno određena vrsta jednadžbe koja se rješava, koliko je ispravno reproduciran slijed svih faza njezina rješenja. Naravno, u ovom slučaju potrebno je imati vještine za izvođenje identičnih transformacija i izračuna.

Drugačija je situacija sa trigonometrijske jednadžbe. Nije uopće teško utvrditi činjenicu da je jednadžba trigonometrijska. Poteškoće nastaju pri određivanju slijeda radnji koje bi dovele do točnog odgovora.

Ponekad je teško odrediti njegovu vrstu na temelju izgleda jednadžbe. A bez poznavanja vrste jednadžbe, gotovo je nemoguće odabrati pravu među nekoliko desetaka trigonometrijskih formula.

Da biste riješili trigonometrijsku jednadžbu, morate pokušati:

1. dovesti sve funkcije uključene u jednadžbu pod “iste kutove”;
2. dovesti jednadžbu do “identičnih funkcija”;
3. faktorizirati lijevu stranu jednadžbe, itd.

Razmotrimo osnovne metode rješavanja trigonometrijskih jednadžbi.

I. Svođenje na najjednostavnije trigonometrijske jednadžbe

Dijagram rješenja

Korak 1. Izrazi trigonometrijsku funkciju preko poznatih komponenti.

Korak 2. Pronađite argument funkcije pomoću formula:

cos x = a; x = ±arccos a + 2πn, n ÊZ.

sin x = a; x = (-1) n arcsin a + πn, n Ê Z.

tan x = a; x = arctan a + πn, n Ê Z.

ctg x = a; x = arcctg a + πn, n Ê Z.

3. korak Pronađite nepoznatu varijablu.

Primjer.

2 cos(3x – π/4) = -√2.

Riješenje.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Ê Z;

3x – π/4 = ±3π/4 + 2πn, n Ê Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Ê Z;

x = ±3π/12 + π/12 + 2πn/3, n Ê Z;

x = ±π/4 + π/12 + 2πn/3, n Ê Z.

Odgovor: ±π/4 + π/12 + 2πn/3, n Ê Z.

II. Zamjena varijable

Dijagram rješenja

Korak 1. Reducirajte jednadžbu na algebarski oblik s obzirom na jednu od trigonometrijskih funkcija.

Korak 2. Rezultirajuću funkciju označimo varijablom t (po potrebi uvesti ograničenja na t).

3. korak Zapiši i riješi dobivenu algebarsku jednadžbu.

Korak 4. Napravite obrnutu zamjenu.

Korak 5. Riješite najjednostavniju trigonometrijsku jednadžbu.

Primjer.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Riješenje.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Neka je sin (x/2) = t, gdje je |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 ili e = -3/2, ne zadovoljava uvjet |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Ê Z;

x = π + 4πn, n Ê Z.

Odgovor: x = π + 4πn, n Ê Z.

III. Metoda redukcije reda jednadžbi

Dijagram rješenja

Korak 1. Zamijenite ovu jednadžbu linearnom, koristeći formulu za smanjenje stupnja:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Korak 2. Riješite dobivenu jednadžbu metodama I. i II.

Primjer.

cos 2x + cos 2 x = 5/4.

Riješenje.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Ê Z;

x = ±π/6 + πn, n Ê Z.

Odgovor: x = ±π/6 + πn, n Ê Z.

IV. Homogene jednadžbe

Dijagram rješenja

Korak 1. Svedite ovu jednadžbu na oblik

a) a sin x + b cos x = 0 (homogena jednadžba prvog stupnja)

ili na pogled

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogena jednadžba drugog stupnja).

Korak 2. Podijelite obje strane jednadžbe s

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

i dobijte jednadžbu za tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

3. korak Riješite jednadžbu poznatim metodama.

Primjer.

5sin 2 x + 3sin x cos x – 4 = 0.

Riješenje.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Neka je tg x = t, dakle

t 2 + 3t – 4 = 0;

t = 1 ili t = -4, što znači

tg x = 1 ili tg x = -4.

Iz prve jednadžbe x = π/4 + πn, n Ê Z; iz druge jednadžbe x = -arctg 4 + πk, k Ê Z.

Odgovor: x = π/4 + πn, n Ê Z; x = -arctg 4 + πk, k Ê Z.

V. Metoda transformacije jednadžbe pomoću trigonometrijskih formula

Dijagram rješenja

Korak 1. Koristeći sve moguće trigonometrijske formule svedite ovu jednadžbu na jednadžbu riješenu metodama I, II, III, IV.

Korak 2. Riješite dobivenu jednadžbu poznatim metodama.

Primjer.

sin x + sin 2x + sin 3x = 0.

Riješenje.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 ili 2cos x + 1 = 0;

Iz prve jednadžbe 2x = π/2 + πn, n Ê Z; iz druge jednadžbe cos x = -1/2.

Imamo x = π/4 + πn/2, n Ê Z; iz druge jednadžbe x = ±(π – π/3) + 2πk, k Ê Z.

Kao rezultat, x = π/4 + πn/2, n Ê Z; x = ±2π/3 + 2πk, k Ê Z.

Odgovor: x = π/4 + πn/2, n Ê Z; x = ±2π/3 + 2πk, k Ê Z.

Sposobnost i vještina rješavanja trigonometrijskih jednadžbi vrlo je važno, njihov razvoj zahtijeva značajan napor, kako od strane učenika tako i od strane nastavnika.

Mnogi problemi stereometrije, fizike itd. povezani su s rješavanjem trigonometrijskih jednadžbi. Proces rješavanja takvih problema utjelovljuje mnoga znanja i vještine koje se stječu proučavanjem elemenata trigonometrije.

Trigonometrijske jednadžbe zauzimaju važno mjesto u procesu učenja matematike i osobnog razvoja općenito.

Još uvijek imate pitanja? Ne znate kako riješiti trigonometrijske jednadžbe?
Dobiti pomoć od učitelja -.
Prvi sat je besplatan!

blog.site, pri kopiranju materijala u cijelosti ili djelomično, poveznica na izvorni izvor je obavezna.