Биографии Характеристики Анализ

Христиан гюйгенс получил патент. Начало научных исследований


Биография

Христиан Гюйгенс - нидерландский механик, физик, математик, астроном и изобретатель.

Один из основоположников теоретической механики и теории вероятностей. Внёс значительный вклад в оптику, молекулярную физику, астрономию, геометрию, часовое дело. Открыл кольца Сатурна и Титан (спутник Сатурна). Первый иностранный член Лондонского королевского общества (1663), член Французской академии наук с момента её основания (1666) и её первый президент (1666-1681).

Гюйгенс родился в Гааге в 1629 году. Отец его Константин Гюйгенс (Хёйгенс), тайный советник принцев Оранских, был замечательным литератором, получившим также хорошее научное образование. Константин был другом Декарта, и декартовская философия (картезианство) оказала большое влияние не только на отца, но и на самого Христиана Гюйгенса.

Молодой Гюйгенс изучал право и математику в Лейденском университете, затем решил посвятить себя науке. В 1651 году опубликовал «Рассуждения о квадратуре гиперболы, эллипса и круга». Вместе с братом он усовершенствовал телескоп, доведя его до 92-кратного увеличения, и занялся изучением неба. Первая известность пришла к Гюйгенсу, когда он открыл кольца Сатурна (Галилей их тоже видел, но не смог понять, что это такое) и спутник этой планеты, Титан.

В 1657 году Гюйгенс получил голландский патент на конструкцию маятниковых часов. В последние годы жизни этот механизм пытался создать Галилей, но ему помешала прогрессирующая слепота. Часы Гюйгенса реально работали и обеспечивали превосходную для того времени точность хода. Центральным элементом конструкции был придуманный Гюйгенсом якорь, который периодически подталкивал маятник и поддерживал незатухающие колебания. Сконструированные Гюйгенсом точные и недорогие часы с маятником быстро получили широчайшее распространение по всему миру. В 1673 году под названием «Маятниковые часы» вышел чрезвычайно содержательный трактат Гюйгенса по кинематике ускоренного движения. Эта книга была настольной у Ньютона, который завершил начатое Галилеем и продолженное Гюйгенсом построение фундамента механики.

В 1661 году Гюйгенс совершил поездку в Англию. В 1665 году по приглашению Кольбера поселился в Париже, где в 1666 году была создана Парижская Академия наук. По предложению того же Кольбера Гюйгенс стал её первым президентом и руководил Академией 15 лет. В 1681 году, в связи с намеченной отменой Нантского эдикта, Гюйгенс, не желая переходить в католицизм, вернулся в Голландию, где продолжил свои научные исследования. В начале 1690-х годов здоровье учёного стало ухудшаться, он умер в 1695 году. Последним трудом Гюйгенса стал «Космотеорос», в нём он аргументировал возможность жизни на других планетах.

Научная деятельность

Лагранж писал, что Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея».

Математика

Научную деятельность Христиан Гюйгенс начал в 1651 году сочинением о квадратуре гиперболы, эллипса и круга. В 1654 году он разработал общую теорию эволют и эвольвент, исследовал циклоиду и цепную линию, продвинул теорию непрерывных дробей.

В 1657 году Гюйгенс написал приложение «О расчётах в азартной игре» к книге его учителя ван Схоотена «Математические этюды». Это было первое изложение начал зарождающейся тогда теории вероятностей. Гюйгенс, наряду с Ферма и Паскалем, заложил её основы, ввёл фундаментальное понятие математического ожидания. По этой книге знакомился с теорией вероятностей Якоб Бернулли, который и завершил создание основ теории.

Механика

В 1657 году Гюйгенс издал описание устройства изобретённых им часов с маятником. В то время учёные не располагали таким необходимым для экспериментов прибором, как точные часы. Галилей, например, при изучении законов падения считал удары собственного пульса. Часы с колесами, приводимыми в движение гирями, были в употреблении с давнего времени, но точность их была неудовлетворительна. Маятник же со времен Галилея употребляли отдельно для точного измерения небольших промежутков времени, причём приходилось вести счёт числу качаний. Часы Гюйгенса обладали хорошей точностью, и учёный далее неоднократно, на протяжении почти 40 лет, обращался к своему изобретению, совершенствуя его и изучая свойства маятника. Гюйгенс намеревался применить маятниковые часы для решения задачи определения долготы на море, но существенного продвижения не добился. Надёжный и точный морской хронометр появился только в 1735 году (в Великобритании).

В 1673 году Гюйгенс опубликовал классический труд по механике «Маятниковые часы» («Horologium oscillatorium, sive de motu pendulorum an horologia aptato demonstrationes geometrica»). Скромное название не должно вводить в заблуждение. Кроме теории часов, сочинение содержало множество первоклассных открытий в области анализа и теоретической механики. Гюйгенс также проводит там квадратуру ряда поверхностей вращения. Это и другие его сочинения имели огромное влияние на молодого Ньютона.

В первой части труда Гюйгенс описывает усовершенствованный, циклоидальный маятник, который обладает постоянным временем качания независимо от амплитуды. Для объяснения этого свойства автор посвящает вторую часть книги выводу общих законов движения тел в поле тяжести - свободных, движущихся по наклонной плоскости, скатывающихся по циклоиде. Надо сказать, что это усовершенствование не нашло практического применения, поскольку при малых колебаниях повышение точности от циклоидального привеса незначительно. Однако сама методика исследования вошла в золотой фонд науки.

Гюйгенс выводит законы равноускоренного движения свободно падающих тел, основываясь на предположении, что действие, сообщаемое телу постоянной силой, не зависит от величины и направления начальной скорости. Выводя зависимость между высотой падения и квадратом времени, Гюйгенс делает замечание, что высоты падений относятся как квадраты приобретенных скоростей. Далее, рассматривая свободное движение тела, брошенного вверх, он находит, что тело поднимается на наибольшую высоту, потеряв всю сообщенную ему скорость, и приобретает её снова при возвращении обратно.

Галилей допускал без доказательства, что при падении по различно наклонным прямым с одинаковой высоты тела приобретают равные скорости. Гюйгенс доказывает это следующим образом. Две прямые разного наклонения и равной высоты приставляются нижними концами одна к другой. Если тело, спущенное с верхнего конца одной из них, приобретает большую скорость, чем пущенное с верхнего конца другой, то можно пустить его по первой из такой точки ниже верхнего конца, чтобы приобретенная внизу скорость была достаточна для подъёма тела до верхнего конца второй прямой; но тогда бы вышло, что тело поднялось на высоту, большую той, с которой упало, а этого быть не может. От движения тела по наклонной прямой Гюйгенс переходит к движению по ломаной линии и далее к движению по какой-либо кривой, причём доказывает, что скорость, приобретаемая при падении с какой-либо высоты по кривой, равна скорости, приобретаемой при свободном падении с той же высоты по вертикальной линии, и что такая же скорость необходима для подъёма того же тела на ту же высоту как по вертикальной прямой, так и по кривой. Затем, переходя к циклоиде и рассмотрев некоторые геометрические свойства её, автор доказывает таутохронность движений тяжелой точки по циклоиде.

В третьей части сочинения излагается теория эволют и эвольвент, открытая автором ещё в 1654 году; здесь он находит вид и положение эволюты циклоиды. В четвёртой части излагается теория физического маятника; здесь Гюйгенс решает ту задачу, которая не давалась стольким современным ему геометрам, - задачу об определении центра качаний. Он основывается на следующем предложении:

Если сложный маятник, выйдя из покоя, совершил некоторую часть своего качания, большую полуразмаха, и если связь между всеми его частицами будет уничтожена, то каждая из этих частиц поднимется на такую высоту, что общий центр тяжести их при этом будет на той высоте, на которой он был при выходе маятника из покоя. Это предложение, не доказанное у Гюйгенса, является у него в качестве основного начала, между тем как теперь оно представляет простое следствие закона сохранения энергии.

Теория физического маятника дана Гюйгенсом вполне в общем виде и в применении к телам разного рода. Гюйгенс исправил ошибку Галилея и показал, что провозглашённая последним изохронность колебаний маятника имеет место лишь приближённо. Он отметил также ещё две ошибки Галилея в кинематике: равномерное движение по окружности связано с ускорением (Галилей это отрицал), а центробежная сила пропорциональна не скорости, а квадрату скорости.

В последней, пятой части своего сочинения Гюйгенс дает тринадцать теорем о центробежной силе. Эта глава даёт впервые точное количественное выражение для центробежной силы, которое впоследствии сыграло важную роль для исследования движения планет и открытия закона всемирного тяготения. Гюйгенс приводит в ней (словесно) несколько фундаментальных формул:

Астрономия

Гюйгенс самостоятельно усовершенствовал телескоп; в 1655 году он открыл спутник Сатурна Титан и описал кольца Сатурна. В 1659-м он описал всю систему Сатурна в изданном им сочинении.

В 1672 году он обнаружил ледяную шапку на Южном полюсе Марса. Он открыл также туманность Ориона и другие туманности, наблюдал двойные звёзды, оценил (довольно точно) период вращения Марса вокруг оси.

Последняя книга «ΚΟΣΜΟΘΕΩΡΟΣ sive de terris coelestibus earumque ornatu conjecturae» (на латинском языке; опубликована посмертно в Гааге в 1698 году) - философско-астрономическое размышление о Вселенной. Полагал, что другие планеты также населены людьми. Книга Гюйгенса получила широчайшее распространение в Европе, где была переведена на английский (1698), голландский (1699), французский (1702), немецкий (1703), русский (1717) и шведский (1774) языки. На русский язык по указу Петра I была переведена Яковом Брюсом под названием «Книга мирозрения». Считается первой в России книгой, где излагается гелиоцентрическая система Коперника.

В этом труде Гюйгенс сделал первую (наряду с Джеймсом Грегори) попытку определить расстояние до звёзд. Если предположить, что все звёзды, включая Солнце, имеют близкую светимость, то, сравнивая их видимую яркость, можно грубо оценить отношение расстояний до них (расстояние до Солнца было тогда уже известно с достаточной точностью). Для Сириуса Гюйгенс получил расстояние в 28000 астрономических единиц, что примерно в 20 раз меньше истинного (опубликовано посмертно, в 1698 году).

Оптика и теория волн

Гюйгенс участвовал в современных ему спорах о природе света. В 1678 году он выпустил «Трактат о свете» - набросок волновой теории света. Другое замечательное сочинение он издал в 1690 году; там он изложил качественную теорию отражения, преломления и двойного лучепреломления в исландском шпате в том самом виде, как она излагается теперь в учебниках физики. Сформулировал «принцип Гюйгенса», позволяющий исследовать движение волнового фронта, впоследствии развитый Френелем и сыгравший важную роль в волновой теории света. Открыл поляризацию света (1678).

Ему принадлежит оригинальное усовершенствование телескопа, использованного им в астрономических наблюдениях и упомянутого в параграфе об астрономии, он изобрел «окуляр Гюйгенса», состоящий из двух плосковыпуклых линз (используется и в наши дни). Также он является изобретателем диаскопического проектора - т. н. «волшебного фонаря».

Другие достижения

Гюйгенс обосновал (теоретически) сплюснутость Земли у полюсов, а также объяснил влияния центробежной силы на направление силы тяжести и на длину секундного маятника на разных широтах. Он дал решение вопроса о соударении упругих тел, одновременно с Валлисом и Реном (опубликовано посмертно) и одно из решений вопроса о виде тяжелой однородной цепи, находящейся в равновесии (цепная линия).

Ему принадлежит изобретение часовой спирали, заменяющей маятник, крайне важное для навигации; первые часы со спиралью были сконструированы в Париже часовым мастером Тюре в 1674 году. в 1675 году запатентовал карманные часы.

Гюйгенс первым призвал выбрать всемирную натуральную меру длины, в качестве которой предложил 1/3 длины маятника с периодом колебаний 1 секунда (это примерно 8 см).

Основные труды

Horologium oscillatorium, 1673 (Маятниковые часы, на латинском).
Kosmotheeoros. (английский перевод издания 1698 года) - астрономические открытия Гюйгенса, гипотезы об иных планетах.
Treatise on Light (Трактат о свете, английский перевод).

Голландский физик, механик, математик и астроном, Христиан Гюйгенс, был непосредственным преемником Галилея в науке. Лагранж говорил, что Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея». В первый раз Гюйгенс соприкоснулся с идеями Галилея в 17 лет: он собирался доказать, что тела, брошенные горизонтально, движутся по параболе, и обнаружил такое доказательство в книге Галилея.

Отец Гюйгенса происходил из голландского дворянского рода и получил прекрасное образование: он знал языки и литературу многих народов и эпох, сам писал поэтические произведения по-латыни и по-нидерландски. Он был также знатоком музыки и живописи, тонким и остроумным человеком. Его интересовали достижения науки в области математики, механики и оптики. Неординарность его личности подтверждает то, что среди его друзей было много известных людей, в том числе и знаменитый Рене Декарт, выдающийся французский ученый.

Влияние Декарта сильно отразилось на формировании мировоззрения его сына, будущего великого ученого.

Детство и юность.

В восемь лет Христиан выучил латынь, знал четыре действия арифметики, а в девять лет он познакомился с географией и началами астрономии, умел определять время восхода и захода Солнца во все времена года. Когда Христиану минуло десять лет, он научился слагать стихи на латыни и играть на скрипке, в одиннадцать познакомился с игрой на лютне, а в двенадцать знал основные правила логики.

После изучения греческого, французского и итальянского языков, а также игры на клавесине, Христиан перешел к механике, которая захватила его целиком. Он конструирует различные машины, например, самостоятельно делает токарный станок. В 1643 году учитель Христиана сообщает отцу: «Христиана нужно назвать чудом среди мальчиков… Он развертывает свои способности в области механики и конструкций, делает машины удивительные…».

Далее Христиан обучается математике, верховой езде и танцам. Сохранился рукописный математический курс для Христиана, составленный известным математиком, другом Декарта, Франциском Схоутеном. В курсе излагались начала алгебры и геометрии, неопределенные уравнения из «Арифметики» Диофанта, иррациональные числа, извлечение квадратного и кубического корней, а также теория алгебраических уравнений высших степеней. Переписана книга Декарта «Геометрия». Затем даны приложения алгебры к геометрии и уравнения геометрических мест. Наконец, рассмотрены конические сечения и даны задачи на построение касательных к различным кривым методами Декарта и Ферма.

В шестнадцать лет Христиан вместе с братом поступает в Лейденский университет для изучения права и одновременно обучается математике у Схоутена, который отсылает на отзыв Декарту его первые математические работы. Декарт похвально отзывается на «математические изобретения» Христиана: «Хотя он и не вполне получил то, что ему нужно, но это никоим образом не странно, так как он попытался найти вещи, которые еще никому не удавались. Он принялся за это дело таким образом, что я уверен в том, что он сделается выдающимся ученым в этой области».

В это время Христиан изучает Архимеда, «Конические сечения» Аполлония, оптику Вителло и Кеплера, «Диоптрику» Декарта, астрономию Птолемея и Коперника, механику Стевина. Знакомясь с последней, Гюйгенс доказывает, что утверждение о том, что фигура равновесия нити, свободно подвешенной между двумя точками, будет параболой, неверно. В настоящее время известно, что нить расположится по так называемой цепной линии.

Христиан вел переписку с Марином Мерсенном, францисканским монахом, издателем французского перевода «Механики» Галилея и краткого изложения его «Диалогов…». Мерсенн живо интересовался научными достижениями своего времени и в письмах сообщал о новейших открытиях и наиболее интересных задачах математики и механики. В те времена подобная переписка заменяла отсутствовавшие научные журналы.

Мерсенн присылал Христиану интересные задачи. Из его писем тот познакомился с циклоидой и центром качания физического маятника. Узнав о критике Гюйгенсом параболической формы нити, Мерсенн сообщил, что такая же ошибка была сделана и самим Галилеем, и попросил прислать полное доказательство.

Заканчивая отчет Мерсенну о своих работах, он писал: «Я решил попробовать доказать, что тяжелые тела, брошенные вверх или в сторону, описывают параболу, но тем временем мне попала в руки книга Галилея об ускоренном движении естественном или насильственном; когда я увидал, что он доказал и это, и многое другое, то я уже не захотел писать Илиаду после Гомера».

Гюйгенс и Архимед.

После Лейдена Христиан с младшим братом Лодевиком едет учиться в «Оранской коллегии». Отец, видимо, готовил Христиана к государственной деятельности, но это Христиана не соблазняло.

В духе Архимеда двадцатитрехлетний Христиан написал книгу о теории плавания тел: «О равновесии тел, плавающих в жидкости». Позднее, в 1654 году, появилось еще одно сочинение в духе Архимеда «Открытия о величине круга», которое представляло прогресс по сравнению с архимедовым «Измерением круга». Гюйгенс получил значение числа «пи» с восемью верными знаками после запятой. Сюда же можно отнести работу «Теоремы о квадратуре гиперболы, эллипса и круга и центра тяжести их частей».

Написанный в 1657 году трактат «О расчетах при азартной игре» является одной из первых известных работ по теории вероятности.

Гюйгенс и оптика.

Еще в 1652 году Гюйгенс заинтересовался темой, которую разрабатывал Декарт. Это была диоптрика - учение о преломлении света. Своему знакомому он пишет: «Я уже имею почти написанные две книги об этом предмете, к которым добавляется и третья: первая говорит о преломлении в плоских и сферических поверхностях…, вторая о видимом увеличении или уменьшении изображений предметов, получающихся при помощи преломления». Третья книга, в которой предполагалось говорить о телескопах и микроскопах, была написана чуть позже. Над «Диоптрикой» Гюйгенс работал с перерывами около 40 лет (с 1652 по 1692 год).

Отдельные главы первой части «Диоптрики» посвящены преломлению света в плоских и сферических поверхностях; автор дает экспериментальное определение показателя преломления разных прозрачных тел и рассматривает задачи преломления света в призмах и линзах. Затем он определяет фокусное расстояние линз и исследует связь между положением предмета на оптической оси линзы и положением его изображения, то есть получает выражение основной формулы линзы. Заканчивается первая часть книги рассмотрением строения глаза и теорией зрения.

Во второй части книги Гюйгенс говорит об обратимости оптической системы.

В третьей части книги автор уделяет большое внимание сферической аберрации (искажению) линз и методам ее исправления. Для ряда частных случаев он находит форму преломляющих поверхностей линз, не дающих сферической аберрации. С целью уменьшения аберраций телескопа Христиан предлагает конструкцию «воздушного телескопа», где объектив и окуляр не связаны между собой. Длина «воздушного телескопа» Гюйгенса составляла 64 м. С помощью этого телескопа он обнаружил у Сатурна спутник, Титан, а также наблюдал четыре спутника Юпитера, открытые ранее Галилеем.

Гюйгенс с помощью своих телескопов сумел объяснить также странный вид Сатурна, смущавший астрономов, начиная с Галилея, - он установил, что тело планеты окружено кольцом.

В 1662 году Гюйгенс также предложил новую оптическую систему окуляра, которая впоследствии была названа его именем. Этот окуляр состоял из двух положительных линз, разделенных большим воздушным промежутком. Такой окуляр по схеме Гюйгенса широко применяется оптиками и в наши дни.

В 1672-1673 годах Гюйгенс знакомится с гипотезой Ньютона о составе белого света. Примерно в это же время у него формируется идея волновой теории света, которая находит свое выражение в знаменитом «Трактате о свете», вышедшем в свет в 1690 году.

Гюйгенс и механика.

Гюйгенса следует поставить в самом начале длинного ряда исследователей, которые принимали участие в установлении всеобщего закона сохранения энергии.

Гюйгенс предлагает способ определения скоростей тел после их соударения. Основной текст его трактата «Теория удара твердых тел» был закончен в 1652 году, но свойственное Гюйгенсу критическое отношение к своим трудам привело к тому, что трактат вышел только после смерти Гюйгенса. Правда, будучи в Англии в 1661 году, он демонстрировал опыты, подтверждающие его теорию удара. Секретарь Лондонского Королевского общества писал: «Был подвешен шар весом один фунт в виде маятника; когда он был отпущен, то по нему ударил другой шар, подвешенный точно так же, но только весом в полфунта; угол отклонения был сорок градусов, и Гюйгенс после небольшого алгебраического вычисления предсказал, каков будет результат, который оказался в точности соответствующим предсказанию».

Гюйгенс и часы.

На период с декабря 1655 года по октябрь 1660 года приходится наибольший расцвет научной деятельности Гюйгенса. В это время, кроме завершения теории кольца Сатурна и теории удара, были выполнены почти все основные работы Гюйгенса, принесшие ему славу.

Гюйгенс во многих вопросах наследовал и совершенствовал решение проблем, предпринятое Галилеем. Например, он обратился к исследованию изохронного характера качаний математического маятника (свойство колебаний, проявляющееся в том, что частота малых колебаний практически не зависит от их амплитуды). Вероятно, в свое время это было первым открытием Галилея в механике. Гюйгенсу представилась возможность дополнить Галилея: изохронность математического маятника (то есть независимость периода колебаний маятника определенной длины от амплитуды размаха) оказалась справедливой лишь приближенно и то для малых углов отклонения маятника. И Гюйгенс осуществил идею, которая занимала Галилея в его последние годы жизни: он сконструировал маятниковые часы.

Задачей о создании и совершенствовании часов, прежде всего маятниковых, Гюйгенс занимался почти сорок лет: с 1656 по 1693 год.

Один из основных мемуаров Гюйгенса, посвященных рассмотрению результатов по математике и механике, вышел в 1673 году под названием «Маятниковые часы или геометрические доказательства, относящиеся к движению маятников, приспособленных к часам». Пытаясь решить одну из основных задач своей жизни - создать часы, которые можно было бы использовать в качестве морского хронометра, Гюйгенс придумал множество решений и продумал много проблем, исследуя возможности их приложения к этой задаче: циклоидальный маятник, теория развертки кривых, центробежные силы и их роль и др. Одновременно он решал возникающие математические и механические задачи. Почему же задача создания часов так привлекала известного ученого?

Часы относятся к очень древним изобретениям человека. Сначала это были солнечные, водяные, песочные часы; в эпоху Средневековья появились механические часы. Долгое время они были громоздкими. Существовало несколько способов преобразования ускоренного падения груза в равномерное движение стрелок, но даже известные своей точностью астрономические часы Тихо Браге каждый день «подгонялись» принудительно.

Именно Галилей первым обнаружил, что колебания маятника изохронны и собирался использовать маятник при создании часов. Летом 1636 года он писал голландскому адмиралу Л. Реалю о соединении маятника со счетчиком колебаний (это по существу и есть проект маятниковых часов!). Однако из-за болезни и скорой кончины Галилей не закончил работу.

Нелегкий путь от лабораторных экспериментов до создания маятниковых часов преодолел в 1657 году Христиан Гюйгенс, в то время уже известный ученый. 12 января 1657 года он писал:

«На этих днях я нашел новую конструкцию часов, при помощи которой время измеряется так точно, что появляется немалая надежда на возможность измерения при ее помощи долготы, даже если придется везти их по морю».

С этого момента и до 1693 года он стремится совершенствовать часы. И если в начале Гюйгенс проявил себя как инженер, использующий в известном механизме изохронное свойство маятника, то постепенно все больше проявлялись его возможности физика и математика.

Среди инженерных его находок был ряд поистине выдающихся. В часах Гюйгенса впервые была реализована идея автоколебаний, основанная на обратной связи: энергия сообщалась маятнику так, что «сам источник колебаний определял моменты времени, когда требуется доставка энергии». У Гюйгенса эту роль выполняло простое устройство в виде якоря с косо срезанными зубцами, ритмически подталкивающего маятник.

Гюйгенс обнаружил, что колебания маятника изохронны лишь при малых углах отклонения от вертикали, и решил с целью компенсации отклонений уменьшать длину маятника при увеличении угла отклонения. Гюйгенс догадался, как это реализовать технически.

Волновая теория света.

В семидесятые годы основное внимание Гюйгенса привлекают световые явления. В 1676 году он приезжает в Голландию и знакомится с одним из создателей микроскопии Антони ван Левенгуком, после чего пытается сам изготовить микроскоп.

В 1678 году Гюйгенс приезжает в Париж, где его микроскопы произвели потрясающее впечатление. Он демонстрировал их на заседании Парижской Академии.

Христиан Гюйгенс стал создателем волновой теории света, основные положения которой вошли в современную физику. Свои взгляды он изложил в «Трактате о свете», изданном в 1690 году. Гюйгенс считал, что корпускулярная теория света, или теория истечения, противоречит свойствам световых лучей не мешать друг другу при пересечении. Он полагал, что Вселенная заполнена тончайшей, и в высшей степени, подвижной упругой средой - мировым эфиром. Если в каком-либо месте эфира частица начнет колебаться, то колебание передается всем соседним частицам, и в пространстве пробегает эфирная волна от первой частицы как центра.

Волновые представления позволили Гюйгенсу теоретически сформулировать законы отражения и преломления света. Он дал наглядную модель распространения света в кристаллах.

Волновая теория объясняла явления геометрической оптики, но поскольку Гюйгенс сравнивал световые волны и звуковые и полагал, что они являются продольными и распространяются в виде импульсов, он не смог объяснить явления интерференции и дифракции света, которые зависят от периодичности световых волн. Вообще Гюйгенс гораздо больше интересовался волнами как распространением колебаний в прозрачной среде, чем механизмом самих колебаний, который не был ему ясен.

Рассказы об ученых по физике. 2014

Первые механические часы, изобретенные китайцами, приводились в действие огромными, медленно поворачивавшимися деревянными водяными колесами. В 1300-х гг. появились колесные часы с приводом от опускавшихся гирь, но эти часы были ненадежными и неточными. Часам требовался механизм регулирования хода, который изобрели в 1600-х гг. Таким механизмом стал мятник, который нашел в часах первое практическое применение.

В 1582 г. итальянский ученый Галилео Галилей продемонстрировал, что маятник - груз, подвешенный на тонком стержне, - всегда качается с постоянной скоростью. Кроме того, он доказал, что скорость колебаний зависит только от длины маятника, а не от величины груза, прикрепленного к его концу. Например, маятник длиной 1 м совершает одно колебание (туда и обратно) за 1 сек. Но если маятник такой длины продолжает качаться, значит, с его помощью можно измерять время в секундах. У Галилея возникла эта идея, и в 1641 г. - за год до смерти - он рассказал своему сыну Винченцо, как сделать часы, ход которых регулируется маятником. Но Винченцо не успел закончить работу; первые маятниковые часы появились лишь в 1657 г. Их спроектировал голландский ученый Христиан Гюйгенс, а изготовил часовщик Соломон Костер в Гааге. Они отставали или убегали на 5 секунд в сутки, что значительно превышало точность всех тогдашних часов.

В часовых маятниках использовались не нити, а металлические стержни. Но на металл влияет температура, поэтому длина стержней менялась, что отражалось на точности хода часов. В жаркую погоду металлический стержень удлинялся, а в холодную укорачивался. Например, часам с односекундным маятником для потери одной секунды в сутки достаточно увеличения длины маятника на 0,025 мм, что происходит при повышении температуры всего на 2 "С. Изобретатели вскоре решили эту проблему, создав маятник постоянной длины. В 1722 г. английский механик Джордж Грэм изобрел ртутный маятник (о чем заявил в 1726 г.), прикрепив к концу маятника стеклянный сосуд со ртутью. Когда из-за повышения температуры маятник удлинялся вниз, это компенсировалось расширением ртути в сосуде, действовавшим в обратном направлении.

Другим решением стал решетчатый маятник из перемежающихся полос стали и меди, изобретенный английским часовщиком Джоном Гаррисоиом в 1728 г. Медь расширяется сильнее, чем сталь, поэтому ее расширение компенсировалось меньшим расширением стали. Сейчас стержни маятников изготавливаются из инвара - сплава железа с никелем, который почти не расширяется при нагревании. Этот сплав также используют для изготовления рулеток и камертонов, для которых постоянная длина очень важна.

Ученик Галилея итальянский ученый Винченцо Вивиани сделал этот набросок маятниковых часов; реконструкцию маятника см. на рис. на с. 13.

Эта модель маятниковых часов была создана в XIX в. по наброску проекта Галилея, сделанному Вивиани. Источник энергии для часов там указан не был, поэтому можно предположить, что они приводились в движение опускающимися гирями.

В механических часах скорость, с которой высвобождается энергия опускающегося груза, регулируется с помощью механизма, называемого спуском. Молоточек, подвешенный на маятнике, заставляет качаться анкер. Анкер то останавливает, то отпускает анкерное колесо, позволяя ему постепенно освобождать энергию опускающегося груза, приводящую в движение главное колесо. К оси главного колеса прикреплена часовая стрелка.

Свято чтивший память учителя, Вивиани был глубоко уязвлен, когда спустя 16 лет после смерти Галилея ему попалась в руки небольшая книжка, изданная в Голландии: «Трактат о часах». Ее автор Гюйгенс называл изобретателем маятниковых часов не Галилея, а себя. Он писал, что в 1657 г. заказал в Гааге мастеру Соломону Костеру механизм и уступил ему привилегию, выданную на это изобретение Генеральными штатами Нидерландов. Вивиани написал опровергающий памфлет, а принц Леопольд Медичи, к которому он обратился, взял на себя роль посредника в этом щекотливом деле.

Когда Гюйгенс получил письмо принца, оно прозвучало для него громом с ясного неба. Его обвиняли в плагиате! Как доказать, что он даже не подозревал о намерении глубоко уважаемого им Галилея построить подобные часы? А письмо прямо ставит точки над i: тайно сумел-де ознакомиться с секретной перепиской Галилея с Генеральными штатами, использовал его чертежи. Приложены копии рисунков Галилея – смотри, уравнивай...

Гюйгенс, к счастью, был знаменит. Математик, астроном, оптик, в свои 29. лет он уже признан ученым миром Голландии, Франции, Англии. Его допустили к секретным архивам Нидерландов, дали прочитать переписку с Галилеем. Оказывается, в ней говорится не о часах, а об открытом итальянским ученым способе определения долготы по спутникам Юпитера, хорошо видным в галилеевский телескоп.

Второе, не менее важное обстоятельство: механизм Галилея совсем не похож на механизм, изобретенный Гюйгенсом.

Все это молодой голландец изложил в вежливом ответе принцу Медичи. В конце приписал, что считает для себя большой честью решить задачу создания маятниковых часов, с которой не справился великий Галилей, но безоговорочно признает первенство Галилея в открытии свойств маятника. (Наверное, все участники спора были бы поражены, узнай они, что за 200 лет до Гюйгенса и Галилея маятниковые часы изобрел Леонардо да Винчи. Но бумаги Леонардо были обнаружены только спустя еще три столетия.)

Доказав несостоятельность обвинений, Гюйгенс выпустил в 1673 г. второе издание «Трактата о часах», но уже не краткое описание механизма, а глубокий анализ проблемы. В пяти частях, составлявших книгу, лишь первая была посвящена собственно часам. Далее исследовался маятник – и идеальный, математический, и реальный, физический, работа которого оказалась, как всегда это бывает, гораздо сложнее для понимания, нежели принципы действия идеала. Гюйгенс связал длину физического маятника и период его колебаний с силой тяжести (этой формулы не смог вывести Галилей) и высчитал знаменитую g – постоянную силы тяжести, причем с очень высокой для того времени точностью. Словом, как пишет известный советский историк техники Н.И. Идельсон, книга «вошла в историю науки как пример слияния технической, конструктивной проблематики с совершенно новой теоретической базой для ее полного решения».

И еще об одном чрезвычайно важном вопросе шла речь в книге Гюйгенса. Математически доказывалось, что, вопреки Галилею, период колебаний маятника зависит от амплитуды размаха. Разницу нельзя заметить, пользуясь для измерений собственным пульсом, – не удивительно, что Галилей о неравномерности этой не знал.

На практике это означало опять все то же: часы будут врать. Несовершенство колее приведет к тому, что сила, толкающая маятник, будет все время изменяться. Амплитуда колебаний и период окажутся переменными, а секунды, отсчитываемые маятником, – разными. Конечно, ошибки можно снизить, уменьшив амплитуду, но они принципиально неустранимы.

Что же делать? В «Трактате» приводилось описание не только болезни, но и лекарства. Исправить маятник можно, заставив качаться его груз по дуге не окружности, а циклоиды (по этой волнообразной кривой движутся точки колеса, катящегося по ровной дороге). Гюйгенс предложил делать стержень маятника гибким и зажимать в точке подвеса между двумя расходящимися щечками, каждая из которых изогнута по циклоиде. Тогда, доказывал Гюйгенс, изгибающийся стержень заставит чечевицу маятника двигаться тоже по циклоиде.

Увы, изобретение не выдержало проверки практикой. Трение стержня о щечки влияло на период значительнее, нежели переменность размаха. Хорошим часам циклоидальный маятник точности не прибавлял, а плохим просто был не нужен. После нескольких неудачных попыток Гюйгенс сам от него отказался. Описывать правильную циклоиду без всяких щечек маятник научился лишь триста лет спустя благодаря изобретению советского часовщика Ф.М. Федченко, о работах которого мы еще будем говорить.

Но и в своем простейшем виде маятник как регулятор хода был все-таки прекрасной находкой. Ошибка показаний часов сразу уменьшилась в 15...20 раз, на часовщиков перестали жаловаться. Точность измерялась уже не четвертью часа, а минутами и даже несколькими десятками секунд в сутки. Колоссальную роль в быстром распространении новшества сыграла «технологическая пригодность» изобретения. В отличие от маятникового хода Галилея ход Гюйгенса не требовал почти никаких переделок механизма: нужно было только выбросить билянец и поставить на его место пару дополнительных колес да устроить маятниковый подвес. И то и другое было по силам часовщику средней квалификации. Налаживать часы после доработки не было нужды: они начинали идти сразу. Новинка быстро распространилась по Европе. Не обошла она и Россию.

К концу XVII в. наука в Европе окончательно порывает со схоластикой Аристотеля и для нее начинается новое время — время доверия к опыту. Важнейшая роль в этом повороте принадлежит Галилео Галилею (1564—1642). Но из всех его многочисленных исследований мы остановимся только на тех, где основную роль играли наблюдения самых обычных явлений, игнорируемых множеством людей до него. Как-то, когда 19-летний Галилей сидел в соборе в Пизе во время длинной проповеди, служка, зажигавший свечи, неловко толкнул светильник, свисавший на длинном канате, и тот начал раскачиваться. Галилей засек, скольким ударам его пульса соответствует одно полное колебание светильника, но через некоторое время, когда размах колебаний заметно уменьшился, он с удивлением отметил, что число ударов пульса осталось прежним. Отсюда следовала изохронность, т. е. независимость периода колебаний маятника от амплитуды!

Далее он замечает, что все светильники с одинаковой длиной подвеса, но даже разной массы, совершают колебания с одинаковой частотой, т. е. период их колебаний зависит только от длины подвеса и не зависит от массы и формы светильника. Таким образом у физиков появился прибор, позволявший легко измерять время (до того пользовались песочными или водяными часами, у всех они были разными, что не прзволяло сравнивать результаты разных наблюдений).

Поскольку Галилея назначили профессором математики в Пизе, он, согласно легенде, получил возможность проводить эксперименты на знаменитой падающей башне. Здесь он замечает, что, скажем, кирпич и связка таких же кирпичей падают вниз за одинаковое время. Вывод: скорость падения не зависит — или почти не зависит — от массы, некоторая разница возникает из-за сопротивления воздуха, но это было понято позже. (Скорее всего — это только легенда: Галилею проще было изучать законы падения пуская шары разной массы по наклонной плоскости — процесс растягивается во времени и уменьшается сопротивление воздуха. Бросать кирпичи с башни могло быть нужно только в качестве эффектной демонстрации, которые любили в дотелевизионное время.) На основе своих опытов Галилей смог определить понятие ускорения, оставшееся неизменным до наших дней. Но опыты эти привели к тому, что его, как противника Аристотеля, изгнали из Пизы, тем не менее он продолжил их в другом месте: башня для исследовании уже не была нужна, достаточно наклон-ной плоскости. Кстати, время дви-жения шара по всей плоскости, по ее половине и т.д. он измерял еще по объемиу воды, выливаю-щейся из узкой щели в сосуде. Галилей на этом, конечно, не останавливается: нужно изучить движение тела, брошенного гори- зонтально. Тут ему удается обобщить наблюдения Тартальи, вывести правило сложения скоростей и показать, что траектория такого тела является полупараболой.

Из опытов Галилея интересно описать еще один, в котором впервые за почти две тысячи лет была проверена и доказана теория плавания тел Архимеда (сомнение в ней вызывалось тем, что льдины плавают по поверхности воды, а в то время, следуя Аристотелю, принимали, что любое вещество должно при затвердевании уплотняться). Опыт был таков: шарик из воска, как легко проверить, в чистой воде тонет, но, добавляя в воду соль, можно добиться того, что шарик всплывет, а прибавив воду, можно заставить его снова опуститься. Таким образом показано, что условия плавания (сплошных) тел определяются соотношением их плотностей с плотностью жидкости.

Немного ранее, и видимо одновременно, несколько оптиков (греческое «оптикос» — зрительный) начали сооружать зрительные трубки с двумя линзами, которые в основном использовались как игрушки: люди поднимались на колокольню и рассматривали окрестности (негодование у многих вызывалось тем, что так можно было заглядывать в чужие окна), правительства пытались засекретить эти приборы, чтобы использовать для военных целей. Галилей первым догадался посмотреть в такую трубку на небо, и открытия посыпались лавиной: горы на Луне, спутники Юпитера, позже — кольца Сатурна, так что астрономия была в корне преобразована. По некоторым сведениям, он же пытался построить первый микроскоп, о других его изобретениях скажем ниже. Галилею приходилось, конечно, самому строить свои приборы.

Описать или даже перечислить все достижения Галилея в физике и астрономии невозможно. Но главное в другом: очевидно ведь, что пылинки падают медленнее камня, а Галилей показывает, что нельзя слепо доверять кажущейся очевидности. Вот в этом принципе, в том, что именно Галилей первым показал и доказал необходимость опытной проверки всех построений в физике и, одновременно, их детального математического описания, — его непреходящая заслуга, и поэтому именно его можно считать зачинателем современной опытной науки.

В 1633 г. Галилей, как известно, был осужден церковью и объявлен «узником святой инквизиции» за утверждение о том, что гелиоцентрическая модель Коперника не противоречит Священному Писанию (заметим, что до Галилея все научные сочинения писались на мало доступной латыни, а он перешел на итальянский язык). Только через 350 лет, в 1984 г., Ватикан по инициативе папы Иоанна-Павла II, пересмотрев «дело» Галилея, признал, что эта модель «не противоречит» Библии и ученый был «реабилитирован»!

Теперь нужно перейти к самому, возможно, великому ученому той эпохи — Иоганну Кеплеру (1571 — 1630). Для того чтобы понять его роль в развитии науки, нужно напомнить общепринятое тогда мне- ние, что природа и все в ней происходящее отражают божественную волю, и поэтому вопрос о причинах явлении просто неуместен и недостоин истинно верующего. Кеплер был первым, кто задал такой вопрос о движении планет, и он должен был искать тот путь, на котором можно было на него ответить: искать связь на пути религиозных символов или найти какую-то новую дорогу. (В первом издании своей книги «Тайны мироздания» он пишет о душах планет и Солнца, во втором издании заменяет слово «душа» словом «сила».)

Кеплер был ассистентом (фактически и наследником) замечатель-ного астронома-наблюдателя Тихо Браге, проводившего точнейшие измерения положения Солнца и планет (напомним, что теле- скопов еще не было). В частно-сти, Браге точно установил дни равноденствия, зимнего и лет-него солнцестояния. Вот эти ре- зультаты, вместе со своими соб-ственными, Кеплер сумел обду-мать и обработать. Как известно, 21 марта и 21 сентября продолжительности дня и ночи точно равны — это дни весеннего и осеннего равноденствий, они как бы делят год на две части. А вот если сосчитать количество дней от 21 сентября до 21 марта и потом наоборот, то окажется, что эти промежутки не равны: от осеннего равноденствия до весеннего проходит 181 день, а от осеннего до весеннего — 184 дня, на три дня больше!

Практически у всех есть в руках календари, и каждый мог бы провести эти подсчеты и задуматься над ними. Но потребовался гений Иоганна Кеплера, чтобы обратить серьезное внимание на такой пустяк и сделать из него весьма далеко идущий вывод, именуемый сейчас Первым законом Кеплера: все планеты обращаются вокруг Солнца по эллипсам, в одном из фокусов которых находится Солнце. А основывался Кеплер вот на чем. Если бы планеты вращадись, как считали и Птолемей, и Коперникг по окружностям, то каждую половину окружности они проходили бы за одинаковое время. Но поскольку, как мы видим, это не так, значит они двигаются не по окружностям, а по каким-то близким к ним траекториям. Самая же близкая к окружности плавная кривая — это эллипс, к тому же хорошо изученный.

«Следы геометрии запечатлены в мире так, словно геометрия была прообразом мира», — так говорил сам Кеплер. Но это пока только гипотеза, необходимы труднейшие, особенно для того времени, многолетние наблюдения, свои и покойного Тихо Браге, (только к концу работы Кеплер изобретает слабенькую зрительную трубу!) и расчеты — на бумаге, в столбик! А теперь насчет тех самых трех дней — это уже следствие Второго закона Кеплера, согласно которому вблизи Солнца, в перигелии, планеты движутся быстрее, чем на дальней части эллипса, в афелии. Кеплер — гениальный ученый: он понимает, что любые теории нужно проверять на разных объектах. Поэтому он предпринимает, уже со своим примитивным телескопом, невероятные по сложности и точности измерения траекторий спутников Юпитера, незадолго до того открытых Галилеем, и доказывает, что их движения подчиняются тем же законам, что и движения планет, — теория Кеплера может считаться проверенной! (О сложности и неожиданности выводов Кеплера говорит уже то, что его современник Галилей с ним не согласился и продолжал считать орбиты планет круговыми!)

И что является самым главным в творчестве Кеплера: он был первым, кто пытался найти универсальные законы, основанные на земной физике, но управляющие и небесными телами, — до него вообще не возникало идеи о единстве взаимоотношений (пока еще нет сил, понятия которых ввел Ньютон) в природе: принималось, что одни законы действуют на Земле и совсем иные — в небесах. Очень показательно, что книга Кеплера «Новая астрономия» имеет подзаголовок «Новая физика» — так утверждается их единство.

Нельзя не сказать несколько слов о Кеплере как о человеке. Его мать, абсолютно неграмот-ную женщину, обвиняют в колдовстве и привлекают к суду ин-квизиции, что почти наверня-ка означает сожжение на кост-ре. Кеплер, еще никому не известный, пешком, через половину Германии, добирается до ме-ста суда и — в то время это зву-чит как чудо — своим страст-ным и логичным выступлением добивается оправдания матери.

Оценивая заслуги Кеплера, А. Эйнштейн писал: «Какой глу-бокой была у него вера в та- кую закономерность, если, pa-ботая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения!»

Свойства магнита притягивать железные предметы было известно еще в Древней Греции, китайцы, возможно, пользовались неким подобием компаса. Но первые серьезные исследования провел только Уильям Гильберт (1544—1603), лейб-медик королевы Елизаветы I: как ни удивительно, но только он первым попробовал — как должен был бы поступить любой любознательный мальчишка — разломать магнит, распилить его на куски и посмотреть, что из этого получится: оказалось, что каждая часть также является магнитом.

Затем Гильберт придумал важнейший прибор физики: догадался подвесить намагниченную иголку на нитку и с ее помощью доказал, что у каждого магнита есть два и только два полюса. (Далее мы упомянем о его соотечественнике П. А. М. Дираке, который высказал, уже в XX в., сомнение в этом утверждении.) При этом одноименные полюса отталкиваются, а разноименные — притягиваются. Сила притяжения, как установил Гкльберт, возрастает, если к магниту приделать арматуру — чистое железо, которое само не намагничивается, не может стать постоянным магнитом, а приобретает такие свойства только в магнитном поле.

Сделав железный шар и намагнитив его, Гкльберт показал, с помощью иголок, что у этого шара такие же свойства, как у Земли, и потому назвал Землю большим магнитом. (Ранее предполагали, что магнитная стрелка компаса притягивается к какой-то точке на небе.) Помимо магнетизма Гильберт занимался и исследованием электрических явлений. Здесь со времен Фалеса Милетского (640—550 до н. э.) было известно только то, что потертый о шерсть янтарь притягивает легкие мелкие тела (соломинки, бумажки). Гильберт начал пробовать наэлектризовывать трением и другие вещества и показал, что еще многие из них обладают такими же свойствами, причем, изобретя первый электроскоп, он начал количественно сравнивать свойства этих тел, скорость уменьшения величины электризации в зависимости от освещения, от влажности и т. д. Для всех этих свойств он предложил название «электричество» от греческого слова «электрон» — янтарь. Отметим, что в последующие сто лет к его результатам и изобретениям, поистине гениальным по своей простоте, ничего нового не добавилось.

Аристотель, как мы помним, ввел принцип «природа боится пустоты» и с помощью этой боязни пустоты (horror vacui) объяснял продол-жение движения тел в отсутствии сил. Галилей попытался измерить силу этой самой боязни: он заполнял стеклянную трубку, запаянную с одного конца, водой, закрывал ее подвижным поршнем и опрокидывал, а затем привязывал к поршню грузики, чтобы измерить, при какой нагрузке вверху столба воды появится пустое пространство, т. е. будет преодолена сила боязни пустоты. (Теперь мы, конечно, понимаем, что таким образом измерялась сила сцепления столба воды.)

Проблема обострилась, когда к старому и почти слепому Галилею пришли садовники герцога Медичи: у них был вырыт глубокий, метров в 12, колодец, и ни один насос почему-то не поднимал оттуда воду к поверхности. Разобраться в проблеме Галилей попросил своего только что появившегося ученика Торричелли (1608—1647). Долгие раздумья ни к чему не приводили, пока Торричелли не осенило, что вместо 12-метрового столба воды нужно попробовать проделать опыты с ртутью, которая в 13,6 раз тяжелее, и поэтому потребуется столб высотой меньше метра (можно считать, что в этот момент возник метод моделирования!).

В первом же опыте, по поручению Торричелли его провел в 1643 г. Винченцо Вивиани (1622—1703), в запаянную с одного конца стеклянную трубку длиной около 1 метра была налита ртуть. Вивиани зажал пальцем свободное отверстие, перевернул трубку и опустил ее вертикально в сосуд с ртутью. Ртуть начала выливаться и остановилась на высоте около 76 см, тут Торричелли осенила и вторая идея: над ртутью — пустота (сейчас она называется торричеллевой пустотой), а высота столба ртути соответствует давлению атмосферы — пресловутая «боязнь пустоты» не при чем!

Фактически Торричелли совершенно по-новому использовал закон сообщающихся сосудов: уже давно было известно, что если два вертикальных сосуда с водой соединить снизу трубкой, то вода будет между ними переливаться, пока не установится в обоих коленах на одном уровне. Если же в этих коленах разные жидкости, например вода и спирт, то высота столба более легкой из них оказывается выше: можно думать, что таким образом компенсируется ее легкость.

Ну а если в одном из колен не жидкость, а воздух? Сравним высоты столбов воды и ртути: по наблюдениям садовников вода поднимается только до уровня примерно в 10 метров, по измерениям Вивиани ртуть поднимается на уровень в 76 см. Таком образом, соотношение высот где-то около 13—15, что близко к отношению удельных весов ртути и воды. Следовательно, можно заключить, что в этом опыте одним коленом являлась трубка со ртутью, а вторым — вся атмосфера. Однако эта идея, идея атмосферного давления, была столь нова и казалась настолько парадоксальной, что потребовалась изобретательность многих ученых, чтобы сделать ее естественной и будто само собой разумеющейся.

Наглядно доказать всему миру существование пустоты и роль атмосферного давления сумел дипломат и многолетний (в течение 32 лет!) бургомистр славного торгового города Магдебурга Отто фон Герике (1602—1686) после того, как он изобрел воздушный насос.

«Я изобрел и построил ряд инструментов и приборов для доказательства существования не признаваемой до сих пор пустоты», — писал Герике. И опыт, который он показал членам германского рейхстага 8 мая 1654 г., в наше время прошел бы первой строкой по всем мировым каналам телевидения. Проводился этот опыт, наиболее часто изображаемый в книгах по истории, так. Из большого медного шара, легко разделяющегося на два полушария (когда они прикладывались друг к другу, соединение уплотнялось кожаной прокладкой), выкачивался воздух. Затем в кольца на полушариях впрягалось с обеих сторон по восемь лошадей-тяжеловозов, но — как их ни погоняли — оторвать полушария друг от друга они не могли. После этого любой желающий открывал кран, воздух со страшенным грохотом врывался в шар, и тот легко разнимался руками. (Нам-то сейчас понятно, что привязывать по восемь лошадей с каждой стороны не обязательно: одну сторону можно было привязать к стене, но, во-первых, эффект был бы меньше, а, во-вторых, Третий закон Ньютона еще не был открыт.)

Помимо первого воздушного насоса и акустических опытов, Герике прославился тем, что он изобрел электростатическую машину, гигрометр, открыл явления электростатической индукции, свечения при истечении зарядов и т. д. Но нас сейчас интересует другое: когда однажды, в 1660 г., показания придуманного им водяного барометра начали резко падать, Герике сообразил, что если давление воздуха здесь сильно уменьшается, то скоро в это место хлынут со всех сторон воздушные потоки и начнется буря, о чем предупредил всех жителей. Так было положено начало научному предсказанию погоды.

Однако научные истины не так просто воспринимаются. Для того чтобы метод Герике стал общепризнанным, потребовались почти два века и катастрофа со множеством жертв: 2 августа 1837 г. начальник гавани Пуэрто-Рико предупредил моряков о невероятно резком понижении показаний барометра и предстоящей буре. Они его не послушались, и все 33 корабля, стоявшие в гавани, затонули!

Блез Паскаль (1623—1662) был самым выдающимся вундеркиндом и одним из самых многосторонних людей в истории. Первые открытия он сделал в возрасте... 5 лет: отец зашел с гостями в детскую и увидел, что мальчик строит на полу треугольники из палочек — оказалось, что он так самостоятельно переоткрыл ряд начальных теорем геометрии. Помогая отцу, инспектору по налогам, в длинных расчетах, он изобрел и построил, по-видимому в 14 лет, первый механический арифмометр, в 16 лет написал книгу по математике, где изложил целый ряд новых результатов, позже положил начало теории вероятностей. Только три года, с 1647 по 1650, Паскаль интенсивно занимается физикой, где ему принадлежит немало открытий, а с 1653 г. он практически полностью погружается в религию, пишет две книги, с которых, по мнению многих, начинается современная французская литература.

Узнав об опыте Торричелли, Паскаль решает, что воздух под действием своего веса должен сгущаться книзу, т. е. атмосферное давление должно падать с высотой. Поэтому он, человек очень болезненный и физически слабый, просит своего зятя Ф. Перье соорудить по описаниям Торричелли два барометра и с одним из них подняться на гору (второй, для сравнения, остается у подножья). 19 сентября 1648 г. Перье осуществляет этот опыт (и входит тем самым в историю): поднимаясь на гору, он действительно видит непрерывное понижение столбика ртути — гипотеза доказана, давление действительно зависит от веса столба воздуха. Паскаль публикует брошюру с описанием опытов: боязни пустоты, пресловутого horror vacui, больше не существует!

Ну а зависимость давления от высоты столба воды, формулу для которой Паскаль вывел, он продемонстрировал при большом стечении знати во главе с королем в г. Клермон-Ферран. В крепкую законопаченную дубовую бочку, до отказа наполненную водой, была вставлена тонкая высокая, до третьего этажа, стеклянная трубка; когда в эту трубку был налит с соответствующей высоты всего один стакан воды, то сорокаведерная бочка не выдержала давления и разорвалась — зрители воочию убедились, что давление зависит не от массы воды, а только от высоты ее столба.

Роберт Бойль (1627—1691), 14-й сын графа Корка, был не только выдающимся химиком, физиком и философом, но и светским человеком, дружил с королем Карлом II, который сам интересовался науками и опытами. Поэтому Бойль имел возможность содержать ассистентов и лаборантов для выполнения черновой работы в многочисленных экспериментах. (Бойль, человек религиозный, говорил, что боится умереть только потому, что «на том свете» все уже предопределено и нельзя экспериментировать!)

Особенно много однотипных измерений понадобилось, когда Бойль занялся исследованием давления в газах, до того никем не изучавшегося. Так, однажды, рассказывают, он, отправляясь на бал, поручил своему лаборанту продолжить измерять изменения объема газа в закрытом сосуде при изменении давления. С бала Бойль вернулся неожиданно рано и с негодованием обнаружил, что помощник спит в углу, а около него лежит бумажка с аккуратно выписанными длинными столбиками как будто измеренных цифр давлений и объемов. Разбуженный пинками лаборант лепетал, что мерить и не надо, что произведение объема на давление постоянно, но был, конечно, с позором изгнан.

И тут Бойль как-то задумался: а вдруг? Началась кропотливая и долгая работа, но идея, случайно высказанная малограмотным помощником, оказалась при всех проверках верной. Так возник закон Бойля— Мариотта. (Второй автор переоткрыл его несколько позже, но в английских книгах и посейчас есть закон Бойля, а во французских — закон Эдма Мариотта (1620—1684), физика и ботаника.) Бойль разрешил и старую загадку о том, что легче — вода или лед: он заполнил водой крепкий ружейный ствол, выставил его на мороз, и через два часа ствол лопнул. Всем стало ясно, что лед при замерзании расширяется.

Роберт Гук (1635—1703) начинал научную карьеру ассистентом Бойля. Затем он стал «куратором опытов» недавно образованного Королевского общества существующей и сейчас Академии наук Великобритании. Обязанностью Гука было повторять и перепроверять полученные обществом сообщения о новых открытиях, а также подготавливать и демонстрировать членам общества (на каждом заседании!) новые опыты. С одной стороны, это помогло его невероятной разносторонности как ученого, но с другой — вело к спешке, к переключению с одного начатого исследования на другое, а потому он зачастую высказывал идеи, не успевая их обдумать и исследовать, а потом вел бесконечные споры о приоритете (в частности, с Ньютоном о законе Всемирного тяготения).

Гук первым догадался, что для лучшего разглядывания веществ и предметов под микроскопом их надо разрезать на тонкие слои и смотреть на просвет. Так, подкладывая под микроскоп все что только можно, он открыл, что все растения имеют клеточное строение, и придумал само слово «клетка». Далее он микроскопически доказал, что снежинки имеют кристаллическую структуру и т. д. Еще одна идея, которая сейчас выглядит очень простой, но до Гука никому не приходила в голову, заключается в том, что твердые тела должны под нагрузкой деформироваться (всеми принималось, без проверки, что твердые тела, в отличие от газов и жидкостей, имеют всегда неизменную форму; напомним, что резина была изобретена много позже). Для проверки этого положения Гук исследовал возможность растяжения твердых тел под действием нагрузки — просто-напросто подвешивал узкие полоски различных металлов, прикреплял к нижней части полосок чашечку, в которую клались гирьки, и измерял (иногда с помощью микроскопа) величину удлинения.

Так он выяснил, что удлинение всегда прямо пропорционально величине приложенной силы — это и есть знаменитый закон Гука. (Гук в то время не мог приложить такую нагрузку, при которой этот закон начинает нарушаться, поэтому сейчас диаграмму удлинения тел под нагрузкой делят на гуковскую и негуковскую части.) Эти исследования Гука только в 1807 г. уточнил его соотечественник Томас Юнг (подробнее о нем — ниже): он выяснил, как коэффициент Гука зависит от длины и поперечного сечения растягиваемого тела. Далее Гук аналогичными опытами доказал, что все вещества при нагревании расширяются. (Позже было выяснено, что это утверждение не совсем верно: вода при нагревании от нуля до 4° С сжимается, отклоняется от этого закона поведение полуметалла висмута и некоторых других, но такие исключения очень редки, а объяснения им были найдены только в XX в.) Таким образом, Гук явился фактически основоположником физики твердого тела.

Вернемся несколько назад по времени и рассмотрим примечательный оптический эксперимент, который осуществил Франческо Мария Гримальди (1618—1663), монах-иезуит и физик. Эксперимент был очень прост и многократно до того проделывался: в темную комнату через маленькое отверстие пропускался луч света, превращавшийся в комнате в конус, так что на экране получался яркий кружок или эллипс. Это все было хорошо известно. Но вот Гримальди ввел в этот конус, на довольно большом рассто- янии от отверстия, палку, тень ко- й должна была пересечь яркий кружок на экране. И неожиданно оказалось, что, во-первых, тень шире, чем следовало, исходя из идеи прямолинейного распространения света, во-вторых, по обе стороны центральной тени можно было заметить, в зависимости от яркости солнечного света, одну, две или три темные полосы, и, в-третьих, края этих полос были голубоватыми со стороны центра и красноватыми с противоположного края.

Когда же Гримальди проделал два близких отверстия в ставнях, то смог заметить много новых особенностей при перекрытии светлых кружков на экране: вокруг каждого из них возникали темные кольца, места пересечения которых были светлее обоих колец. В дальнейших опытах он менял формы и размеры отверстий, их сочетания. Таким образом, Гримальди открыл, что помимо отражения (рефлексии) и преломления (рефракции) существует и явление, которое он назвал дифракцией и которое состоит в частичном огибании светом препятствий.

Христиан Гюйгенс (1629—1685), гениальный физик и математик, во-шел в историю прежде всего как величайший часовых дел мастер всех времен, который изобрел маятниковые часы, а затем придумал и часы с пружинным балансиром. Водяные и песочные часы существовали уже два тысячелетия, но каждый их экземпляр отличался своими особенностями, своей «скоростью хода». Солнечные часы, т.е. вертикальный столбик, тень которого передвигается с движением солнца и показывает время на начерченном циферблате, должны иметь много шкал, для каждого месяца года по крайней мере, и такие часы, конечно, не работают в плохую погоду и ночью.

Уже в XIII—XIV вв. стали сооружать колесные, или механические часы, в основном башенные. Их приводили в движение тяжелые ги-ри спускающиеся затем вниз грузы вращали системы колес и стрелки. Но гири при спуске постепенно ускорялись, и время «начинало течь быстрее».

Когда Галилей открыл изохронность маятника, то ему стало ясно, что маятник можно использовать для отмеривания промежутков времени. Можно было, например, написать, что за время спуска груза с такой-то наклонной плоскости маятник длиною в 1,5 м совершил пять колебаний, и тогда любой другой человек мог повторить этот опыт и проверить количественную правильность результата. Но не сидеть же и считать все время число колебаний: становилось ясно, что нужно изобрести и каким-то образом приделать к маятнику счетчик этих колебаний.

Изобретатели бились над этой проблемой около семидесяти лет — и никакого результата. А Гюйгенс решил задачу гениально просто (один из признаков гениального открытия, изобретения — когда оно совершено, то всем кажется, что любой мог бы до этого сам додуматься). Для чего, решил он, изобретать какой-то счетчик, есть ведь уже механические часы, они же и счетчик: нужно попросту приделать такой храповик, «собачку», чтобы при каждом колебании маятника, грузика на длинном стержне, эта собачка разрешала ведущему колесику поворачиваться на один зубец. (И сейчас встречаются такие самые простенькие часы с гирькой, чаще уже в наборах детских конструкторов, которые в точности повторяют часы Гюйгенса.)

Так была решена самая сложная на тот момент проблема измерительной техники. Затем Гюйгенс изобрел часы с пружинным балансиром, карманные или наручные (здесь его приоритет пытался оспаривать Гук, и не только он один). Эти часы смогли решить важнейшую задачу определения положения суд- на в море: британское адмиралтейство объявило открытый конкурс по поиску наилучшего способа определения долготы судна с громадной по тому времени премией. (Широту можно было определить по углу на солнце в полдень при наличии заранее рассчитанных таблиц.)

Изобретение пружинных часов эту проблему полностью решило. Если на судне есть точные часы, хронометр, показывающий время по гринвичскому меридиану, то определив их показание в полдень данного места, т. е. в момент, когда тени наиболее короткие, можно определить свою долготу: разница в один час означает отличие от гринвичского меридиана на 15° и т.д. (Солнце описывает полный круг в 360° за 24 часа, отсюда и получается эта цифра.) Заметим, что ранее одни и те же острова по многу раз переоткрывались, а их по-ложения на картах отличались на тысячи миль.

Не подумайте только, что заслуги Гюйгенса ограничиваются часами, хотя и этого хватило бы для бессмертия в истории: он развил волновую теорию света и предложил принцип, который назван его именем и до сих пор является фундаментом всех волновых теорий, в том числе оптики и акустики. А вот любопытная и поучительная история, описанная им в одном письме в 1693 г. В замке Шантильи под Парижем Гюйгенс заметил, что если встать между лестницей и работающим фонтаном, то слышен звук, напоминающий музыкальный тон: он предположил, что это происходит вследствие отражений от равноотстоящих ступенек. Измерив ширину ступенек, Гюйгенс делает бумажную трубку такой же длины и находит, что она издает тот же тон, — фактически лестница выделяет из шума фонтана одну резонансную частоту, а Гюйгенс нашел пример разложения шума в акустический спектр.