Биографии Характеристики Анализ

Исследовать на непрерывность систему функций онлайн. Вычисление пределов функций онлайн

Практическая работа №3

Исследование функции на непрерывность

Цель работы: Развивать и совершенствовать умение определять непрерывность функции, находить точки разрыва функции, закрепить навык вычисления пределов

Средства обучения: учебник Математика стр.62-71, раздаточный материал, рабочая тетрадь по математике.

Форма проведения: фронтальная.

Справочный материал

Определение : Функция f (x ) называется непрерывной в т. х0 если:

1)существует значение функции в точке f (x 0)

2)существует конечный предел в точке х0

3)предел равен значению функции в точке х0

Определение : Функция непрерывна на промежутке, если она непрерывна во всех точках этого промежутка.

Определение : Если в какой-либо точке х0 функция у = f (x ) не является непрерывной, то точка х0 называется точкой разрыва этой функции, а функция у = f (x ) называется разрывной в этой точке.

Точки разрыва 1 рода

Точка х=1 точка устранимого разрыва

=1

=-1

Точки разрыва 2 рода

Порядок работы:

Задание 1.

а) у=х2+3 в точке х=-2

Решение:

y (-2)=(-2)2+3=7

, функция непрерывна в точке х=-2

б) у=в точке х=2

Решение:

, функция непрерывна в точке х=2

Задание 2.

решение

Функция неопределенна в точке х=2, следовательно функция в этой точке не является непрерывной и терпит разрыв. Построим график функции:

Найдём односторонние пределы в точке х=2:

https://pandia.ru/text/79/377/images/image027_20.gif" width="93" height="29 src=">, т. к. односторонние пределы конечны и равны, то точка х=2 точка разрыва 1 рода (точка устранимого разрыва)

решение

Построим график функции:

https://pandia.ru/text/79/377/images/image030_17.gif" width="89" height="29 src=">.gif" width="36" height="41">

решение

Функция неопределенна в точке х=-1, следовательно функция в этой точке не является непрерывной и терпит разрыв. Построим график функции:

Найдём односторонние пределы в точке х=-1:

https://pandia.ru/text/79/377/images/image035_13.gif" width="111" height="41 src="> т. к. нет ни одного конечного предела, то точка х=-1 точка разрыва 2 рода.

Задание для самостоятельного выполнения

Задание 3. Исходя из определения непрерывной функции, докажите непрерывность данных функций в указанных точках

а) у=2х2+1 в точке х=1

б) у=в точке х=-1

Задание 4. Исследуйте функции на непрерывность. Найдите точки разрыва и определите их тип.

Контрольные вопросы:

Понятие непрерывности функции в точке. Непрерывность функции на промежутке. Типы точек разрыва функции. Примеры.

Подведение итогов работы: Анализ выполненных заданий.

Критерии оценки:

«5» -верное выполнение заданий 3(а, б), 4(а, б,в)

«4»- верное выполнение любых 4-х примеров части самостоятельно.

«3»- выполнение заданий 1(а, б), 2(а, б,в)

Основные источники :

Григорьев. М., Академия, 2013.

Богомолов: учеб. Для сузов. -М.: Дрофа, 2009. -395с.

Дополнительные источники

Бугров С. М. Дифференциальное и интегральное исчисление. Высшая школа 1990

Математический анализ в вопросах и задачах. Высшая школа 1987

Говоров П. Т. Сборник конкурсных задач по математике. Академия 2000

Высшая математика в упражнениях и задачах. Академия 2001

Пехлецкий И. Д .Математика. Академия 2001

Сборник задач по математике: Учебное пособие для средних специальных учебных заведений. Академия 2004

Непрерывность и построение графиков кусочно-заданных функций – сложная тема. Учиться строить графики лучше непосредственно на практическом занятии. Здесь в основном показано исследование на непрерывность.

Известно, что элементарная функция (см. с. 16) непрерывна во всех точках, в которых определена. Поэтому нарушение непрерывности у элементарных функций возможно только в точках двух типов:

а) в точках, где функция «переопределяется»;

б) в точках, где функция не существует.

Соответственно только такие точки и проверяются при исследовании на непрерывность, что показано в примерах.

Для неэлементарных функций исследование сложнее. Например, функция (целая часть числа) определена на всей числовой оси, но терпит разрыв при каждом целомx . Подобные вопросы выходят за рамки пособия.

Перед изучением материала следует повторить по лекции или учебнику, какими (какого рода) бывают точки разрыва.

Исследование кусочно-заданных функций на непрерывность

Функция задана кусочно , если она на разных участках области определения задаётся разными формулами.

Основная идея при исследовании таких функций – выяснить, задана ли функция в тех точках, в которых переопределяется, и как. Затем проверяется, совпадают ли значения функции слева и справа от таких точек.

Пример 1. Покажем, что функция
непрерывна.

Функция
элементарна и потому непрерывна в тех точках, в которых определена. Но, очевидно, она определена во всех точках. Следовательно, во всех точках она и непрерывна, в том числе при
, как требует условие.

То же справедливо для функции
, и при
она непрерывна.

В таких случаях непрерывность может нарушаться только там, где функция переопределяется. В нашем примере это точка
. Проверим её, для чего найдём пределы слева и справа:

Пределы слева и справа совпадают. Остаётся узнать:

а) определена ли функция в самой точке
;

б) если да, то совпадает ли
со значениями пределов слева и справа.

По условию, если
, то
. Поэтому
.

Видим, что (все равны числу 2). Это означает, что в точке
функция непрерывна . Итак, функция непрерывна на всей оси, включая точку
.

Замечания к решению

а) При вычислениях не играло роли, подставляем мы в конкретную формулу число
или
. Обычно это важно, когда получается деление на бесконечно малую величину, поскольку влияет на знак бесконечности. Здесь же
и
отвечают только завыбор функции;

б) как правило, обозначения
и
равноправны, то же касается обозначений
и
(и справедливо для любой точки, а не только для
). Дальше для краткости применяются обозначения вида
;

в) когда пределы слева и справа равны, для проверки на непрерывность фактически остаётся посмотреть, будет ли одно из неравенств нестрогим . В примере таковым оказалось 2-е неравенство.

Пример 2. Исследуем на непрерывность функцию
.

По тем же причинам, что в примере 1, непрерывность может нарушаться только в точке
. Проверим:

Пределы слева и справа равны, но в самой точке
функция не определена (неравенства строгие). Это означает, что
– точкаустранимого разрыва .

«Устранимый разрыв» означает, что достаточно или сделать любое из неравенств нестрогим, или придумать для отдельной точки
функцию, значение которой при
равно –5, или просто указать, что
, чтобы вся функция
стала непрерывной.

Ответ: точка
– точка устранимого разрыва.

Замечание 1. В литературе устранимый разрыв обычно считается частным случаем разрыва 1-го рода, однако студентами чаще понимается как отдельный тип разрыва. Во избежание разночтений будем придерживаться 1-й точки зрения, а «неустранимый» разрыв 1-го рода оговаривать особо.

Пример 3. Проверим, непрерывна ли функция

В точке

Пределы слева и справа различны:
. Независимо от того, определена ли функция при
(да) и если да, то чему равна (равна 2), точка
точка неустранимого разрыва 1-го рода .

В точке
происходитконечный скачок (от 1 к 2).

Ответ: точка

Замечание 2. Вместо
и
обычно пишут
и
соответственно.

Возможен вопрос: чем отличаются функции

и
,

а также их графики? Правильный ответ:

а) 2-я функция не определена в точке
;

б) на графике 1-й функции точка
«закрашена», на графике 2-й – нет («выколотая точка»).

Точка
, где обрывается график
, не закрашена на обоих графиках.

Сложнее исследовать функции, по-разному определённые на трёх участках.

Пример 4. Непрерывна ли функция
?

Так же, как в примерах 1 – 3, каждая из функций
,
инепрерывна на всей числовой оси, в том числе – на участке, на котором задана. Разрыв возможен только в точке
или (и) в точке
, где функция переопределяется.

Задача распадается на 2 подзадачи: исследовать на непрерывность функции

и
,

причём точка
не представляет интереса для функции
, а точка
– для функции
.

1-й шаг. Проверяем точку
и функцию
(индекс не пишем):

Пределы совпадают. По условию,
(если пределы слева и справа равны, то фактически функция непрерывна, когда одно и из неравенств нестрогое). Итак, в точке
функция непрерывна.

2-й шаг. Проверяем точку
и функцию
:

Поскольку
, точка
– точка разрыва 1-го рода, и значение
(и то, есть ли оно вообще) уже не играет роли.

Ответ: функция непрерывна во всех точках, кроме точки
, где имеет место неустранимый разрыв 1-го рода – скачок от 6 к 4.

Пример 5. Найти точки разрыва функции
.

Действуем по той же схеме, что в примере 4.

1-й шаг. Проверяем точку
:

а)
, поскольку слева от
функция постоянна и равна 0;

б) (
– чётная функция).

Пределы совпадают, но при
функция по условию не определена, и получается, что
– точка устранимого разрыва.

2-й шаг. Проверяем точку
:

а)
;

б)
– значение функции не зависит от переменной.

Пределы различны: , точка
– точка неустранимого разрыва 1-го рода.

Ответ:
– точка устранимого разрыва,
– точка неустранимого разрыва 1-го рода, в остальных точках функция непрерывна.

Пример 6. Непрерывна ли функция
?

Функция
определена при
, поэтому условие
превращается в условие
.

С другой стороны, функция
определена при
, т.е. при
. Значит, условие
превращается в условие
.

Получается, что должно выполняться условие
, и область определения всей функции – отрезок
.

Сами по себе функции
и
элементарны и потому непрерывны во всех точках, в которых определены – в частности, и при
.

Остаётся проверить, что происходит в точке
:

а)
;

Поскольку
, смотрим, определена ли функция в точке
. Да, 1-е неравенство – нестрогое относительно
, и этого достаточно.

Ответ: функция определена на отрезке
и непрерывна на нём.

Более сложные случаи, когда одна из составляющих функций неэлементарна или не определена в какой-либо точке своего отрезка, выходят за рамки пособия.

НФ1. Постройте графики функций. Обратите внимание, определена ли функция в той точке, в которой переопределяется, и если да – каково значение функции (слово «если » в определении функции для краткости пропущено):

1) а)
б)
в)
г)

2) а)
б)
в)
г)

3) а)
б)
в)
г)

4) а)
б)
в)
г)

Пример 7. Пусть
. Тогда на участке
строим горизонтальную прямую
, а на участке
строим горизонтальную прямую
. При этом точка с координатами
«выколота», а точка
«закрашена». В точке
получается разрыв 1-го рода («скачок»), и
.

НФ2. Исследуйтена непрерывность функции, по-разному определённые на 3-х интервалах. Постройте графики:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

Пример 8. Пусть
. На участке
строим прямую
, для чего находим
и
. Соединяем точки
и
отрезком. Сами точки не включаем, поскольку при
и
функция по условию не определена.

На участке
и
обводим осьOX (на ней
), однако точки
и
«выколоты». В точке
получаем устранимый разрыв, а в точке
– разрыв 1-го рода («скачок»).

НФ3. Постройте графики функций и убедитесь в их непрерывности:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

НФ4. Убедитесь в непрерывности функций и постройте их графики:

1) а)
б)
в)

2 а)
б)
в)

3) а)
б)
в)

НФ5. Постройте графики функций. Обратите внимание на непрерывность:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ6. Постройте графики разрывных функций. Обратите внимание на значение функции в той точке, где функция переопределяется (и существует ли оно):

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ7. То же задание, что и в НФ6:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

Определение точек разрыва функции и их видов является продолжением темы непрерывности функции . Наглядное (графическое) объяснение смысла точек разрыва функции даётся так же в контрасте с понятием непрерывности. Научимся находить точки разрыва функции и определять их виды. И помогут нам в этом наши верные друзья - левый и правый пределы, обобщённо называемые односторонними пределами. Если у кого-то есть страх перед односторонними пределами, то скоро развеем его.

Точки на графике, которые не соединены между собой, называются точками разрыва функции . График такой функции, терпящей разрыв в точке x=2 - - на рисунке ниже.

Обобщением вышесказанного является следующее определение. Если функция не является непрерывной в точке , то она имеет в этой точке разрыв а сама точка называется точкой разрыва . Разрывы бывают первого рода и второго рода .

Для того, чтобы определять виды (характер) точек разрыва функции нужно уверенно находить пределы , поэтому нелишне открыть в новом окне соответствующий урок. Но в связи с точками разрыва у нас появляется кое-что новое и важное - односторонние (левый и правый) пределы. Обобщённо они записываются (правый предел) и (левый предел). Как и в случае с пределом вообще, для того, чтобы найти предел функции, нужно в выражение функции вместо икса подставить то, к чему стремится икс. Но, возможно, спросите вы, чем же будут отличаться правый и левый пределы, если в случае правого к иксу хотя что-то и прибавляется, но это что-то - ноль, а в случае левого из икса что-то вычитается, но это что-то - тоже ноль? И будете правы. В большинстве случаев.

Но в практике поиска точек разрыва функции и определения их вида существует два типичных случая, когда правый и левый пределы не равны:

  • у функции существует два или более выражений, зависящих от участка числовой прямой, к которой принадлежит икс (эти выражения обычно записываются в фигурных скобках после f (x )= );
  • в результате подстановки того, к чему стремится икс, получается дробь, в знаменателе которой остаётся или плюс ноль (+0) или минус ноль (-0) и поэтому такая дробь означает либо плюс бесконечность, либо минус бесконечность, а это совсем разные вещи.

Точки разрыва первого рода

Точка разрыва первого рода: у функции существуют как конечный (т. е. не равный бесконечности) левый предел, так и конечный правый предел, но функция не определена в точке или левый и правый пределы различны (не равны).

Точка устранимого разрыва первого рода. Левый и правый пределы равны. При этом существует возможность доопределить функцию в точке. Доопределить функцию в точке, говоря просто, значит обеспечить соединение точек, между которыми находится точка, в которой найдены равные друг другу левый и правый пределы. При этом соединение должно представлять собой лишь одну точку, в которой должно быть найдено значение функции.

Пример 1. Определить точку разрыва функции и вид (характер) точки разрыва.

Точки разрыва второго рода

Точка разрыва второго рода: точка, в которой хотя бы один из пределов (левый или правый) - бесконечный (равен бесконечности).

Пример 3.

Решение. Из выражения степени при e видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

Один из пределов равен бесконечности, поэтому точка - точка разрыва второго рода. График функции с точкой разрыва - под примером.

Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика .

Пример 4. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Из выражения степени при 2 видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке.

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Общая схема исследования

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены "горбы" выпуклости, где не определены значения и т.п.

А уже на основании этих "особенностей" и строится макет графика - картинка, которая на самом-то деле вторична (хотя в учебных целях важна и подтверждает правильность вашего решения).

Начнем, конечно же, с плана . Исследование функции - объемная задача (пожалуй, самая объемная из традиционного курса высшей математики, обычно от 2 до 4 страниц с учетом чертежа), поэтому, чтобы не забыть, что в каком порядке делать, следуем пунктам, описанным ниже.

Алгоритм

  1. Найти область определения. Выделить особые точки (точки разрыва).
  2. Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
  3. Найти точки пересечения с осями координат.
  4. Установить, является ли функция чётной или нечётной.
  5. Определить, является ли функция периодической или нет (только для тригонометрических функций).
  6. Найти точки экстремума и интервалы монотонности.
  7. Найти точки перегиба и интервалы выпуклости-вогнутости.
  8. Найти наклонные асимптоты. Исследовать поведение на бесконечности.
  9. Выбрать дополнительные точки и вычислить их координаты.
  10. Построить график и асимптоты.

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать .

Полный пример решения онлайн

Провести полное исследование и построить график функции $$ y(x)=\frac{x^2+8}{1-x}. $$

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя. $$1-x=0, \quad \Rightarrow \quad x=1.$$ Исключаем единственную точку $x=1$ из области определения функции и получаем: $$ D(y)=(-\infty; 1) \cup (1;+\infty). $$

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка $x=1$ является разрывом второго рода, прямая $x=1$ - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат $Oy$, для чего приравниваем $x=0$:

Таким образом, точка пересечения с осью $Oy$ имеет координаты $(0;8)$.

Найдем точки пересечения с осью абсцисс $Ox$, для чего положим $y=0$:

Уравнение не имеет корней, поэтому точек пересечения с осью $Ox$ нет.

Заметим, что $x^2+8>0$ для любых $x$. Поэтому при $x \in (-\infty; 1)$ функция $y>0$ (принимает положительные значения, график находится выше оси абсцисс), при $x \in (1; +\infty)$ функция $y\lt 0$ (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых $y"=0$):

Получили три критические точки: $x=-2, x=1, x=4$. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При $x \in (-\infty; -2), (4;+\infty)$ производная $y" \lt 0$, поэтому функция убывает на данных промежутках.

При $x \in (-2; 1), (1;4)$ производная $y" >0$, функция возрастает на данных промежутках.

При этом $x=-2$ - точка локального минимума (функция убывает, а потом возрастает), $x=4$ - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума $(-2;4)$, точка максимума $(4;-8)$.

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:



Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда $x \in (-\infty; 1)$ выполняется $y"" \gt 0$, то есть функция вогнутая, когда $x \in (1;+\infty)$ выполняется $y"" \lt 0$, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида $y=kx+b$. Вычисляем значения $k, b$ по известным формулам:


Получили, у что функции есть одна наклонная асимптота $y=-x-1$.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

$$ y(-5)=5.5; \quad y(2)=-12; \quad y(7)=-9.5. $$

10) По полученным данным построим график, дополним его асимптотами $x=1$ (синий), $y=-x-1$ (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

$$y=\frac{e^x}{x}.$$

Задача 2. Исследовать функцию и построить ее график.

$$y=-\frac{1}{4}(x^3-3x^2+4).$$

Задача 3. Исследовать функцию с помощью производной и построить график.

$$y=\ln \frac{x+1}{x+2}.$$

Задача 4. Провести полное исследование функции и построить график.

$$y=\frac{x}{\sqrt{x^2+x}}.$$

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

$$y=\frac{x^3-1}{4x^2}.$$

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

$$y=\frac{x^3}{x^2-1}.$$

Задача 7. Проведите исследование функции с построением графика.

$$y=\frac{x^3}{2(x+5)^2}.$$

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки , с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos . Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos .

Решебник

Срочно нужна готовая задача? Более сотни разных функций с полным исследованием уже ждут вас. Подробное решение, быстрая оплата по SMS и низкая цена - около 50 рублей . Может, и ваша задача уже готова? Проверьте!

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм "Математика. Функции и графики". Объяснения на пальцах в прямом смысле слова самых основ.

Непрерывность функции в точке. Функция y = f (x ) называется непре-

рывной в точке x 0 , если:

1) эта функция определена в некоторой окрестности точки x 0 ;

2) существует предел lim f (x ) ;

→ x 0

3) этот предел равен значению функции в точке x 0 , т.е. limf (x )= f (x 0 ) .

x→ x0

Последнее условие равносильно условию lim

y = 0 , гдеx = x − x 0 – при-

x→ 0

ращение аргумента, y = f (x 0 +

x )− f (x 0 ) – приращение функции, соответст-

вующее приращению аргумента

x , т.е. функция

f (x ) непрерывна в точкеx 0

тогда и только тогда, когда в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Односторонняя непрерывность. Функцияy = f (x ) называется непрерыв-

ной слева в точкеx 0 , если она определена на некотором полуинтервале(a ;x 0 ]

и lim f (x )= f (x 0 ) .

x→ x0 − 0

Функция y = f (x ) называется непрерывнойсправа в точкеx 0 , если она оп-

ределена на некотором полуинтервале [ x 0 ;a ) и limf (x )= f (x 0 ) .

x→ x0 + 0

Функция y = f (x )

непрерывна в точке x 0

тогда и только тогда, когда она

непрерывна

lim f (x )= limf (x )= limf (x )= f (x 0 ) .

x→ x0 + 0

x→ x0 − 0

x→ x0

Непрерывность функции на множестве. Функция y = f (x ) называется

непрерывной на множестве X , если она является непрерывной в каждой точкеx этого множества. При этом если функция определена в конце некоторого промежутка числовой оси, то под непрерывностью в этой точке понимается непрерывность справа или слева. В частности, функцияy = f (x ) называетсяне-

прерывной на отрезке [ a; b] , если она

1) непрерывна в каждой точке интервала (a ;b ) ;

2) непрерывна справа в точке a ;

3) непрерывна слева в точке b .

Точки разрыва функции. Точкаx 0 , принадлежащая области определения функцииy = f (x ) , или являющаяся граничной точкой этой области, называется

точкой разрыва данной функции , еслиf (x ) не является непрерывной в этой точке.

Точки разрыва подразделяются на точки разрыва первого и второго рода:

1) Если существуют конечные пределы lim f (x )= f (x 0 − 0) и

x→ x0 − 0

f (x )= f (x 0 + 0) , причем не все три числаf (x 0 − 0) ,f (x 0 + 0) ,

f (x 0 ) равны

x→ x0 + 0

между собой, то x 0

называется точкой разрыва I рода.

В частности, если левый и правый пределы функции в точке x 0

равны меж-

собой, но

не равны значению функции в этой точке:

f (x0 − 0) = f(x0 + 0) = A≠ f(x0 ) , то x 0 называется точкой устранимого разрыва.

В этом случае, положив f (x 0 )= A , можно видоизменить функцию в точкеx 0

так, чтобы она стала непрерывной (доопределить функцию по непрерывности ). Разностьf (x 0 + 0)− f (x 0 − 0) называетсяскачком функции в точке x 0 .

Скачок функции в точке устранимого разрыва равен нулю.

2) Точки разрыва, не являющиеся точками разрыва первого рода, называются точками разрыва II рода . В точках разрыва II рода не существует или бесконечен хотя бы один из односторонних пределовf (x 0 − 0) иf (x 0 + 0) .

Свойства функций, непрерывных в точке.

f (x)

и g (x ) непрерывны в точкеx 0 , то функции

f (x )± g (x ) ,

f (x )g (x ) и

f (x)

(где g (x )≠ 0) также непрерывны в точкеx .

g(x)

2) Если функция u (x ) непрерывна в точкеx 0 , а функцияf (u ) непрерывна

в точке u 0 = u (x 0 ) , то сложная функцияf (u (x )) непрерывна в точкеx 0 .

3) Все основные элементарные функции (c , x a ,a x , loga x , sinx , cosx , tgx , ctgx , secx , cosecx , arcsinx , arccosx , arctgx , arcctgx ) непрерывны в каж-

дой точке своих областей определения.

Из свойств 1)–3) следует, что все элементарные функции (функции, полученные из основных элементарных функций с помощью конечного числа арифметических операций и операции композиции) также непрерывны в каждой точке своих областей определения.

Свойства функций, непрерывных на отрезке.

1) (теорема о промежуточных значениях) Пусть функция f(x) определе-

на и непрерывна на отрезке [ a ;b ] . Тогда для любого числаC , заключенного

между числами f (a ) иf (b ) , (f (a )< C < f (b )) найдется хотя бы одна точкаx 0 [ a ;b ] , такая, чтоf (x 0 )= C .

2) (теорема Больцано – Коши

рывна на отрезке [ a ;b ] и принимает на его концах значения различных знаков.

Тогда найдется хотя бы одна точка x 0 [ a ;b ] , такая, чтоf (x 0 )= 0 .

3) (1-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке [ a ;b ] . Тогда эта функция ограничена на этом отрезке.

4) (2-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке

[ a ;b ] . Тогда эта функция достигает на отрезке[ a ;b ]

наибольшего

наименьшего

значений, т.е.

существуют

x1 , x2 [ a; b] ,

для любой

точки x [ a ;b ]

справедливы

неравенства

f (x 1 )≤ f (x )≤ f (x 2 ) .

Пример 5.17. Пользуясь определением непрерывности, доказать, что функцияy = 3x 2 + 2x − 5 непрерывна в произвольной точкеx 0 числовой оси.

Решение: 1 способ: Пусть x 0 – произвольная точка числовой оси. Вы-

числим сначала предел функции f (x ) приx → x 0 , применяя теоремы о пределе суммы и произведения функций:

lim f (x )= lim(3x 2 + 2x − 5)= 3(limx )2 + 2 limx − 5= 3x 2

− 5.

x→ x0

x→ x0

x→ x0

x→ x0

Затем вычисляем значение функции в точке x :f (x )= 3x 2

− 5 .

Сравнивая полученные результаты, видим,

lim f (x )= f (x 0 ) , что согласно

x→ x0

определению и означает непрерывность рассматриваемой функции в точке x 0 .

2 способ: Пусть

x – приращение аргумента в точкеx 0 . Найдем соот-

ветствующее

приращение

y = f(x0 + x) − f(x0 ) =

3(x + x )2 + 2(x + x )− 5− (3x 2 + 2x − 5)

6 x x+ (x) 2

2x = (6x + 2)x + (x )2 .

Вычислим теперь предел приращения функции, когда приращение аргу-

стремится

y = lim (6x + 2)

x + (x )2 = (6x + 2) lim

x + (limx )2 = 0 .

x→ 0

x→ 0

x→ 0

x→ 0

Таким образом, lim y = 0 , что и означает по определению непрерывность

x→ 0

функции для любого x 0 R .

Пример 5.18. Найти точки разрыва функцииf (x ) и определить их род. В

случае устранимого разрыва доопределить функцию по непрерывности:

1) f (x ) = 1− x 2 приx < 3;

5x приx ≥ 3

2) f (x )= x 2 + 4 x + 3 ;

x + 1

f (x) =

x4 (x− 2)

f (x )= arctg

(x − 5)

Решение: 1) Областью определения данной функции является вся число-

вая ось (−∞ ;+∞ ) . На интервалах(−∞ ;3) ,(3;+∞ ) функция непрерывна. Разрыв возможен лишь в точкеx = 3 , в которой изменяется аналитическое задание функции.

Найдем односторонние пределы функции в указанной точке:

f (3− 0)= lim (1− x 2 )= 1− 9= 8;

x →3 −0

f (3+ 0)= lim 5x = 15.

x →3 +0

Мы видим, что левый и правый пределы конечны, поэтому x = 3

разрыва I

f (x ) . Скачок функции в

f (3+ 0)− f (3− 0)= 15− 8= 7 .

f (3)= 5 3= 15= f (3+ 0) , поэтому в точке

x = 3

f (x ) непрерывна справа.

2) Функция непрерывна на всей числовой оси, кроме точки x = − 1, в которой она не определена. Преобразуем выражение дляf (x ) , разложив числитель

дроби на множители:

f (x) =

4 x +3

(x + 1)(x + 3)

X + 3 приx ≠ − 1.

x + 1

x + 1

Найдем односторонние пределы функции в точке x = − 1:

f (x )= lim

f (x )= lim(x + 3)= 2 .

x →−1 −0

x →−1 +0

x →−1

Мы выяснили, что левый и правый пределы функции в исследуемой точке существуют, конечны и равны между собой, поэтому x = − 1 – точка устранимо-

прямую y = x + 3 с «выколотой» точкойM (− 1;2) . Чтобы функция стала непре-

рывной, следует положить f (− 1)= f (− 1− 0)= f (− 1+ 0)= 2 .

Таким образом, доопределив f (x ) по непрерывности в точкеx = − 1, мы получили функциюf * (x )= x + 3 с областью определения(−∞ ;+∞ ) .

3) Данная функция определена и непрерывна для всех x , кроме точек

x = 0 ,x = 2 , в которых знаменатель дроби обращается в ноль.

Рассмотрим точку x = 0:

Поскольку в достаточно малой окрестности нуля функция принимает толь-

ко отрицательные значения, то f (− 0)= lim

= −∞ = f (+0)

Т.е. точка

(x − 2)

x →−0

x = 0 является точкой разрыва II рода функции

f (x ) .

Рассмотрим теперь точку x = 2:

Функция принимает отрицательные значения вблизи слева от рассматри-

ваемой точки и положительные – справа, поэтому

f (2− 0)=

= −∞,

x4 (x− 2)

x →2 −0

f (2+ 0)= lim

= +∞ . Как и в предыдущем случае, в точкеx = 2

(x − 2)

x →2 +0

ция не имеет ни левого, ни правого конечного пределов, т.е. терпит в этой точке разрыв II рода.

x = 5 .

f (5− 0)= lim arctg

π ,f (5+ 0)= lim arctg

x = 5

(x − 5)

(x − 5)

x →5 −0

x →5 +0

ка разрыва

f (5+ 0)− f (5− 0)=

π − (−

π )= π (см. рис. 5.2).

Задачи для самостоятельного решения

5.174. Пользуясь лишь определением, доказать непрерывность функцииf (x ) в

каждой точке x 0 R :

а) f(x) = c= const;

б) f (x )= x ;

в) f (x )= x 3 ;

г) f (x )= 5x 2 − 4x + 1;

д) f (x )= sinx .

5.175. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

является непрерывной на

1 при x < 0

всей числовой оси. Построить график этой функции.

5.176. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

не является непрерывной

0 при x < 0

в точке x = 0 , но непрерывна справа в этой точке. Построить график функцииf (x ) .

рывной в точке x =

Но непрерывна слева в этой точке. Построить график

функции f (x ) .

5.178. Построить графики функций

а) y =

x + 1

б) y= x+

x + 1

x + 1

x + 1

Какие из условий непрерывности в точках разрыва этих функций выполнены, и какие не выполнены?

5.179. Указать точку разрыва функции

sin x

При x ≠ 0

при x = 0

Какие из условий непрерывности в этой точке выполнены, и какие не выполнены?