Биографии Характеристики Анализ

Как формировалась кислородная атмосфера земли. Кислородная катастрофа

После окончания Второй Мировой войны страны антигитлеровской коалиции стремительными темпами пытались опередить друг друга в разработках более мощной ядерной бомбы.

Первое испытание, проведённое американцами на реальных объектах в Японии, до предела накалило обстановку между СССРи США. Мощные взрывы, прогремевшие в японских городах и практически уничтожившие всё живое в них, заставили Сталина отказаться от множества притязаний на мировой арене. Большинство советских учёных-физиков было в срочном порядке «брошены» на разработку ядерного оружия.

Когда и как появилось ядерное оружие

Годом рождения атомной бомбы можно считать 1896 год. Именно тогда учёный-химик из Франции А. Беккерель открыл, что уран радиоактивен. Цепная реакция урана образует мощную энергию, которая служит основой для страшного взрыва. Вряд ли Беккерель предполагал, что его открытие приведёт к созданию ядерного оружия — самого страшного оружия во всём мире.

Конец 19 — начало 20 века стал переломным моментом в истории изобретения ядерного оружия. Именно в этом временном промежутке учёные различных стран мира смогли открыть следующие законы, лучи и элементы:

  • Альфа, гамма и бета лучи;
  • Было открыто множество изотопов химических элементов, обладающих радиоактивными свойствами;
  • Был открыт закон радиоактивного распада, который определяет временную и количественную зависимость интенсивности радиоактивного распада, зависящую от количества радиоактивных атомов в испытуемом образце;
  • Зародилась ядерная изометрия.

В 1930-х годах впервые смогли расщепить атомное ядро урана с поглощением нейтронов. В это же время были открыты позитроны и нейроны. Всё это дало мощный толчок к разработкам оружия, которое использовало атомную энергию. В 1939 году была запатентована первая в мире конструкция атомной бомбы. Это сделал физик из Франции Фредерик Жолио-Кюри.

В результате дальнейших исследований и разработок в данной сфере, на свет появилась ядерная бомба. Мощность и радиус поражения современных атомных бомб настолько велик, что страна, которая обладает ядерным потенциалом, практически не нуждается в мощной армии, так как одна атомная бомба способна уничтожить целое государство.

Как устроена атомная бомба

Атомная бомба состоит из множества элементов, главными из которых являются:

  • Корпус атомной бомбы;
  • Система автоматики, контролирующая процесс взрыва;
  • Ядерного заряда или боеголовки.

Система автоматики находится в корпусе атомной бомбы, вместе с ядерным зарядом. Конструкция корпуса должна быть достаточно надёжной, чтобы уберечь боеголовку от различных внешних факторов и воздействий. Например, различного механического, температурного или подобного влияния, которое может привести к незапланированному взрыву огромной мощности, способному уничтожить всё вокруг.

В задачу автоматики входит полный контроль над тем, чтобы взрыв произошёл в нужное время, поэтому система состоит из следующих элементов:

  • Устройство, отвечающее за аварийный подрыв;
  • Источник питания системы автоматики;
  • Система датчиков подрыва;
  • Устройство взведения;
  • Устройство предохранения.

Когда проводились первые испытания, ядерные бомбы доставлялись на самолётах, которые успевали покинуть зону поражения. Современные атомные бомбы обладают такой мощностью, что их доставка может осуществляться только с помощью крылатых, баллистических или хотя бы зенитных ракет.

В атомных бомбах применяются различные системы детонирования. Самая простейшая из них – это обычное устройство, которое срабатывает при попадании снаряда в цель.

Одной из основных характеристик ядерных бомб и ракет, является разделение их на калибры, которые бывают трёх типов:

  • Малый, мощность атомных бомб данного калибра эквивалентна нескольким тысячам тонн тротила;
  • Средний (мощность взрыва – несколько десятков тысяч тонн тротила);
  • Крупный, мощность заряда которого измеряется миллионами тонн тротила.

Интересно, что чаще всего мощность всех ядерных бомб измеряется именно в тротиловом эквиваленте, так как для атомного оружие не существует своей шкалы измерения мощности взрыва.

Алгоритмы действия ядерных бомб

Любая атомная бомба действует по принципу использования ядерной энергии, которая выделяется в ходе ядерной реакции. В основе данной процедуры лежит или деление тяжёлых ядер или синтез лёгких. Так как в ходе данной реакции выделяется огромное количество энергии, причём в кратчайшее время, радиус поражения ядерной бомбы очень впечатляет. Из-за этой особенности ядерное оружие относят к классу оружия массового поражения.

В ходе процесса, который запускается при взрыве атомной бомбы, имеются два главных момента:

  • Это непосредственный центр взрыва, где проходит ядерная реакция;
  • Эпицентр взрыва, который находится на месте, где взорвалась бомба.

Ядерная энергия, выделяемая при взрыве атомной бомбы, настолько сильна, что на земле начинаются сейсмические толчки. При этом непосредственные разрушения данные толчки приносят лишь на расстоянии нескольких сотен метров (хотя если учитывать силу взрыва самой бомбы, данные толчки уже ни на что не влияют).

Факторы поражения при ядерном взрыве

Взрыв ядерной бомбы приносит не только ужасные мгновенные разрушения. Последствия данного взрыва ощутят на себе не только люди, попавшие в зону поражения, но и их дети, родившиеся после атомного взрыва. Типы поражения атомным оружием подразделяются на следующие группы:

  • Световое излучение, которое происходит непосредственно при взрыве;
  • Ударная волна, распространяемая бомбой сразу после взрыва;
  • Электромагнитный импульс;
  • Проникающая радиация;
  • Радиоактивное заражение, которое может сохраниться на десятки лет.

Хотя на первый взгляд, световая вспышка несет меньше всего угрозы, на самом деле она образуется в результате высвобождения огромного количества тепловой и световой энергии. Её мощность и сила намного превосходит мощность лучей солнца, поэтому поражение светом и теплом может стать фатальным на расстоянии нескольких километров.

Радиация, которая выделяется при взрыве, тоже очень опасна. Хотя она действует недолго, но успевает заразить всё вокруг, так как её проникающая способность невероятно велика.

Ударная волна при атомном взрыве действует подобно такой же волне при обычных взрывах, только её мощность и радиус поражения намного больше. За несколько секунд она наносит непоправимые повреждения не только людям, но и технике, зданиям и окружающей природе.

Проникающая радиация провоцирует развитие лучевой болезни, а электромагнитный импульс представляет опасность только для техники. Совокупность всех этих факторов, плюс мощность взрыва, делают атомную бомбу самым опасным оружием в мире.

Первые в мире испытания ядерного оружия

Первой страной, разработавшей и испытавшей ядерное оружие, оказались Соединённые Штаты Америки. Именно правительство США выделило огромные денежные дотации на разработку нового перспективного оружия. К концу 1941 года в США были приглашены многие выдающиеся учёные в сфере атомных разработок, которые уже к 1945 году смогли представить опытный образец атомной бомбы, пригодный для испытаний.

Первые в мире испытания атомной бомбы, оснащенной взрывным устройством, были проведены в пустыне на территории штата Нью-Мексико. Бомба под названием «Gadget» была взорвана 16 июля 1945 года. Результат испытаний оказался положительным, хотя военные требовали испытать ядерную бомбу в реальных боевых условиях.

Увидев, что до победы на гитлеровской коалицией остался всего один шаг, и больше такой возможности может не представиться, Пентагон решил нанести ядерный удар по последнему союзнику гитлеровской Германии – Японии. Кроме того, использование ядерной бомбы должно было решить сразу несколько проблем:

  • Избежать ненужного кровопролития, которое неизбежно бы случилось, если бы войска США ступили на территорию императорской Японии;
  • Одним ударом поставить на колени неуступчивых японцев, заставив их пойти на условия, выгодные США;
  • Показать СССР (как возможному сопернику в будущем), что армия США обладает уникальным оружием, способным стереть с лица земли любой город;
  • И, конечно же, на практике убедиться, на что способно ядерное оружие в реальных боевых условиях.

6 августа 1945 года на японский город Хиросима была сброшена первая в мире атомная бомба, которая применялась в военных действиях. Эту бомбу назвали «Малыш», так как её вес составлял 4 тонны. Сброс бомбы был тщательно спланирован, и она попала именно туда, куда и планировалось. Те дома, которые не были разрушены взрывной волной, сгорели, так как упавшие в домах печки спровоцировали пожары, и весь город был объят пламенем.

После яркой вспышки последовала тепловая волна, которая сожгла всё живое в радиусе 4 километров, а последовавшая за ней ударная волна разрушила большую часть зданий.

Те, кто попал под тепловой удар в радиусе 800 метров, были сожжены заживо. Взрывной волной у многих сорвало обгоревшую кожу. Через пару минут прошёл странный чёрный дождь, который состоял из пара и пепла. У тех, кто попал под чёрный дождь, кожа получила неизлечимые ожоги.

Те немногие, которым посчастливилось уцелеть, заболели лучевой болезнью, которая в то время была не только не изучена, но и полностью неизвестна. У людей началась лихорадка, рвота, тошнота и приступы слабости.

9 августа 1945 года на город Нагасаки была сброшена вторая американская бомба, которая называлась «Толстяк». Данная бомба имела примерно такую же мощность, как и первая, а последствия её взрыва были столь же разрушительные, хотя людей погибло в два раза меньше.

Две атомные бомбы, сброшенные на японские города, оказались первым и единственным в мире случаями применения атомного оружия. Более 300 000 человек погибли в первые дни после бомбардировки. Ещё около 150 тысяч погибли от лучевой болезни.

После ядерной бомбардировки японских городов, Сталин получил настоящий шок. Ему стало ясно, что вопрос разработки ядерного оружия в советской России – это вопрос безопасности всей страны. Уже 20 августа 1945 года начал работать специальный комитет по вопросам атомной энергии, который был в срочном порядке создан И. Сталиным.

Хотя исследования по ядерной физике проводились группой энтузиастов ещё в царской России, в советское время ей не уделяли должного внимания. В 1938 году все исследования в этой области были полностью прекращены, а многие учёные-ядерщики репрессированы, как враги народа. После ядерных взрывов в Японии советская власть резко начала восстанавливать ядерную отрасль в стране.

Имеются данные, что разработка ядерного оружия велась в гитлеровской Германии, и именно немецкие учёные доработали «сырую» американскую атомную бомбу, поэтому правительство США вывезло из Германии всех специалистов-атомщиков и все документы, связанные с разработкой ядерного оружия.

Советская разведывательная школа, которая за время войны смогла обойти все зарубежные разведки, ещё в 1943 году передавала в СССР секретные документы, связанные с разработкой ядерного оружия. В то же время были внедрены советские агенты во все серьёзные американские центры ядерных исследований.

В результате всех этих мер, уже в 1946 году было готово техническое задание по изготовлению двух ядерных бомб советского производства:

  • РДС-1 (с плутониевым зарядом);
  • РДС-2 (с двумя частями уранового заряда).

Аббревиатура «РДС» расшифровывалась как «Россия делает сама», что практически полностью соответствовало действительности.

Новости о том, что СССР готов выпустить своё ядерное оружие, заставило правительство США пойти на радикальные меры. В 1949 году был разработан план «Троян», согласно которому на 70 крупнейших городов СССР планировалось сбросить атомные бомбы. Лишь опасения ответного удара помешали этому плану осуществиться.

Данные тревожные сведения, поступающие от советских разведчиков, заставили учёных работать в авральном режиме. Уже в августе 1949 года состоялись испытания первой атомной бомбы, произведённой в СССР. Когда США узнала про эти испытания, план «Троян» был отложен на неопределённое время. Началась эпоха противостояния двух сверх держав, известная в истории как «Холодная война».

Самая мощная ядерная бомба в мире, известная под именем «Царь-бомбы» принадлежит именно периоду «Холодной войны». Учёные СССР создали самую мощную бомбу в истории человечества. Её мощность составляла 60 мегатонн, хотя планировалось создать бомбу в 100 килотонн мощности. Испытания данной бомбы прошли в октябре 1961 года. Диаметр огненного шара при взрыве составил 10 километров, а взрывная волна облетела земной шар три раза. Именно это испытание заставило большинство стран мира подписать договор о прекращении ядерных испытаний не только в атмосфере земли, но даже в космосе.

Хотя атомное оружие является превосходным средством устрашения агрессивных стран, с другой стороны оно способно гасить любые военные конфликты в зародыше, так как при атомном взрыве могут быть уничтожены все стороны конфликта.

Атомная бомба - снаряд для получения взрыва большой силы в результате весьма быстрого выделения ядерной (атомной) энергии.

Принцип действия атомных бомб

Ядерный заряд разделён на несколько частей до критических размеров, чтобы в каждой из них не могла начаться саморазвивающаяся неуправляемая цепная реакция делений атомов делящегося вещества. Такая реакция возникнет лишь тогда, когда все части заряда будут быстро соединены в одно целое. От скорости сближения отдельных частей в сильной степени зависит полнота протекания реакции и в конечном счёте мощность взрыва. Для сообщения большой скорости частям заряда можно использовать взрыв обычного взрывчатого вещества. Если части ядерного заряда расположить по радиальным направлениям на некотором расстоянии от центра, а с внешней стороны поместить заряды тротила, то можно осуществить взрыв обычных зарядов, направленный к центру ядерного заряда. Все части ядерного заряда не только с огромной скоростью соединяться в единое целое, но и окажутся на некоторое время сжатыми со всех сторон огромным давлением продуктов взрыва и не смогут разделиться сразу, как только начнётся в заряде цепная ядерная реакция. В результате этого произойдёт значительно большее деление, чем без такого сжатия, и, следовательно, повысится мощность взрыва. Увеличению мощности взрыва при том же количестве делящегося вещества способствует также отражатель нейтронов (наиболее эффективными отражателями являются бериллий < Be >, графит, тяжёлая вода < H3O >). Для первого деления, которое положило бы начало цепной реакции, нужен, по меньшей мере, один нейтрон. Рассчитывать на своевременное начало цепной реакции под действием нейтронов, появляющихся при самопроизвольном (спонтанном) делении ядер, нельзя, т.к. оно происходит сравнительно редко: для U-235 - 1 распад в час на 1 гр. вещества. Нейтронов, существующих в свободном виде в атмосфере, также очень мало: через S = 1см/кв. за секунду пролетает в среднем около 6 нейтронов. По этой причине в ядерном заряде применяют искусственный источник нейтронов - своеобразный ядерный капсюль-детонатор. Он обеспечивает также множество начинающихся одновременно делений, поэтому реакция протекает в виде ядерного взрыва.

Варианты детонации (Пушечная и имплозивная схемы)

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой -- неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится надкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (т. н. «шипучка», англ. Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Имплозивная схема. Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток -- ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками)

1. АТОМНАЯ БОМБА: СОСТАВ, БОЕВЫЕ ХАРАКТЕРИСТИКИ И ЦЕЛЬ СОЗДАНИЯ

Прежде чем начать изучение строения атомной бомбы, необходимо разобраться в терминологии по данной проблеме. Итак, в научных кругах, существуют специальные термины, отображающие характеристики атомного оружия. Среди них, особо отметим следующие:

Атомная бомба - первоначальное название авиационной ядерной бомбы, действие которой основано на взрывной цепной ядерной реакции деления. С появлением так называемой водородной бомбы, основанной на термоядерной реакции синтеза, утвердился общий для них термин - ядерная бомба.

Ядерная бомба - авиационная бомба с ядерным зарядом, обладает большой разрушительной силой. Первые две ядерные бомбы с тротиловым эквивалентом около 20 кт каждая были сброшены американской авиацией на японские города Хиросима и Нагасаки, соответственно 6 и 9 августа 1945, и вызвали огромные жертвы и разрушения. Современные ядерные бомбы имеют тротиловый эквивалент от десятков до миллионов тонн.

Ядерное или атомное оружие - оружие взрывного действия, основанного на использовании ядерной энергии, освобождающейся при цепной ядерной реакции деления тяжёлых ядер или термоядерной реакции синтеза лёгких ядер.

Относится к оружию массового поражения (ОМП) наряду с биологическим и химическим.

Ядерное оружие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения; обладает громадной разрушительной силой. По выше указанной причине, США и СССР вкладывали огромные средства в разработку ядерного оружия. По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое. Применение ядерного оружия в войне гибельно для всего человечества.

Ядерный взрыв - это процесс мгновенного выделения большого количества внутриядерной энергии в ограниченном объеме.

Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и, в отдельных случаях, уран-233).

Уран-235 используют в ядерном оружии потому, что в отличие от наиболее распространённого изотопа урана-238, в нём возможна самоподдерживающаяся цепная ядерная реакция.

Плутоний-239 также называют "оружейным плутонием", т.к. он предназначен для создания ядерного оружия и содержание изотопа 239Pu должно быть, не менее 93,5 %.

Для отражения строения и состава атомной бомбы, в качестве прототипа проанализируем плутониевую бомбу "Толстяк" (рис. 1) сброшенную 9 августа 1945 года на японский город Нагасаки.

атомный ядерный бомба взрыв

Рисунок 1 - Атомная бомба "Толстяк"

Схема этой бомбы (типичная для плутониевых однофазных боеприпасов) примерно следующая:

Нейтронный инициатор - шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 - первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время помимо данного типа инициирования, больше распространено термоядерное инициирование (ТИ). Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревается сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции (рис. 2).

Плутоний. Используют максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.

Оболочка (обычно из урана), служащая отражателем нейтронов.

Обжимающая оболочка из алюминия. Обеспечивает бомльшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток.

Корпус, изготовленный из дюралевых штампованных элементов - две сферических крышки и пояс, соединяемые болтами.

Рисунок 2 - Принцип действия плутониевой бомбы

Центр ядерного взрыва - точка, в которой происходит вспышка или находится центр огненного шара, а эпицентром - проекцию центра взрыва на земную или водную поверхность.

Ядерное оружие является самым мощным и опасным видом оружия массового поражения, угрожающим всему человечеству невиданными разрушениями и уничтожением миллионов людей.

Если взрыв происходит на земле или довольно близко от ее поверхности, то часть энергии взрыва передается поверхности Земли в виде сейсмических колебаний. Возникает явление, которое по своим особенностям напоминает землетрясение. В результате такого взрыва образуются сейсмические волны, которые через толщу земли распространяется на весьма большие расстояния. Разрушительное действие волны ограничивается радиусом в несколько сот метров.

В результате чрезвычайно высокой температуры взрыва возникает яркая вспышка света, интенсивность которой в сотни раз превосходит интенсивность солнечных лучей, падающих на Землю. При вспышке выделяется огромное количество тепла и света. Световое излучение вызывает самовозгорание воспламеняющихся материалов и ожоги кожи у людей в радиусе многих километров.

При ядерном взрыве возникает радиация. Она продолжается около минуты и обладает настолько высокой проникающей способностью, что для защиты от нее на близких расстояниях требуются мощные и надежные укрытия.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение местности;

электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда (Pu-239, U-235) и не прореагировавшей частью заряда, выпадающими из облака взрыва, а также радиоактивные изотопы, образующиеся в грунте и других материалах под воздействием нейтронов - наведённая активность. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

Анализ эффективности комплексного применения мер помехозащиты для повышения устойчивости функционирования средств связи в условиях радиопротиводействия противника

Учитывая уровень технического оснащения, анализ сил и средств РЭБ будет проводиться для батальона разведки и РЭБ (Р и РЭБ) механизированной дивизии (мд) СВ. Батальон разведки и РЭБ мд США имеет в своем составе}