Биографии Характеристики Анализ

Как проявляет себя межзвездная среда каков. Межзвёздный газ

Газодинамика - раздел физики, который изучает законы движения газа. С вопросами газодинамики мы часто сталкиваемся и в обыденной жизни - это и зву­ковые волны, и обтекание быстро движущихся тел, и ударные волны, которые в век сверхзвуковых скоростей хорошо всем известны. Но условия межзвездной среды существенно меняют законы движения газа.

Начнем со звуковых волн. Как читатель, вероятно, знает, звуковые волны представляют собой распростра­няющуюся в среде последовательность сжатий и разре­жений газа. Если слегка сжать газ в некотором объеме, а затем предоставить ему возможность вернуться в пер­воначальное состояние, то по инерции он затем немного расширится, сожмет соседние с этим объемом слои га­за, а потом опять сам сожмется. Возникнут колебания, которые будут передаваться и соседним слоям, а от них - еще дальше. Это и есть распространение звуко­вых волн. Их скорость зависит только от температуры газа. Скорость звуковых волн в воздухе при температу­ре 300 К хорошо известна - 330 м/с, а с ростом тем­пературы она увеличивается пропорционально (Т ) 1/2 .

Но такие звуковые волны являются адиабатически­ми, т. е. предполагается, что сжатие и разрежение газа в звуковых волнах происходит без потери тепла. В меж­звездном пространстве это не так. При увеличении плот­ности заметно увеличиваются и потери на излучение. Поэтому межзвездные звуковые волны отнюдь не адиа­батические. В первом приближении их можно еще счи­тать изотермическими, т. е. предположить, что при сжа­тии и расширении газа температура в волне вообще не меняется. Тогда скорость звуковых волн будет несколь­ко меньше (в воздухе - на 20%) и ее можно вычис­лить по формуле: с s = (RT /мю) 1/2 , где R - универсаль­ная газовая постоянная, a мю - молекулярный вес. Лю­бопытно, что еще Ньютон, который первым вычислил скорость звуковой волны, предполагал ее изотермиче­ской, и поэтому долгое время было непонятным, почему в воздухе скорость звука оказалась больше вычислен­ной. Однако для межзвездных звуковых волн эта фор­мула, полученная Ньютоном, вполне применима.

Следующее важное явление, которое в межзвездных условиях также меняет свои свойства, - это ударные волны. Для того чтобы его пояснить, рассмотрим слу­чай, изображенный на рис. 16. Пусть в закрытую с одного конца длинную трубу втекает газ с концентра­цией п 1 и скоростью v . Налетая на стенку, он должен остановиться. Образуется область неподвижного газа, которая должна все время увеличиваться по мере вте­кания все новых порций газа. Между покоящимся и дви­жущимся газом образуется граница (пунктир на рис. 16), которая перемещается по трубе навстречу по­току газа.

Обозначим концентрацию газа за этой границей как п 2 . Оказывается, если скорость v очень велика (много больше скорости звука), то эта граница резкая (удар­ная волна), а скачок концентрации, т. е. величина п 2 /п 1 , оказывается ограниченным (например, в одно­атомном газе п 2 /п 1 <4, в двухатомном п 2 /п 1 <6). Объяс­няется это просто. Кинетическая энергия налетающего газа не только сжимает, но и нагревает остановившийся газ. В неподвижной области, таким образом, возникает большое газовое давление, которое и препятствует даль­нейшему сжатию.

Но в межзвездном пространстве этого может не быть. Как только газ сожмется, резко возрастет его излучение и температура уже не будет подниматься. Газовое дав­ление остается небольшим, и оно не препятствует даль­нейшему сжатию газа. В результате, в межзвездных ударных волнах, которые лучше называть «скачками уплотнения», могут возникнуть очень большие скачки концентрации. Величину скачка п 2 /п 1 можно опреде­лить, если сравнить газовое давление в сжатой области (т. е. величину, пропорциональную n 2 RT ) с динамиче­ским давлением налетающего потока газа, пропорцио­нальным п 1 v 2 . Таким образом, получаем, что скачок концентрации в межзвездной ударной волне характери­зуется величиной n 2 /п 1 ~мю v 2 / RT ~ v 2 / c s 2 , где Т - обыч­ная температура межзвездного газа (около 10 4 К в зо­нах НII и много меньше, 10-20 К, в молекулярных об­лаках). Читатель может легко убедиться, что даже при небольших скоростях движения газа (например, при скорости 7-8 км/с, - обычной скорости межзвездных облаков) можно получить (при их столкновении друг с другом) скачки уплотнения в десятки и даже сотни раз меняющейся концентрации.

Конечно, случай, изображенный на рис. 16, есть идеализация - в межзвездном пространстве труб нет, но общие особенности движения там именно таковы.

Один из важных случаев динамики межзвездной среды изображен на рис. 17 - падение межзвездного газа под действием собственной силы тяжести к центру облака. Это падение создает в центре облака область сжатия, окруженную распространяющимся от центра сферическим скачком уплотнения. Очевидно, что и здесь может быть очень сильное сжатие вещества, но уже в реальном объекте, т. е. данное явление очень возмож­но при формировании звезд.

Третья особенность межзвездной газодинамики - существенная роль магнитных полей. Рассмотрим эту особенность на примере, знакомом читателю из курса школьной физики. Если через магнитное поле переме­щать проводник, то в нем индуцируется электрический ток, который, в свою очередь, создает магнитное поле. В результате взаимодействия этих полей возникает си­ла, тормозящая перемеще­ние проводника (правило Ленца). Когда электриче­ское сопротивление провод­ника велико, индуцирован­ные токи и магнитные поля оказываются слабыми и проводники легко переме­щаются в магнитном поле. Но если электрическое со­противление проводника очень мало, то возникают довольно сильные индуци­рованные токи, и сила со­противления перемещению проводника существенно возрастает - проводник «застревает». Известно, на­пример, что сверхпро­водник вообще невозможно втолкнуть в область, заня­тую магнитным полем. (Напоминаем, что если провод­ник движется вдоль магнитного поля, то в нем вообще не возникает ток и сопротивления такому движению нет.)

А теперь вернемся к межзвездному газу. Здесь, как мы знаем, много свободных электронов, и поэтому электропроводность межзвездного газа достаточно вели­ка (даже лучше, чем электропроводность меди). Поэтому перемещение такого газа через межзвездное магнит­ное поле вполне можно уподобить перемещению хоро­шего металлического проводника в этом же поле. Здесь нужно еще учесть, что огромные размеры межзвездных облаков делают эффект их торможения в магнитном поле очень заметным.

Таким образом, межзвездное магнитное поле должно тормозить движение межзвездных облаков поперек на­правления поля и не препятствовать их движению вдоль поля. Можно ожидать, что потоки межзвездного газа направлены преимущественно вдоль магнитных сило­вых линий. Этот вывод подтверждается наблюдениями: действительно, газ чаще всего движется параллельно плоскости Галактики, причем и магнитное поле имеет примерно то же направление.

Однако, если межзвездное магнитное поле слабое, так что оно уже не может остановить движение газа поперек силовых линий, то тогда уже газ начинает ув­лекать с собой и магнитное поле. Иными словами, дви­жущиеся потоки газа будут как бы тянуть за собой магнитные силовые линии, вытягивая и закручивая их. В этом случае говорят, что магнитные силовые линии «вморожены» в межзвездный газ (или межзвездный газ «приклеен» к магнитным силовым линиям).

Из определения понятия силовых линий магнитного поля известно, что напряженность магнитного поля Я (или магнитная индукция В) пропорциональна числу силовых линий, проходящих через единичную площад­ку. Когда движение газа вытягивает и «запутывает» маг­нитные силовые линии, то оно тем самым увеличивает Н (и В). Можно сказать, что здесь кинетическая энер­гия газа переходит в магнитную энергию. Рост магнит­ного поля при движении газа приостанавливается тог­да, когда эти энергии оказываются одного порядка: pv 2 /2~ B 2 /8п (здесь р - плотность газа; слева стоит плотность кинетической энергии, справа - плотность магнитной энергии). Особенно заметно усиление маг­нитного поля в упомянутых выше скачках плотности. Увеличение плотности сопровождается, в силу принципа «вмороженности» поля, пропорциональным увеличением величины В.

Четвертой особенностью межзвездной газодинамики является существование ионизационных фронтов - дви­жущихся границ между зонами НII и областями HI. Они появляются вследствие того, что газовое давление в зонах НИ обычно Много больше, чем газовое давле­ние в областях HI. В самом деле, рассматривая меж­звездную термодинамику, мы убедились, что в двухкомпонентной системе, состоящей из облаков и межоблач­ной среды, величина давления (а точнее, произведение пТ ) не больше 3 10 3 К/см 3 . С другой стороны, в зоне НИ, где Т =10 4 К, эта величина при «стандартном» значении концентрации протонов и электронов (п~с м -3) больше, а при больших концентрациях раз­личие еще более заметно.

Таким образом, зоны НII должны расширяться в ок­ружающее пространство. Но при расширении плотность газа внутри зоны падает, уменьшается число рекомби­наций, и в результате в этой зоне остается часть «не­использованных» ионизирующих квантов. Они проходят через границу первоначальной массы зоны НII и иони­зируют новые атомы водорода. Таким образом, весь про­цесс состоит не только из расширения вещества самой зоны НII, но и из еще более быстрого продвижения границы между областями ионизованного и неионизиро­ванного водорода - зона НII растет как по своим раз­мерам, так и по величине своей массы.

Такое перемещение границы зоны НII называется движением ионизационного фронта, скорость перемеще­ния которого можно сравнить со скоростью звука в об­ласти HI. Если скорость ионизационного фронта боль­ше скорости звука в том же газе, то говорят о фронте R -типа. Здесь при переходе через этот фронт газ иони­зируется и уплотняется.

Наоборот, если скорость фронта меньше соответст­вующей скорости звука, то на ионизационном фронте (называемом фронтом D -типа) происходит уменьшение концентрации. Чтобы обеспечить это уменьшение, фронт D -типа часто «посылает» перед собой ударную волну, которая предварительно «поджимает» газ в области HI.

Как только в области HI образуется новая горячая звезда, она сначала создает маленькую зону НII, кото­рая быстро расширяется как ионизационный фронт R типа. Затем скорость расширенной зоны НII уменьша­ется, вперед посылается ударная волна, за которой на близком расстоянии следует ионизационный фронт D -типа.

Знание свойств межзвездной газодинамики совершенно необходимо для понимания процессов конденса­ции звезд из межзвездной среды - ведь эта конден­сация есть не что иное, как движение межзвездного газа. И как мы увидим ниже, особенности межзвезд­ной газодинамики проявляются в различных аспектах проблемы формирования звезд.

МЕЖЗВЕЗДНАЯ СРЕДА –это вещество, наблюдаемое в пространстве между звездами.

Лишь сравнительно недавно удалось доказать, что звезды существуют не в абсолютной пустоте и что космическое пространство не вполне прозрачно. Тем не менее такие предположения высказывались давно. Еще в середине 19 в. российский астроном В.Струве пытался (правда, без особого успеха) научными методами найти непреложные свидетельства того, что пространство не пустое, и в нем происходит поглощение света далеких звезд.

Наличие поглощающей разреженной среды было убедительно показано менее ста лет назад, в первой половине 20 в., путем сравнения наблюдаемых свойств далеких звездных скоплений на различных расстояниях от нас. Это было сделано независимо американским астрономом Робертом Трюмплером (1896–1956) и советским астрономом Б.А.Воронцовым-Вельяминовым (1904–1994), вернее, так была обнаружена одна из составляющих межзвездной среды – мекая пыль, из-за которой межзвездная среда оказывается не вполне прозрачной, особенно в направлениях, близких к направлению на Млечный Путь . Присутствие пыли означало, что и видимая яркость, и наблюдаемый цвет далеких звезд искажены, и чтобы узнать их истинные значения, нужен довольно сложный учет поглощения. Пыль, таким образом, была воспринята астрономами как досадная помеха, мешающая исследованию далеких объектов. Но одновременно возник интерес и к изучению пыли как физической среды – ученые стали выяснять, как пылинки возникают и разрушаются, как реагирует пыль на излучение, какую роль играет пыль в образовании звезд.

С развитием радиоастрономии во второй половине 20 в. появилась возможность исследовать межзвездную среду по ее радиоизлучению. В результате целенаправленных поисков было обнаружено излучение атомов нейтрального водорода в межзвездном пространстве на частоте 1420 МГц (что соответствует длине волны 21 см). Излучение на этой частоте (или, как говорят, в радиолинии) предсказал голландский астроном Хендрик ван де Хюлст в 1944 на основании квантовой механики, а обнаружено оно было в 1951 г. после расчета ее ожидаемой интенсивности советским астрофизиком И.С.Шкловским . Шкловский же указал и на возможность наблюдения излучения различных молекул в радиодиапазоне, которое, действительно, было позднее обнаружено. Масса межзвездного газа, состоящего из нейтральных атомов и очень холодного молекулярного газа, оказалось примерно в сто раз большей, чем масса разреженной пыли. Но газ совершенно прозрачен для видимого света, поэтому его нельзя было обнаружить теми же методами, какими была открыта пыль.

С появлением рентгеновских телескопов, устанавливаемых на космических обсерваториях, был обнаружен еще один, наиболее горячий компонент межзвездной среды – очень разреженный газ с температурой в миллионы и десятки миллионов градусов. Ни по оптическим наблюдениям, ни по наблюдениям в радиолиниях этот газ «увидеть» невозможно – среда слишком разрежена и полностью ионизована, но, тем не менее, он заполняет существенную долю объема всей нашей Галактики.

Быстрое развитие астрофизики, изучающей взаимодействие вещества и излучения в космическом пространстве, как и появление новых возможностей наблюдений, позволило детально исследовать физические процессы в межзвездной среде. Возникли целые научные направления – космическая газодинамика и космическая электродинамика, изучающие свойства разреженных космических сред. Астрономы научились определять расстояния до газовых облаков, измерять температуру, плотность и давление газа, его химический состав, оценивать скорости движения вещества. Во второй половине 20 в. выявилась сложная картина пространственного распределения межзвездной среды и ее взаимодействия со звездами. Оказалось, что от плотности и количества межзвездного газа и пыли зависит возможность зарождения звезд, а звезды (прежде всего, наиболее массивные из них), в свою очередь, меняют свойства окружающей межзвездной среды – нагревают ее, поддерживают непрестанное движение газа, пополняют среду своим веществом, меняют ее химический состав. Изучение такой сложной системы как «звезды – межзвездная среда» оказалось очень сложной астрофизической задачей, особенно если учесть, что общая масса межзвездной среды в Галактике и ее химический состав медленно изменяются под действием различных факторов. Поэтому можно сказать, что в межзвездной среде отражена вся история нашей звездной системы продолжительностью в миллиарды лет.

Эмиссионные газовые туманности. Большая часть межзвездной среды не доступна наблюдениям ни в какие оптические телескопы. Наиболее яркое исключение из этого правила – газовые эмиссионные туманности, наблюдавшиеся еще с самыми примитивными оптическими средствами. Самая известная из них – Большая туманность Ориона, которая видна даже невооруженным глазом (при условии очень хорошего зрения) и особенно красива при наблюдении в сильный бинокль или небольшой телескоп.

Известны многие сотни газовых туманностей на различных расстояниях от нас, причем почти все они сосредоточены вблизи полосы Млечного Пути – там, где чаще всего встречаются молодые горячие звезды.

В эмиссионных туманностях плотность газа значительно выше, чем в окружающем их пространстве, но и в них концентрация частиц составляет лишь десятки или сотни атомов в кубическом сантиметре. Такая среда по «земным» меркам не отличима от полного вакуума (для сравнения: концентрация частиц воздуха при нормальном атмосферном давлении составляет в среднем 3·10 19 молекул в см 3 , и даже наиболее мощные вакуумные насосы не создадут такой низкой плотности, какая существует в газовых туманностях). Туманность Ориона имеет сравнительно небольшой линейный размер (20–30 световых лет). Поскольку диаметры некоторых туманностей превышают 100 св. лет, полная масса газа в них может достигать десятков тысяч масс Солнца.

Эмиссионные туманности светятся потому, что внутри них или рядом с ними находятся звезды редкого типа – горячие голубые звезды-сверхгиганты. Правильнее эти звезды следовало бы назвать ультрафиолетовыми, поскольку их основное излучение происходит в жестком ультрафиолетовом диапазоне спектра. Излучение с длиной волны короче 91,2 нм очень эффективно поглощается межзвездными атомами водорода и ионизует их, т.е. разрывает в них связи между электронами и ядрами атомов – протонами. Этот процесс (ионизация) сбалансирован противоположным процессом (рекомбинация), в результате которого под действием взаимного притяжения электроны вновь объединяются с протонами в нейтральные атомы. Такой процесс сопровождается излучением электромагнитных квантов. Но обычно электрон, соединяясь с протоном в нейтральный атом, не сразу попадает на нижний энергетический уровень атома, а задерживается на нескольких промежуточных, и каждый раз при переходе между уровнями атом излучает фотон, энергия которого меньше, чем у того фотона, который ионизовал атом. В результате, один ультрафиолетовый фотон, ионизовавший атом, «дробится» на несколько оптических. Так газ преобразует не видимое глазом ультрафиолетовое излучение звезды в оптическое излучение, благодаря которому мы видим туманность.

Эмиссионные туманности типа Туманности Ориона – это газ, нагреваемый ультрафиолетовыми звездами. Ту же природу имеют и планетарные туманности, состоящие из газа, сбрасываемого стареющими звездами.

Но наблюдаются и светящиеся газовые туманности несколько иной природы, которые возникают при взрывных процессах в звездах. Прежде всего, это остатки взорвавшихся сверхновых звезд , примером которых может служить Крабовидная туманность в созвездии Тельца. Такие туманности нестационарны, их отличает быстрое расширение.

Внутри газовых остатков сверхновых звезд нет ярких ультрафиолетовых источников. Энергия их свечения – это преобразованная энергия газа, разлетающегося после взрыва звезды, плюс энергия, выделяемая сохранившимся остатком Сверхновой. В случае Крабовидной туманности таким остатком является компактная и быстро вращающаяся нейтронная звезда, непрерывно выбрасывающая в окружающее пространство потоки высокоэнергичных элементарных частиц. Через десятки тысяч лет подобные туманности, расширяясь, постепенно растворяются в межзвездной среде.

Межзвездная пыль. Даже беглый взгляд на изображение любой эмиссионной туманности достаточно большого размера позволяет увидеть на ее фоне резкие темные детали – пятна, струи, причудливые «заливы». Это – проектирующиеся на светлую туманность расположенные недалеко от нее небольшие и более плотные облака, непрозрачные вследствие того, что к газу всегда примешена межзвездная пыль, поглощающая свет.

Присутствует пыль и вне газовых облаков, заполняя (вместе с очень разреженным газом) все пространство между ними. Такая распределенная в пространстве пыль приводит к трудно учитываемому ослаблению света далеких звезд. Свет частично поглощается, а частично – рассеивается мелкими твердыми пылинками. Наиболее сильное ослабление наблюдается в направлениях, близких к направлению на Млечный Путь (на плоскость галактического диска). В этих направлениях, пройдя тысячу световых лет, видимый свет ослабляется примерно на 40 процентов. Если учесть, что протяженность нашей Галактики – десятки тысяч световых лет, то становится ясно, что мы можем исследовать звезды галактического диска лишь в небольшой его части. Чем короче длина волны излучения, тем сильнее поглощается свет, в результате чего далекие звезды кажутся покрасневшими. Поэтому межзвездное пространство прозрачнее всего для длинноволнового инфракрасного излучения. Лишь наиболее плотные газопылевые облака остаются непрозрачными даже для инфракрасного света.

Следы космической пыли можно увидеть и без телескопа. В безлунную летнюю или осеннюю ночь хорошо видно «раздвоение» полосы Млечного Пути в области созвездия Лебедя. Оно связано с близкими пылевыми облаками, слой которых закрывает лежащие позади них яркие области Млечного Пути. Можно найти темные участки и в других областях Млечного Пути. Наиболее плотные газопылевые облака, проектируясь на области неба, богатые звездами, выглядят темными пятнами даже в инфракрасном свете.

Иногда вблизи холодных газо-пылевых облаков располагаются яркие звезды. Тогда их свет рассеивается на пылинках и видна «отражательная туманность».

В отличие от эмиссионных туманностей, они имеют непрерывный спектр, как и спектр освещающих их звезд.

Изучая отраженный или прошедший сквозь облако свет звезд, можно многое узнать о частицах пыли. Например, поляризация света говорит о вытянутой форме пылинок, которые приобретают определенную ориентацию под действием межзвездного магнитного поля. Твердые частицы космической пыли имеют размер порядка 0,1–1 мкм. Вероятно, у них железо-силикатное или графитовое ядрышко, покрытое ледяной «шубой» из легких элементов. Графитовые и силикатные ядрышки пылинок, по-видимому, образуются в относительно прохладных атмосферах звезд-гигантов и выбрасываются затем в межзвездное пространство, где остывают и покрываются шубой из летучих элементов.

Полная масса пыли в Галактике составляет не более 1% от массы межзвездного газа, но и это немало, поскольку эквивалентно массе десятков миллионов таких звезд как Солнце.

Поглощая световую энергию звезд, пыль нагревается до небольшой температуры (обычно – на несколько десятков градусов выше абсолютного нуля), а излучает поглощенную энергию в форме очень длинноволнового инфракрасного излучения, которое на шкале электромагнитных волн занимает промежуточное положение между оптическим и радио диапазонами (длина волны – десятки и сотни микрометров). Это излучение, принимаемое телескопами, установленными на специализированных космических аппаратах, дает неоценимую информацию о массе пыли и источниках ее нагрева в нашей и других галактиках.

Атомарный, молекулярный и горячий газ. Межзвездный газ – это, в основном, смесь водорода (около 70%) и гелия (около 28%) с очень небольшой примесью более тяжелых химических элементов. Средняя концентрация частиц газа в межзвездном пространстве чрезвычайно мала и не превышает одной частицы на 1–2 кубических см. В объеме, равном объему земного шара, содержится около 1 кг межзвездного газа, но это только в среднем. Газ очень неоднороден как по плотности, так и по температуре.

Температура основной массы газа не превышает нескольких тысяч градусов – недостаточно высокой для того, чтобы водород или гелий был ионизован. Такой газ называют атомарным, поскольку он состоит из нейтральных атомов. Холодный атомарный газ практически не излучает в оптическом диапазоне, поэтому долгое время о нем почти ничего не было известно.

Самый распространенный атомарный газ – водород (условное обозначение – HI) – наблюдается по радиоизлучению на длине волны около 21 см. Радионаблюдения показали, что газ образует облака неправильной формы с температурой в несколько сотен кельвинов и более разреженную и горячую межоблачную среду. Полная масса атомарного газа в галактике достигает нескольких миллиардов масс Солнца.

В наиболее плотных облаках газ охлаждается, отдельные атомы объединяются в молекулы, и газ становится молекулярным. Самая распространенная молекула – Н 2 – не излучает ни в радио, ни в оптическом диапазоне (хотя у этих молекул есть линии поглощения в ультрафиолетовой области), и обнаружить молекулярный водород чрезвычайно трудно. К счастью, вместе с молекулярным водородом возникают десятки других молекул, содержащих более тяжелые элементы – такие как углерод, азот и кислород. По их радиоизлучению на определенных, хорошо известных частотах оценивается масса молекулярного газа. Пыль делает молекулярные облака непрозрачными для света, и именно они видны как темные пятна (прожилки) на более светлом фоне эмиссионных туманностей.

Радиоастрономические наблюдения позволили обнаружить в межзвездном пространстве довольно сложные молекулы: гидроксил OH; пары воды H 2 O и аммиака NH, формальдегид H 2 CO, окись углерода CO, метанол (древесный спирт) CH 3 OH, этиловый (винный) спирт CH 3 CH 2 OH и еще десятки других, даже более сложных молекул. Все они найдены в плотных и холодных газопылевых облаках, пыль в которых защищает хрупкие молекулы от разрушающего влияния ультрафиолетового излучения горячих звезд. Вероятно, поверхность холодных пылинок служит как раз тем местом, где образуются сложные молекулы из налипших на пылинку отдельных атомов. Чем плотнее и массивнее облако, тем большее разнообразие молекул в нем обнаруживается.

Молекулярные облака очень разнообразны.

Некоторые небольшие облачка мы видим интенсивно «испаряющимися» под действием света близких звезд. Существуют, однако, и гигантские очень холодные облака с массой, превышающей миллион масс Солнца (подобных образований в нашей Галактике больше сотни). Такие облака называются гигантскими молекулярными облаками. Для них существенным является собственное гравитационное поле, удерживающее газ от расширения. Температура в их недрах лишь на несколько кельвинов выше абсолютного нуля.

Молодые горячие звезды могут своим коротковолновым излучением нагревать и разрушать молекулярные облака. Особенно много энергии выделяется и сообщается межзвездному газу при взрывах сверхновых, а также веществом, интенсивно истекающим из атмосфер горячих звезд большой светимости (звездным ветром массивных звезд). Газ расширяется и нагревается до миллиона и более градусов. Эта горячая разреженная среда образует гигантские «пузыри» в более холодном межзвездном газе, размеры которых иногда составляют сотни световых лет. Такой газ часто называют «корональным» – по аналогии с газом горячей солнечной короны, хотя межзвездный горячий газ на несколько порядков разреженнее, чем газ короны. Наблюдается такой горячий газ по слабому тепловому рентгеновскому излучению или по ультрафиолетовым линиям, принадлежащим некоторым частично ионизованным элементам.

Космические лучи. Помимо газа и пыли, межзвездное пространство заполнено также очень энергичными частицами «космических лучей», имеющими электрический заряд – электронами, протонами и ядрами некоторых элементов. Эти частицы летят практически со скоростью света по всем возможным направлениям. Их основным (но не единственным) источником служат взрывы сверхновых звезд. Энергия частиц космических лучей на много порядков превышает их энергию покоя Е = m 0 c 2 (здесь m 0 – масса покоя частицы, с – скорость света), и обычно находится в пределах 10 10 – 10 19 эВ (1 эВ = 1,6 ґ 10 –19 Дж), в очень редких случаях достигая и более высоких значений. Частицы движутся в слабом магнитном поле межзвездного пространства, индукция которого примерно в сто тысяч раз меньше, чем у магнитного поля Земли. Межзвездное магнитное поле, действуя на заряженные частицы с силой, зависящей от их энергии, «запутывает» траектории частиц, и они непрерывно меняют направление своего движения в Галактике. Лишь наиболее высокоэнергичные космические лучи движутся по слабо искривленным путям и по этому не удерживаются в Галактике, уходя в межгалактическое пространство.

Частицы космических лучей, достигающие нашей планеты, сталкиваются с атомами воздуха и, разбивая их, рождают новые многочисленные элементарные частицы, которые образуют настоящие «ливни», выпадая на земную поверхность. Эти частицы (их называют вторичными космическими лучами) удается непосредственно регистрировать лабораторными приборами. Первичные же космические лучи до поверхности Земли практически не доходят, их можно регистрировать за пределами атмосферы. Но о наличии быстрых частиц в межзвездном пространстве удается узнать и по косвенным признакам – по характерному излучению, которое они производят при своем движении.

Заряженные частицы, летящие в межзвездном магнитном поле, отклоняются от прямых траекторий под действием силы Лоренца. Их траектории словно «наматываются» на линии магнитной индукции. Но любое не-прямолинейное движение заряженных частиц, как известно из физики, приводит к излучению электромагнитных волн и постепенной потере энергии частицами. Длина волны излучения космических частиц соответствует радиодиапазону. Особенно эффективно излучают легкие электроны, на движение которых межзвездное магнитное поле влияет сильнее всего из-за их очень малой массы. Это излучение названо синхротронным, поскольку в физических лабораториях оно тоже наблюдается, когда электроны разгоняют в магнитных полях в специальных установках – синхротронах, используемых для получения высокоэнергичных электронов.

Радиотелескопы (см . РАДИОАСТРОНОМИЯ ) принимают синхротронное излучение не только от всех областей Млечного Пути, но и от других галактик. Это доказывает наличие там магнитных полей и космических лучей. Синхротронное излучение заметно усилено в спиральных рукавах галактик, где больше плотность межзвездной среды, интенсивнее магнитное поле и чаще происходят взрывы сверхновых – источники космических лучей. Характерной особенностью синхротронного излучения служит его спектр, не похожий на спектр излучения нагретых сред, и сильная поляризация, связанная с направленностью магнитного поля.

Крупномасштабное распределение межзвездной среды. Основная масса газа и пыли концентрируется вблизи плоскости нашей Галактики. Именно там сосредоточены наблюдаемые эмиссионные туманности, облака атомарного и молекулярного газа. Аналогичная картина наблюдается и в других галактиках, похожих на нашу. Когда далекая галактика развернута к нам так, что ее звездный диск виден «с ребра», диск кажется пересеченным темной полосой. Темная полоса – это слой межзвездной среды, непрозрачный из-за наличия пылевых частиц.

Толщина слоя межзвездного газа и пыли обычно составляет несколько сотен св. лет, а диаметр – десятки и сотни тысяч св. лет, поэтому такой слой можно считать сравнительно тонким. Объяснение концентрации межзвездной среды в тонкий диск достаточно простое и кроется в свойствах атомов газа (и облаков газа) терять энергию при столкновении друг с другом, которые непрерывно происходят в межзвездном пространстве. Благодаря этому газ скапливается там, где его полная (кинетическая + потенциальная) энергия минимальна – в плоскости звездного диска, притягивающего газ. Именно притяжение звезд не дает газу далеко отойти от плоскости диска.

Но и внутри диска Галактики газ распределен неравномерно. В центре Галактики выделяется молекулярный диск размером несколько сотен св. лет. Дальше от центра плотность газа падает, но быстро возрастает вновь, образуя гигантское газовое кольцо радиусом более 10 тыс. св. лет и шириной в несколько тысяч св. лет. Солнце находится за его пределами. В окрестностях Солнца средние плотности молекулярного и атомарного газа сопоставимы, а на еще больших расстояниях от центра преобладает атомарный газ. Внутри слоя межзвездной среды наибольшая плотность газа и пыли достигается в спиральных рукавах Галактики. Там особенно часто встречаются молекулярные облака и эмиссионные туманности, и рождаются звезды.

Рождение звезд. Когда астрономы научились измерять возраст звезд и выделять короткоживущие молодые звезды, было выявлено, что образование звезд происходит чаще всего там, где концентрируется межзвездная газопылевая среда – вблизи плоскости нашей Галактики, в ее спиральных ветвях. Ближайшие к нам области звездообразования связаны с комплексом молекулярных облаков в Тельце и Змееносце. Немногим дальше расположен огромный комплекс облаков в Орионе, где наблюдается большое количество недавно родившихся звезд, в том числе массивных и очень горячих, и несколько сравнительно крупных эмиссионных туманностей. Именно ультрафиолетовым излучением горячей звезды нагрета часть одного из облаков, которую мы видим как Большую туманность Ориона. Эмиссионные туманности той же природы, что и Туманность Ориона, всегда служат надежным индикатором тех областей Галактики, где рождаются звезды.

Звезды зарождаются в недрах холодных молекулярных облаков, где из-за сравнительно высокой плотности и очень низкой температуры газа силы тяготения играют очень важную роль и в состоянии вызвать сжатие отдельных уплотнений среды. Они сжимаются под действием сил собственного тяготения и постепенно разогреваются до образования горячих газовых шаров – молодых звезд. Наблюдать развитие этого процесса очень трудно, поскольку он может продолжаться миллионы лет и происходит в мало прозрачной (из-за пыли) среде.

Формирование звезд может происходить не только в крупных молекулярных облаках, но и в сравнительно небольших, но плотных. Их называют глобулами. Они видны на фоне неба как компактные и абсолютно непрозрачные объекты. Типичный размер глобул – от десятых долей до нескольких св. лет, масса – десятки и сотни масс Солнца.

В общих чертах процесс формирования звезд понятен. Пыль во внешних слоях облака задерживает свет звезд, расположенных снаружи, поэтому облако оказывается лишенным внешнего подогрева. В результате внутренняя часть облака сильно охлаждается, давление газа в нем падает, и газ уже не может сопротивляться взаимному притяжению своих частей – происходит сжатие. Быстрее всего сжимаются наиболее плотные части облака, там и образуются звезды. Они возникают всегда группами. Сначала это медленно вращающиеся и медленно сжимающиеся сравнительно холодные газовые шары различной массы, но когда температура в их недрах достигает миллионов градусов, в центре звезд начинаются термоядерные реакции, при которых выделяется большое количество энергии. Упругость горячего газа останавливает сжатие, возникает стационарная звезда, излучающая как большое нагретое тело.

Очень молодые звезды часто окружены пылевой оболочкой – остатками вещества, не успевшими еще упасть на звезду. Эта оболочка не выпускает изнутри звездный свет и полностью преобразует его в инфракрасное излучение. Поэтому самые молодые звезды обычно проявляют себя лишь как инфракрасные источники в недрах газовых облаков. И лишь позднее пространство вокруг молодой звезды расчищается и ее лучи прорываются в межзвездное пространство. Часть вещества, окружавшего формирующуюся звезду, может образовать вокруг нее вращающийся газопылевой диск, в котором со временем возникнут планеты.

Звезды типа Солнца после своего возникновения мало влияют на окружающую межзвездную среду. Но часть рождающихся звезд имеет очень большую массу – в десять и более раз больше, чем у Солнца. Мощное ультрафиолетовое излучение таких звезд и интенсивный звездный ветер сообщают тепловую и кинетическую энергию большим массам окружающего газа. Часть звезд взрывается как сверхновые, выбрасывая с большими скоростями гигантскую массу вещества в межзвездную среду. Поэтому звезды не только образуются из газа, но и во многом определяют его физические свойства. Звезды и газ можно рассматривать как единую систему со сложными внутренними связями. Однако в деталях процесс формирования звезд очень сложен и не до конца еще изучен. Известны физические процессы, которые стимулируют сжатие газа и рождение звезд, как и процессы, которые тормозят его. По этой причине связь между плотностью межзвездной среды в данной области Галактики и интенсивностью звездообразования в ней не однозначна

Анатолий Засов

ЛИТЕРАТУРА

Каплан С.А., Пикельнер С.Б. Физика межзвездной среды . М., 1979
Шкловский И.С. Звезды: их рождение, жизнь и смерть . М., 1984
Спитцер Л. Пространство между звездами . М., 1986
Бочкарев Н.Г. Основы физики межзвездной среды . М., 1992
Сурдин В.Г. Рождение звезд . М., 1997
Кононович Э.В., Мороз В.И. Общий курс астрономии . М., 2001

Лишь сравнительно недавно удалось доказать, что звезды существуют не в абсолютной пустоте и что космическое пространство не вполне прозрачно. Тем не менее такие предположения высказывались давно. Еще в середине 19 в. российский астроном В.Струве пытался (правда, без особого успеха) научными методами найти непреложные свидетельства того, что пространство не пустое, и в нем происходит поглощение света далеких звезд.

Наличие поглощающей разреженной среды было убедительно показано менее ста лет назад, в первой половине 20 в., путем сравнения наблюдаемых свойств далеких звездных скоплений на различных расстояниях от нас. Это было сделано независимо американским астрономом Робертом Трюмплером (1896–1956) и советским астрономом Б.А.Воронцовым-Вельяминовым (1904–1994), вернее, так была обнаружена одна из составляющих межзвездной среды – мелкая пыль, из-за которой межзвездная среда оказывается не вполне прозрачной, особенно в направлениях, близких к направлению на Млечный Путь . Присутствие пыли означало, что и видимая яркость, и наблюдаемый цвет далеких звезд искажены, и чтобы узнать их истинные значения, нужен довольно сложный учет поглощения. Пыль, таким образом, была воспринята астрономами как досадная помеха, мешающая исследованию далеких объектов. Но одновременно возник интерес и к изучению пыли как физической среды – ученые стали выяснять, как пылинки возникают и разрушаются, как реагирует пыль на излучение, какую роль играет пыль в образовании звезд.

С развитием радиоастрономии во второй половине 20 в. появилась возможность исследовать межзвездную среду по ее радиоизлучению. В результате целенаправленных поисков было обнаружено излучение атомов нейтрального водорода в межзвездном пространстве на частоте 1420 МГц (что соответствует длине волны 21 см). Излучение на этой частоте (или, как говорят, в радиолинии) предсказал голландский астроном Хендрик ван де Хюлст в 1944 на основании квантовой механики, а обнаружено оно было в 1951 г. после расчета ее ожидаемой интенсивности советским астрофизиком И.С.Шкловским . Шкловский же указал и на возможность наблюдения излучения различных молекул в радиодиапазоне, которое, действительно, было позднее обнаружено. Масса межзвездного газа, состоящего из нейтральных атомов и очень холодного молекулярного газа, оказалось примерно в сто раз большей, чем масса разреженной пыли. Но газ совершенно прозрачен для видимого света, поэтому его нельзя было обнаружить теми же методами, какими была открыта пыль.

С появлением рентгеновских телескопов, устанавливаемых на космических обсерваториях, был обнаружен еще один, наиболее горячий компонент межзвездной среды – очень разреженный газ с температурой в миллионы и десятки миллионов градусов. Ни по оптическим наблюдениям, ни по наблюдениям в радиолиниях этот газ «увидеть» невозможно – среда слишком разрежена и полностью ионизована, но, тем не менее, он заполняет существенную долю объема всей нашей Галактики.

Быстрое развитие астрофизики, изучающей взаимодействие вещества и излучения в космическом пространстве, как и появление новых возможностей наблюдений, позволило детально исследовать физические процессы в межзвездной среде. Возникли целые научные направления – космическая газодинамика и космическая электродинамика, изучающие свойства разреженных космических сред. Астрономы научились определять расстояния до газовых облаков, измерять температуру, плотность и давление газа, его химический состав, оценивать скорости движения вещества. Во второй половине 20 в. выявилась сложная картина пространственного распределения межзвездной среды и ее взаимодействия со звездами. Оказалось, что от плотности и количества межзвездного газа и пыли зависит возможность зарождения звезд, а звезды (прежде всего, наиболее массивные из них), в свою очередь, меняют свойства окружающей межзвездной среды – нагревают ее, поддерживают непрестанное движение газа, пополняют среду своим веществом, меняют ее химический состав. Изучение такой сложной системы как «звезды – межзвездная среда» оказалось очень сложной астрофизической задачей, особенно если учесть, что общая масса межзвездной среды в Галактике и ее химический состав медленно изменяются под действием различных факторов. Поэтому можно сказать, что в межзвездной среде отражена вся история нашей звездной системы продолжительностью в миллиарды лет.

Эмиссионные газовые туманности.

Большая часть межзвездной среды не доступна наблюдениям ни в какие оптические телескопы. Наиболее яркое исключение из этого правила – газовые эмиссионные туманности, наблюдавшиеся еще с самыми примитивными оптическими средствами. Самая известная из них – Большая туманность Ориона, которая видна даже невооруженным глазом (при условии очень хорошего зрения) и особенно красива при наблюдении в сильный бинокль или небольшой телескоп.

Известны многие сотни газовых туманностей на различных расстояниях от нас, причем почти все они сосредоточены вблизи полосы Млечного Пути – там, где чаще всего встречаются молодые горячие звезды.

В эмиссионных туманностях плотность газа значительно выше, чем в окружающем их пространстве, но и в них концентрация частиц составляет лишь десятки или сотни атомов в кубическом сантиметре. Такая среда по «земным» меркам не отличима от полного вакуума (для сравнения: концентрация частиц воздуха при нормальном атмосферном давлении составляет в среднем 3·10 19 молекул в см 3 , и даже наиболее мощные вакуумные насосы не создадут такой низкой плотности, какая существует в газовых туманностях). Туманность Ориона имеет сравнительно небольшой линейный размер (20–30 световых лет). Поскольку диаметры некоторых туманностей превышают 100 св. лет, полная масса газа в них может достигать десятков тысяч масс Солнца.

Эмиссионные туманности светятся потому, что внутри них или рядом с ними находятся звезды редкого типа – горячие голубые звезды-сверхгиганты. Правильнее эти звезды следовало бы назвать ультрафиолетовыми, поскольку их основное излучение происходит в жестком ультрафиолетовом диапазоне спектра. Излучение с длиной волны короче 91,2 нм очень эффективно поглощается межзвездными атомами водорода и ионизует их, т.е. разрывает в них связи между электронами и ядрами атомов – протонами. Этот процесс (ионизация) сбалансирован противоположным процессом (рекомбинация), в результате которого под действием взаимного притяжения электроны вновь объединяются с протонами в нейтральные атомы. Такой процесс сопровождается излучением электромагнитных квантов. Но обычно электрон, соединяясь с протоном в нейтральный атом, не сразу попадает на нижний энергетический уровень атома, а задерживается на нескольких промежуточных, и каждый раз при переходе между уровнями атом излучает фотон, энергия которого меньше, чем у того фотона, который ионизовал атом. В результате, один ультрафиолетовый фотон, ионизовавший атом, «дробится» на несколько оптических. Так газ преобразует не видимое глазом ультрафиолетовое излучение звезды в оптическое излучение, благодаря которому мы видим туманность.

Эмиссионные туманности типа Туманности Ориона – это газ, нагреваемый ультрафиолетовыми звездами. Ту же природу имеют и планетарные туманности, состоящие из газа, сбрасываемого стареющими звездами.

Но наблюдаются и светящиеся газовые туманности несколько иной природы, которые возникают при взрывных процессах в звездах. Прежде всего, это остатки взорвавшихся сверхновых звезд , примером которых может служить Крабовидная туманность в созвездии Тельца. Такие туманности нестационарны, их отличает быстрое расширение.

Внутри газовых остатков сверхновых звезд нет ярких ультрафиолетовых источников. Энергия их свечения – это преобразованная энергия газа, разлетающегося после взрыва звезды, плюс энергия, выделяемая сохранившимся остатком Сверхновой. В случае Крабовидной туманности таким остатком является компактная и быстро вращающаяся нейтронная звезда, непрерывно выбрасывающая в окружающее пространство потоки высокоэнергичных элементарных частиц. Через десятки тысяч лет подобные туманности, расширяясь, постепенно растворяются в межзвездной среде.

Межзвездная пыль.

Даже беглый взгляд на изображение любой эмиссионной туманности достаточно большого размера позволяет увидеть на ее фоне резкие темные детали – пятна, струи, причудливые «заливы». Это – проектирующиеся на светлую туманность расположенные недалеко от нее небольшие и более плотные облака, непрозрачные вследствие того, что к газу всегда примешена межзвездная пыль, поглощающая свет.

Присутствует пыль и вне газовых облаков, заполняя (вместе с очень разреженным газом) все пространство между ними. Такая распределенная в пространстве пыль приводит к трудно учитываемому ослаблению света далеких звезд. Свет частично поглощается, а частично – рассеивается мелкими твердыми пылинками. Наиболее сильное ослабление наблюдается в направлениях, близких к направлению на Млечный Путь (на плоскость галактического диска). В этих направлениях, пройдя тысячу световых лет, видимый свет ослабляется примерно на 40 процентов. Если учесть, что протяженность нашей Галактики – десятки тысяч световых лет, то становится ясно, что мы можем исследовать звезды галактического диска лишь в небольшой его части. Чем короче длина волны излучения, тем сильнее поглощается свет, в результате чего далекие звезды кажутся покрасневшими. Поэтому межзвездное пространство прозрачнее всего для длинноволнового инфракрасного излучения. Лишь наиболее плотные газопылевые облака остаются непрозрачными даже для инфракрасного света.

Следы космической пыли можно увидеть и без телескопа. В безлунную летнюю или осеннюю ночь хорошо видно «раздвоение» полосы Млечного Пути в области созвездия Лебедя. Оно связано с близкими пылевыми облаками, слой которых закрывает лежащие позади них яркие области Млечного Пути. Можно найти темные участки и в других областях Млечного Пути. Наиболее плотные газопылевые облака, проектируясь на области неба, богатые звездами, выглядят темными пятнами даже в инфракрасном свете.

Иногда вблизи холодных газо-пылевых облаков располагаются яркие звезды. Тогда их свет рассеивается на пылинках и видна «отражательная туманность».

В отличие от эмиссионных туманностей, они имеют непрерывный спектр, как и спектр освещающих их звезд.

Изучая отраженный или прошедший сквозь облако свет звезд, можно многое узнать о частицах пыли. Например, поляризация света говорит о вытянутой форме пылинок, которые приобретают определенную ориентацию под действием межзвездного магнитного поля. Твердые частицы космической пыли имеют размер порядка 0,1–1 мкм. Вероятно, у них железо-силикатное или графитовое ядрышко, покрытое ледяной «шубой» из легких элементов. Графитовые и силикатные ядрышки пылинок, по-видимому, образуются в относительно прохладных атмосферах звезд-гигантов и выбрасываются затем в межзвездное пространство, где остывают и покрываются шубой из летучих элементов.

Полная масса пыли в Галактике составляет не более 1% от массы межзвездного газа, но и это немало, поскольку эквивалентно массе десятков миллионов таких звезд как Солнце.

Поглощая световую энергию звезд, пыль нагревается до небольшой температуры (обычно – на несколько десятков градусов выше абсолютного нуля), а излучает поглощенную энергию в форме очень длинноволнового инфракрасного излучения, которое на шкале электромагнитных волн занимает промежуточное положение между оптическим и радио диапазонами (длина волны – десятки и сотни микрометров). Это излучение, принимаемое телескопами, установленными на специализированных космических аппаратах, дает неоценимую информацию о массе пыли и источниках ее нагрева в нашей и других галактиках.

Атомарный, молекулярный и горячий газ.

Межзвездный газ – это, в основном, смесь водорода (около 70%) и гелия (около 28%) с очень небольшой примесью более тяжелых химических элементов. Средняя концентрация частиц газа в межзвездном пространстве чрезвычайно мала и не превышает одной частицы на 1–2 кубических см. В объеме, равном объему земного шара, содержится около 1 кг межзвездного газа, но это только в среднем. Газ очень неоднороден как по плотности, так и по температуре.

Температура основной массы газа не превышает нескольких тысяч градусов – недостаточно высокой для того, чтобы водород или гелий был ионизован. Такой газ называют атомарным, поскольку он состоит из нейтральных атомов. Холодный атомарный газ практически не излучает в оптическом диапазоне, поэтому долгое время о нем почти ничего не было известно.

Самый распространенный атомарный газ – водород (условное обозначение – HI) – наблюдается по радиоизлучению на длине волны около 21 см. Радионаблюдения показали, что газ образует облака неправильной формы с температурой в несколько сотен кельвинов и более разреженную и горячую межоблачную среду. Полная масса атомарного газа в галактике достигает нескольких миллиардов масс Солнца.

В наиболее плотных облаках газ охлаждается, отдельные атомы объединяются в молекулы, и газ становится молекулярным. Самая распространенная молекула – Н 2 – не излучает ни в радио, ни в оптическом диапазоне (хотя у этих молекул есть линии поглощения в ультрафиолетовой области), и обнаружить молекулярный водород чрезвычайно трудно. К счастью, вместе с молекулярным водородом возникают десятки других молекул, содержащих более тяжелые элементы – такие как углерод, азот и кислород. По их радиоизлучению на определенных, хорошо известных частотах оценивается масса молекулярного газа. Пыль делает молекулярные облака непрозрачными для света, и именно они видны как темные пятна (прожилки) на более светлом фоне эмиссионных туманностей.

Радиоастрономические наблюдения позволили обнаружить в межзвездном пространстве довольно сложные молекулы: гидроксил OH; пары воды H 2 O и аммиака NH, формальдегид H 2 CO, окись углерода CO, метанол (древесный спирт) CH 3 OH, этиловый (винный) спирт CH 3 CH 2 OH и еще десятки других, даже более сложных молекул. Все они найдены в плотных и холодных газопылевых облаках, пыль в которых защищает хрупкие молекулы от разрушающего влияния ультрафиолетового излучения горячих звезд. Вероятно, поверхность холодных пылинок служит как раз тем местом, где образуются сложные молекулы из налипших на пылинку отдельных атомов. Чем плотнее и массивнее облако, тем большее разнообразие молекул в нем обнаруживается.

Молекулярные облака очень разнообразны.

Некоторые небольшие облачка мы видим интенсивно «испаряющимися» под действием света близких звезд. Существуют, однако, и гигантские очень холодные облака с массой, превышающей миллион масс Солнца (подобных образований в нашей Галактике больше сотни). Такие облака называются гигантскими молекулярными облаками. Для них существенным является собственное гравитационное поле, удерживающее газ от расширения. Температура в их недрах лишь на несколько кельвинов выше абсолютного нуля.

Молодые горячие звезды могут своим коротковолновым излучением нагревать и разрушать молекулярные облака. Особенно много энергии выделяется и сообщается межзвездному газу при взрывах сверхновых, а также веществом, интенсивно истекающим из атмосфер горячих звезд большой светимости (звездным ветром массивных звезд). Газ расширяется и нагревается до миллиона и более градусов. Эта горячая разреженная среда образует гигантские «пузыри» в более холодном межзвездном газе, размеры которых иногда составляют сотни световых лет. Такой газ часто называют «корональным» – по аналогии с газом горячей солнечной короны, хотя межзвездный горячий газ на несколько порядков разреженнее, чем газ короны. Наблюдается такой горячий газ по слабому тепловому рентгеновскому излучению или по ультрафиолетовым линиям, принадлежащим некоторым частично ионизованным элементам.

Космические лучи.

Помимо газа и пыли, межзвездное пространство заполнено также очень энергичными частицами «космических лучей», имеющими электрический заряд – электронами, протонами и ядрами некоторых элементов. Эти частицы летят практически со скоростью света по всем возможным направлениям. Их основным (но не единственным) источником служат взрывы сверхновых звезд. Энергия частиц космических лучей на много порядков превышает их энергию покоя Е = m 0c 2 (здесь m 0 – масса покоя частицы, с – скорость света), и обычно находится в пределах 10 10 – 10 19 эВ (1 эВ = 1,6 ґ 10 –19 Дж), в очень редких случаях достигая и более высоких значений. Частицы движутся в слабом магнитном поле межзвездного пространства, индукция которого примерно в сто тысяч раз меньше, чем у магнитного поля Земли. Межзвездное магнитное поле, действуя на заряженные частицы с силой, зависящей от их энергии, «запутывает» траектории частиц, и они непрерывно меняют направление своего движения в Галактике. Лишь наиболее высокоэнергичные космические лучи движутся по слабо искривленным путям и по этому не удерживаются в Галактике, уходя в межгалактическое пространство.

Частицы космических лучей, достигающие нашей планеты, сталкиваются с атомами воздуха и, разбивая их, рождают новые многочисленные элементарные частицы, которые образуют настоящие «ливни», выпадая на земную поверхность. Эти частицы (их называют вторичными космическими лучами) удается непосредственно регистрировать лабораторными приборами. Первичные же космические лучи до поверхности Земли практически не доходят, их можно регистрировать за пределами атмосферы. Но о наличии быстрых частиц в межзвездном пространстве удается узнать и по косвенным признакам – по характерному излучению, которое они производят при своем движении.

Заряженные частицы, летящие в межзвездном магнитном поле, отклоняются от прямых траекторий под действием силы Лоренца. Их траектории словно «наматываются» на линии магнитной индукции. Но любое не-прямолинейное движение заряженных частиц, как известно из физики, приводит к излучению электромагнитных волн и постепенной потере энергии частицами. Длина волны излучения космических частиц соответствует радиодиапазону. Особенно эффективно излучают легкие электроны, на движение которых межзвездное магнитное поле влияет сильнее всего из-за их очень малой массы. Это излучение названо синхротронным, поскольку в физических лабораториях оно тоже наблюдается, когда электроны разгоняют в магнитных полях в специальных установках – синхротронах, используемых для получения высокоэнергичных электронов.

Радиотелескопы (см . РАДИОАСТРОНОМИЯ) принимают синхротронное излучение не только от всех областей Млечного Пути, но и от других галактик. Это доказывает наличие там магнитных полей и космических лучей. Синхротронное излучение заметно усилено в спиральных рукавах галактик, где больше плотность межзвездной среды, интенсивнее магнитное поле и чаще происходят взрывы сверхновых – источники космических лучей. Характерной особенностью синхротронного излучения служит его спектр, не похожий на спектр излучения нагретых сред, и сильная поляризация, связанная с направленностью магнитного поля.

Крупномасштабное распределение межзвездной среды.

Основная масса газа и пыли концентрируется вблизи плоскости нашей Галактики. Именно там сосредоточены наблюдаемые эмиссионные туманности, облака атомарного и молекулярного газа. Аналогичная картина наблюдается и в других галактиках, похожих на нашу. Когда далекая галактика развернута к нам так, что ее звездный диск виден «с ребра», диск кажется пересеченным темной полосой. Темная полоса – это слой межзвездной среды, непрозрачный из-за наличия пылевых частиц.

Толщина слоя межзвездного газа и пыли обычно составляет несколько сотен св. лет, а диаметр – десятки и сотни тысяч св. лет, поэтому такой слой можно считать сравнительно тонким. Объяснение концентрации межзвездной среды в тонкий диск достаточно простое и кроется в свойствах атомов газа (и облаков газа) терять энергию при столкновении друг с другом, которые непрерывно происходят в межзвездном пространстве. Благодаря этому газ скапливается там, где его полная (кинетическая + потенциальная) энергия минимальна – в плоскости звездного диска, притягивающего газ. Именно притяжение звезд не дает газу далеко отойти от плоскости диска.

Но и внутри диска Галактики газ распределен неравномерно. В центре Галактики выделяется молекулярный диск размером несколько сотен св. лет. Дальше от центра плотность газа падает, но быстро возрастает вновь, образуя гигантское газовое кольцо радиусом более 10 тыс. св. лет и шириной в несколько тысяч св. лет. Солнце находится за его пределами. В окрестностях Солнца средние плотности молекулярного и атомарного газа сопоставимы, а на еще больших расстояниях от центра преобладает атомарный газ. Внутри слоя межзвездной среды наибольшая плотность газа и пыли достигается в спиральных рукавах Галактики. Там особенно часто встречаются молекулярные облака и эмиссионные туманности, и рождаются звезды.

Рождение звезд.

Когда астрономы научились измерять возраст звезд и выделять короткоживущие молодые звезды, было выявлено, что образование звезд происходит чаще всего там, где концентрируется межзвездная газопылевая среда – вблизи плоскости нашей Галактики, в ее спиральных ветвях. Ближайшие к нам области звездообразования связаны с комплексом молекулярных облаков в Тельце и Змееносце. Немногим дальше расположен огромный комплекс облаков в Орионе, где наблюдается большое количество недавно родившихся звезд, в том числе массивных и очень горячих, и несколько сравнительно крупных эмиссионных туманностей. Именно ультрафиолетовым излучением горячей звезды нагрета часть одного из облаков, которую мы видим как Большую туманность Ориона. Эмиссионные туманности той же природы, что и Туманность Ориона, всегда служат надежным индикатором тех областей Галактики, где рождаются звезды.

Звезды зарождаются в недрах холодных молекулярных облаков, где из-за сравнительно высокой плотности и очень низкой температуры газа силы тяготения играют очень важную роль и в состоянии вызвать сжатие отдельных уплотнений среды. Они сжимаются под действием сил собственного тяготения и постепенно разогреваются до образования горячих газовых шаров – молодых звезд. Наблюдать развитие этого процесса очень трудно, поскольку он может продолжаться миллионы лет и происходит в мало прозрачной (из-за пыли) среде.

Формирование звезд может происходить не только в крупных молекулярных облаках, но и в сравнительно небольших, но плотных. Их называют глобулами. Они видны на фоне неба как компактные и абсолютно непрозрачные объекты. Типичный размер глобул – от десятых долей до нескольких св. лет, масса – десятки и сотни масс Солнца.

В общих чертах процесс формирования звезд понятен. Пыль во внешних слоях облака задерживает свет звезд, расположенных снаружи, поэтому облако оказывается лишенным внешнего подогрева. В результате внутренняя часть облака сильно охлаждается, давление газа в нем падает, и газ уже не может сопротивляться взаимному притяжению своих частей – происходит сжатие. Быстрее всего сжимаются наиболее плотные части облака, там и образуются звезды. Они возникают всегда группами. Сначала это медленно вращающиеся и медленно сжимающиеся сравнительно холодные газовые шары различной массы, но когда температура в их недрах достигает миллионов градусов, в центре звезд начинаются термоядерные реакции, при которых выделяется большое количество энергии. Упругость горячего газа останавливает сжатие, возникает стационарная звезда, излучающая как большое нагретое тело.

Очень молодые звезды часто окружены пылевой оболочкой – остатками вещества, не успевшими еще упасть на звезду. Эта оболочка не выпускает изнутри звездный свет и полностью преобразует его в инфракрасное излучение. Поэтому самые молодые звезды обычно проявляют себя лишь как инфракрасные источники в недрах газовых облаков. И лишь позднее пространство вокруг молодой звезды расчищается и ее лучи прорываются в межзвездное пространство. Часть вещества, окружавшего формирующуюся звезду, может образовать вокруг нее вращающийся газопылевой диск, в котором со временем возникнут планеты.

Звезды типа Солнца после своего возникновения мало влияют на окружающую межзвездную среду. Но часть рождающихся звезд имеет очень большую массу – в десять и более раз больше, чем у Солнца. Мощное ультрафиолетовое излучение таких звезд и интенсивный звездный ветер сообщают тепловую и кинетическую энергию большим массам окружающего газа. Часть звезд взрывается как сверхновые, выбрасывая с большими скоростями гигантскую массу вещества в межзвездную среду. Поэтому звезды не только образуются из газа, но и во многом определяют его физические свойства. Звезды и газ можно рассматривать как единую систему со сложными внутренними связями. Однако в деталях процесс формирования звезд очень сложен и не до конца еще изучен. Известны физические процессы, которые стимулируют сжатие газа и рождение звезд, как и процессы, которые тормозят его. По этой причине связь между плотностью межзвездной среды в данной области Галактики и интенсивностью звездообразования в ней не однозначна

Анатолий Засов

Образование звезд и других объектов Вселенной происходит путем ряда преобразований, происходящих с межзвездной газопылевой средой. Известно, что она заполнена так называемым межзвездным газом.

В настоящее время состав и свойства межзвездного газа изучены достаточно хорошо, хотя впервые о его существовании люди узнали лишь в начале XX века.

Межзвездный газ - сплошная сжимаемая среда, к которой применимы законы газовой динамики. Известно, что концентрация вещества в нем составляет примерно 1 атом на 1 см 3 . На первый взгляд, можно предположить, что межзвездный газ на самом деле является вакуумом. и приведенное определение нецелесообразно (к сведению, концентрация вещества в вакууме составляет 10" атомов па 1 см 4). Но по определению вакуум — это система, в которой длина свободного пробега атомов или молекул превышает ее характерные размеры. Во Вселенной же длина свободного пробега частиц во много сот раз меньше расстояния между звездами.

Физические свойства межзвездной среды

Наиболее важным свойством межзвездной среды является наличие в ней магнитных полей. Доказано, что они движутся с облаками межзвездного газа. Именно благодаря магнитным полям образуются плотные холодные газопылевые облака, из которых впоследствии конденсируются звезды.

Силовые линии межзвездных магнитных полей сонаправлены ветвям спиральной структуры Галактики. Напряженность этих полей более чем в 100 тыс. раз меньше напряженности магнитного поля Земли на ее поверхности.

Магнитные поля находятся в тесной связи с космическим излучением, которое представляет собой поток протонов, электронов и ядер более Тяжелых элементов. Эти частицы движутся винтообразно вдоль силовых линий магнитных полей. Благодаря тому, что они излучают радиоволны, стало возможным исследовать качественный состав межзвездной среды и находящихся в ней объектов.

Химический состав межзвездного газа

Исследование химического состава межзвездного газа началось в средине XX в. благодаря развитию радиоастрономических методов исследований. Первым элементом, обнаруженным в межзвездном газе, был водород. Сейчас известно, что он составляет значительную часть межзвездного газа и находится в молекулярном виде. Кроме того, межзвездный газ содержит атомы гелия, ряда металлов, а также более сложные соединения,

Исследование спектров излучения позволяет установить изотопный состав межзвездного газа, поскольку различные изотопы одного и того же элемента испускают излучение различной длины волны.

По мере развития галактик количество межзвездной среды в них неуклонно убывает, поскольку затраченное на образование звезд вещество не возвращается в межзвездную среду в полном объеме. Довольно большая его часть остается в недрах «мертвых» белых карликов, нейтронных звезд и черных дыр.

Следует отметить, что кругооборот межзвездного газа приводит к изменению его химического состава. Находясь в недрах звезд и принимая участие в термоядерных реакциях, межзвездный газ обогащается гелием и тяжелыми элементами. Содержание же водорода в нем значительно снижается. Таким образом, прошедший эволюционный цикл звезды межзвездный газ возвращается в межзвездную среду, включая ничтожные количества водорода и значительные - тяжелых и сверхтяжелых элементов, а также гелия. Однако этот процесс происходит крайне медленно. Например, за время существования нашей Галактики только очень массивные звезды успели пройти весь эволюционный цикл.

Составляющий ок. 99% её массы и ок. 2% массы Галактики. М. г. весьма равномерно перемешан с межзвёздной пылью,к-рая часто своим поглощением или рассеянием света делает газово-пылевые структуры наблюдаемыми (см. ). Диапазон изменения осн. параметров, описывающих М. г., очень широк. Темп-ра М. г. колеблется от 4-6 К до 10 6 К (в межзвёздных ионная темп-ра М. г. иногда превышает 10 9 К), концентрация изменяется от 10 -3 -10 -4 до 10 8 -10 12 частиц в 1 см 3 . Для излучения М. г. характерен широкий диапазон - от длинных радиоволн до жёсткого гамма-излучения.

Существуют области, где М. г. находится преимущественно в молекулярном состоянии (молекулярные облака) - это наиболее плотные и холодные части М. г.; есть области, где М. г. состоит гл. обр. из нейтральных атомов водорода (области HI),- это менее плотные и в среднем более тёплые области; существуют области ионизованного водорода (зоны НII), к-рыми явл. светлые эмиссионные туманности вокруг горячих звёзд, и области разреженного горячего газа (корональный газ). М. г., как и вещество звёзд, состоит гл. обр. из водорода и гелия с небольшой добавкой других хим. элементов (см. ). В среднем в М. г. атомы водорода составляют ок. 90% числа всех атомов (70% по массе). На атомы гелия приходится ок. 10% числа атомов (ок. 28% по массе). Остальные 2% массы составляют все последующие хим. элементы (т.н. тяжёлые элементы). Из них наиболее обильны О, С, N, Ne, S, Ar, Fe. Все они вместе составляют прибл. 1/1000 от числа атомов М. г. Однако роль их в npoцeccax, протекающих в М. г., очень велика. По сравнению с составом Солнца в М. г. наблюдается дефицит ряда тяжёлых элементов, особенно Аl, Са, Ti, Fe, Ni, к-рых в десятки и сотни раз меньше, чем на Солнце. В разных участках М. г. Галактики величина дефицита неодинакова. Возникновение дефицита связано с тем, что значит. часть указанных элементов входит в состав пылинок и почти отсутствует в газообразной фазе.

Вне галактич. диска М. г. очень мало. В осн. части гало Галактики газ, по-видимому, горячий (~ 10 o К) и очень разреженный ( на высоте 5 кпк над плоскостью симметрии диска). Наиболее заметны самые плотные газовые образования гало - . По-видимому, небольшое количество газа имеется в нек-рых, наиболее плотных, . Кроме того, на высоких галактич. широтах обнаружены водорода.

3. Методы наблюдении межзвёздного газа

Сильная разреженность М. г. и широкий диапазон темп-р, при к-рых он может находиться, определяют разнообразие методов его исследования.

Наиболее доступны для наблюдений газовые и газово-пылевые светлые туманности. По оптич. и в меньшей степени ИК-спектрам излучения эмиссионных туманностей удалось установить плотность, темп-ру, состав и состояние ионизации вещества зон НII. Богатую информацию о М. г. в эмиссионных туманностях получают по водорода, гелия и др. элементов, а также по непрерывному радиоизлучению.

Состояние М. г. вне туманностей исследуют по межзвёздным оптич. и УФ-линиям поглощения в спектрах звёзд. По ним удалось установить, что М. г. состоит из отдельных облаков, а вещество в них находится преимущественно в нейтральном атомарном состоянии. По линиям поглощения в оптич. диапазоне были открыты (1938 г.) первые . Линии поглощения большинства атомов, ионов и молекул лежат в УФ-области спектра (рис. 3). Наблюдения их, проводимые на ИСЗ, позволили изучить распространённость элементов и ионизац. состояние М. г. и обнаружить в нём дефицит ряда тяжёлых элементов. По линиям поглощения ионов NV (1238 и 1242 ) и OVI (1032 и 1038 ) были обнаружены коридоры горячего газа. По изучают крупномасштабную и тонкую структуру областей HI в Галактике и др. галактиках, плотность и темп-ру межзвёздных облаков, их строение, движение, а также вращение вокруг центров галактик.

Исследовать распределение Н 2 труднее. Для этого чаще всего пользуются косвенным методом: исследуют пространственное распределение молекулы СО, концентрация к-рой пропорциональна концентрации молекул H 2 (молекул Н 2 примерно в 10 5 раз больше, чем СО). Радиоизлучение молекулы СО с = 2,6 мм практически не поглощается межзвёздной пылью и позволяет изучать распределение молекул СО и Н 2 , а также исследовать условия в наиболее холодной и плотной части М. г.- в молекулярных облаках и газово-пылевых комплексах. Молекулы H 2 непосредственно наблюдаются только по полосам поглощения, лежащим в далёкой УФ-области спектра ( 1108 ), и в неск. случаях по ИК-линиям излучения (= 2 мкм и 4 мкм). Однако из-за межзвёздного поглощения света пылью этот метод не позволяет исследовать Н 2 в плотных непрозрачных молекулярных облаках, где эти молекулы в основном сосредоточены. Отдельные, наиболее плотные конденсации молекулярного газа, расположенные рядом с сильными источниками возбуждения (напр., ИК-звёздами), наблюдаются в виде мощных космических мазеров (см. ).

Высокое спектр. разрешение, достигнутое в радиодиапазоне, позволяет изучать молекулы, содержащие различные изотопы атомов, напр. 1 H и 2 D (дейтерий), 12 С и 13 С, 14 N и 15 N, 16 О, 17 О, 18 О и т.д., т.е. изотопный состав М. г. и его вариации. Сравнение изотопного состава совр. М. г. с изотопным составом Солнечной системы, образовавшейся из межзвёздной среды ок. лет назад, даёт возможность судить об изменениях изотопного состава, связанных с эволюцией М. г.

По поглощению рентг. лучей в межзвёздном пространстве можно судить о полном количестве межзвёздного вещества, находящегося в атомарном и молекулярном виде, а также в виде пылинок. В дальнейшем по флюоресценции атомов в рентгеновских -линиях различных элементов (см. ) можно будет получить достаточно полную информацию о распространённости элементов в межзвёздном веществе независимо от того, в каком состоянии оно находится. Наиболее горячие участки М. г. (остатки сверхновых звёзд и коридоры горячего газа) излучают в рентг. диапазоне, что позволяет методами изучить их пространственное расположение и физ. св-ва.

Межзвездная среда излучает также в -лучах. Энергичные -фотоны (с энергией 50 МэВ) возникают в М. г. за счёт того, что при столкновении протонов с протонами М. г. образуются - , которые распадаются на 2 -фотона. Вклад 50% даёт релятивистских электронов космич. лучей при соударениях с ядрами атомов М. г. Кроме того, при взаимодействии частиц космич. лучей низких энергий с ядрами атомов М. г. и пыли появляются -линии в диапазоне 1-6 МэВ. Сильная линия, с энергией фотонов 0,511 МэВ, может образовываться при аннигиляции позитронов, возникающих при взаимодействии космич. лучей с М. г.

Состояние газа в непосредств. окрестности Солнечной системы установлено по параметрам , обусловленного относительно межзвёздной среды.

Ещё одним тонким методом исследований М. г. оказались наблюдения мерцаний радиоизлучения пульсаров на мелких неоднородностях межзвездной плазмы (см. ). С его помощью удалось установить, что концентрация электронов т у в М. г. флуктуирует слабо. Среднее по лучу зрения значение (здесь - отклонение концентрации электронов от ср. значения по лучу зрения). Размеры неоднородностей могут быть различными, но при наблюдениях пульсаров осн. вклад в мерцания дают неоднородности размером ~ 10 10 -10 13 см, порождённые, по-видимому, .

4. Процессы, формирующие состояние межзвёздного газа

Тепловое и ионизационное состояния М. г.

Разреженность М. г. приводит к тому, что он прозрачен для большинства видов излучения. Поэтому условия в нём очень далеки от . Однако распределение энергии между частицами М. г. в большинстве случаев (за исключением гл. обр. ударных волн в М. г., где нет равнораспределения энергии между электронами и ионами) подчиняется , благодаря чему можно говорить о темп-ре М. г.

Для определения равновесных св-в М. г. (степени ионизации, интенсивности излучения и др.) рассматривается баланс процессов возбуждения ионов, атомов и молекул (соударений, поглощения излучения и др.) и процессов снятия возбуждения (рекомбинаций, испускания фотонов), протекающих в к.-л. выделенном объёме в конечный интервал времени.

Зоны НII М. г. нагреваются УФ-излучением звёзд, расположенных внутри них (атомы водорода активно поглощают излучение с ). Области HI и молекулярные облака нагреваются проникающей радиацией: частицами космич. лучей низких энергий (~ 1-10 МэВ/нуклон), а также УФ- и мягким рентг. излучением. Роль более энергичных фотонов и частиц невелика, т.к. их меньше, а взаимодействуют они с М. г. слабее (см. ). В нек-рых местах М. г. существенны и др. механизмы нагрева, напр. ударные волны, возникающие при столкновениях облаков или при вспышках сверхновых звёзд.

Охлаждение М. г. происходит за счёт излучения в спектральных линиях чаще в ИК- и оптич. областях спектра, реже в УФ- и рентг. диапазонах или в радиодиапазоне (см. ). Излучение в непрерывном спектре играет, как правило, второстепенную роль. В целом механизм охлаждения почти всех областей М. г. подобен охлаждению зон НII, но в областях HI повышенную роль в охлаждении играет излучение в ИК-диапазоне, а в холодных молекулярных областях - в радиодиапазоне.

Ионизуется М. г. теми же видами излучений, что и нагревается. Ионизац. равновесие достигается при равенстве скорости ионизации и скорости гл. обр. радиац. рекомбинации. В отдельных случаях, напр. для иона ОН в областях HI, определённую роль играют реакции обмена зарядом (реакции перезарядки) с водородом и реже с гелием.

Формирование структуры М. г.

Анализ, проведённый С.Б. Пикельнером (1967 г.), показал, что ур-ние состояния газа в областях HI подобно ур-нию состояния Ван-дер-Ваальса для неидеального газа, т.е. давление p имеет минимум и максимум (рис. 4). В областях HI спиральных ветвей Галактики определённому давлению М. г. могут соответствовать три значения концентрации частиц (или плотности) газа n . Состояние при среднем значении концентрации неустойчиво, из этого состояния М. г. за ~ 10 6 лет перейдёт в состояние с большей (n 1) или меньшей (n 2) концентрацией. В результате М. г. разбивается на области с 10 см -3 и см -3 , между к-рыми устанавливается равенство давлений: сгущения с 10 см -3 и K (облака) находятся в динамич. равновесии с областями, где см -3 при темп-ре К (см. кривую T на рис. 4). Процесс расслоения М. г. на две термически устойчивые фазы (как следствие тепловой неустойчивости М. г.) приводит к тому, что в областях НI существуют "холодные" облака и более "горячая" межоблачная среда.

Другим, ещё более сильным фактором, влияющим на структуру М. г. в S-галактиках, явл. спиральные ударные волны. Они возникают при соударении М. г., уже накопленного в спиральных ветвях, с газом, к-рый при круговом движении вокруг центра галактики догоняет спиральные ветви и входит в них со сверхзвуковой скоростью (спиральные ветви вращаются вокруг центра Галактики в ту же сторону, что газ и звезды, но с меньшей скоростью). На фронте ударной волны набегающий газ тормозится и уплотняется. За счет повысившегося давления почти весь газ оказывается в плотной фазе. Так образуются газово-пылевые комплексы, наблюдаемые на внутр. сторонах спиральных ветвей.

Газово-пылевые комплексы могут возникать не только под действием спиральных ударных волн, но и вследствие т.н. газового диска галактик. В результате развития неустойчивости возникают компактные (10-30 пк) газово-пылевые сгустки, становящиеся затем очагами образования звёздных скоплений. В S-галактиках неустойчивость Рэлея-Тейлора играет, вероятно, меньшую роль, чем спиральные ударные волны, но в Ir-галактиках она, видимо, явл. осн. причиной образования комплексов М. г.

Наблюдения показывают, что межзвёздные облака имеют помимо упорядоченного движения вокруг центра Галактики хаотич. скорости со ср. значением ок. 10 км/с. В среднем через 30-100 млн. лет облако сталкивается с др. облаком, что приводит к диссипации (уменьшению) этих случайных движений, частичному слипанию облаков и формированию степенного (~ ) спектра их масс. Хаотич. движения поддерживаются взрывами сверхновых: сброшенная при взрыве М. г. оболочка звезды тормозится в М. г. и передает облакам часть своего импульса.

Из области М. г., по к-рой прошла ударная волна, вызванная вспышкой, почти весь газ оказывается выметенным. Возникшая область разреженного газа (каверна размером в десятки пк с n ~ 10 -2 см -3 и T ~ 10 6 K) может существовать ~10 7 лет. Если за это время поблизости вспыхнет ещё одна сверхцо-вая, то новая каверна, сомкнувшись с предыдущей, может образовать обширныи коридор горячего разреженного сильно ионизованного газа. Излучение горячего газа может нагревать до 300-5000 К газовые облака, находящиеся на расстоянии многих пк от коридоров (существование облаков с такой темп-рой невозможно в описанной выше простой двухфазной модели М. г.).

Вспышки сверхновых звёзд, "пробурившие" газовый диск галактики насквозь, вызывают отток газа от плоскости галактики в межгалактич. среду и нагрев его там вплоть до 10 7 -10 8 K. В результате в межгалактич. среду попадает обогащённый тяжёлыми элементами газ. Возможно, что именно благодаря этим процессам межгалактич. газ в скоплениях галактик имеет почти такое же содержание железа, как атмосфера Солнца. Часть газа, видимо, падает назад к галактич. плоскости в виде высокоширотных и высокоскоростных облаков водорода.

5. Процессы, протекающие в газово-пылевых комплексах

Вещество в газово-пылевых комплексах достаточно плотно для того, чтобы не пропускать на большую глубину осн. часть проникающей радиации. Поэтому М. г. внутри комплексов оказывается холоднее, чем в межзвёздных облаках, и существует преимущественно в молекулярной форме. Молекулы образуются гл. обр. в ион-молекулярных реакциях, а также на поверхности пылинок (молекулы Н 2 и нек-рые др., см. ). Ионизация, необходимая для протекания ион-молекулярных реакций, поддерживается УФ-излучением звёзд (в областях, где межзвёздное поглощение света ) и, по-видимому, космич. лучами низких энергий (4-12 К) сгустков. Совместно с эти процессы в холодных фрагментах молекулярных облаков ведут к возникновению самогравитирующих сгустков газово-пылевого вещества звёздной массы - протозвёзд, из к-рых впоследствии образуются звёзды.

Т.о., молекулярные облака должны быстро (за ~ 10 6 лет) превратиться в звёзды. Т.к. они существуют гораздо дольше, должны действовать факторы, замедляющие образование звёзд (напр., магн. давление, турбулентность, нагрев газа возникшими звёздами, см. ).

6. Эволюция межзвёздного газа

М. г. постоянно обменивается веществом со звёздами. Согласно оценкам, в настоящее время в Галактике в звёзды переходит газ в количестве в год. Одновременно с этим звёзды, гл. обр. на поздних стадиях эволюции, теряют вещество (см. ) и пополняют М. г.

Часть выбрасываемого вещества участвовала в термоядерных реакциях в недрах звёзд и обогатилась там тяжёлыми элементами. Поэтому со временем состав (распространённость элементов) в М. г. изменяется. В разных галактиках и в различных частях каждой галактики эти процессы идут с различными скоростями. В результате в хим. и изотопном составе М. г. появляются неоднородности, и прежде всего градиент хим. состава вдоль радиусов галактик. Ближе к центру галактик М. г. несколько более обогащён тяжёлыми элементами.

Пока неизвестно, когда и как произошло обогащение первичного газа (имевшего состав 75% Н и 25% Не по массе, см. ) тяжёлыми элементами: было ли это ещё до образования галактик или в самом начале их эволюции. Но ясно, что на первых этапах истории галактик этот процесс шёл много активнее, чем в настоящее время.

В галактиках с большим уд. моментом количества движения за время ~ 10 9 лет после их образования М. г. осел в диск, также обогатившись тяжёлыми элементами. Дальнейшее звездообразование шло в диске. В S-галактиках звездообразование в диске стимулируется спиральной ударной волной. При каждом прохождении сквозь спиральную ударную волну элементы газа тормозятся, теряют энергию и с каждым оборотом приближаются к центру галактики.

В Ir-галактиках спиральные волны не сформировались, газ исчерпывался медленно. Поэтому в настоящее время они наиболее богаты газом (ср. содержание атомарного водорода 18% от массы галактики). В линзовидных (SO) галактиках осн. часть газа была, вероятно, выметена в межгалактич. пространство при взаимодеиствии их с др. галактиками, а оставшегося газа оказалось недостаточно для активного звездообразования.

Итак, в процессе эволкщии галактик происходит круговорот вещества: М. г. звёзды М. г., приводящий к постепенному увеличению содержания тяжёлых элементов в М. г. и звёздах и уменьшению количества М. г. в каждой из галактик. В разных типах галактик исчерпание М. г. идёт существенно различающимися темпами. Не исключена возможность, что процессы формирования звёзд и обогащения газа тяжёлыми элементами шли в Галактике немонотонно, т.е. неск. раз в истории Галактики могли происходить задержки звездообразования на миллиарды дет. Это, в принципе, должно было бы сказаться на распространённости элементов в различных типах звёздного населения.