Биографии Характеристики Анализ

Квантовая телепортация человека. Что такое квантовая телепортация? Отвечает физик

Квантовая телепортация - это передача квантового состояния на расстояние. Отдельно ее объяснить трудно, это можно сделать только вкупе со всей квантовой физикой. В своей лекции, состоявшейся в рамках «Лектория 2035» на ВДНХ, профессор физического факультета Университета Калгари (Канада), член Канадского института высших исследований Александр Львовский постарался простым языком рассказать о принципах квантовой телепортации и квантовой криптографии. «Лента.ру» публикует выдержки из его выступления.

Ключ к замку

Криптография - это искусство общения защищенным образом по незащищенному каналу. То есть у вас есть некая линия, которую могут прослушивать, и вам нужно передать по ней секретное сообщение, которое никто посторонний не сможет прочесть.

Представим, что, скажем, если у Алисы и Боба есть так называемый секретный ключ, а именно - тайная последовательность нулей и единиц, которой нет ни у кого другого, они могут зашифровать сообщение с помощью этого ключа, применив операцию исключающего ИЛИ, чтобы ноль совпадал с нулем, а единица - с единицей. Такое зашифрованное послание уже можно передать по открытому каналу. Если его кто-то перехватит, это не страшно, ведь его никто не сможет прочесть, кроме Боба, у которого есть копия секретного ключа.

В любой криптографии, в любой коммуникации самым дорогим ресурсом является случайная последовательность нулей и единиц, которой владеют только два общающихся. Но в большей части случаев используется криптография с открытым ключом. Допустим, вы покупаете что-то с помощью кредитной карты в интернет-магазине по безопасному протоколу HTTPS. По нему ваш компьютер переговаривается с каким-то сервером, с которым до этого никогда не общался, и у него не было возможности обменяться с этим сервером секретным ключом.

Тайна этого диалога обеспечивается решением сложной математической задачи, в частности - разложения на простые множители. Перемножить два простых числа легко, а если уже дано их произведение, то найти два сомножителя трудно. Если число достаточно большое, оно потребует от обычного компьютера многолетних вычислений.

Однако если этот компьютер не обычный, а квантовый, он такую задачу решит легко. Когда он будет наконец изобретен, приведенный выше широко используемый метод окажется бесполезным, что, как ожидается, будет иметь катастрофические последствия для общества.

Если помните, в первой книге про Гарри Поттера главному герою нужно было пройти через защиту, чтобы добраться до Философского камня. Тут нечто похожее: тому, кто установил защиту, будет легко пройти ее. Гарри пришлось очень трудно, но в итоге он ее все же преодолел.

Этот пример очень хорошо иллюстрирует криптографию с открытым ключом. Тот, кто его не знает, в принципе имеет возможность расшифровать сообщения, однако ему будет очень трудно, и на это потенциально потребуется много лет. Абсолютной безопасности криптография с открытым ключом не дает.

Квантовая криптография

Все это объясняет необходимость квантовой криптографии. Она дает нам лучшее из обоих миров. Есть метод одноразового блокнота, надежный, но, с другой стороны, требующий «дорогого» секретного ключа. Чтобы Алиса могла общаться с Бобом, она должна послать ему курьера с чемоданом, полным дисков с такими ключами. Он их будет постепенно расходовать, так как каждый из них можно использовать только один раз. С другой стороны, у нас есть метод открытого ключа, который «дешев», но не дает абсолютной надежности.

Изображение: Science Museum / Globallookpress.com

Квантовая криптография, с одной стороны, «дешевая», она позволяет безопасную передачу ключа по каналу, в который могут залезть, а с другой стороны - гарантирует секретность благодаря фундаментальным законам физики. Смысл ее заключается в том, чтобы кодировать информацию в квантовом состоянии отдельных фотонов.

В соответствии с постулатами квантовой физики, квантовое состояние в момент, когда его пытаются измерить, разрушается и изменяется. Таким образом, если на линии между Алисой и Бобом есть какой-то шпион, пытающийся подслушать или подсмотреть, он неизбежно изменит состояние фотонов, общающиеся заметят, что линию прослушивают, прекратят коммуникацию и примут меры.

В отличие от многих других квантовых технологий, квантовая криптография является коммерческой, это не научная фантастика. Уже сейчас есть компании, производящие серверы, подключаемые к обычной оптоволоконной линии, с помощью которых можно осуществлять безопасное общение.

Как работает поляризационный светоделитель

Свет - это поперечная электромагнитная волна, колеблющаяся не вдоль, а поперек. Это свойство называется поляризацией, и оно присутствует даже в отдельных фотонах. С помощью них можно кодировать информацию. Например, горизонтальный фотон - это ноль, а вертикальный - единица (то же верно для фотонов с поляризацией плюс 45 градусов и минус 45 градусов).

Алиса закодировала таким образом информацию, и Бобу нужно ее принять. Для этого используется специальный прибор - поляризационный светоделитель, куб, состоящий из двух призм, склеенных между собой. Он пропускает горизонтально поляризованный поток и отражает вертикально поляризованный, благодаря чему происходит декодирование информации. Если горизонтальный фотон - ноль, а вертикальный - единица, то тогда в случае логического ноля щелкнет один детектор, а в случае единицы - другой.

Но что будет, если мы пошлем диагональный фотон? Тогда начинает играть роль знаменитая квантовая случайность. Нельзя сказать, пройдет такой фотон или отразится - он с вероятностью 50 процентов сделает либо одно, либо другое. Предсказать его поведение невозможно в принципе. Более того, это свойство лежит в основе коммерческих генераторов случайных чисел.

Что же делать, если у нас стоит задача различить поляризации плюс 45 градусов и минус 45 градусов? Нужно повернуть светоделитель вокруг оси луча. Тогда закон квантовой случайности будет действовать для фотонов с горизонтальной и вертикальной поляризациями. Это свойство фундаментально. Мы не можем задать вопрос о том, какая поляризация у этого фотона.

Фото: Science Museum / Globallookpress.com

Принцип квантовой криптографии

В чем же заключается идея квантовой криптографии? Предположим, Алиса посылает Бобу фотон, который она кодирует либо горизонтально-вертикальным образом, либо диагональным. Боб тоже подбрасывает монетку, решая случайным образом, каким будет его базис: горизонтально-вертикальным или диагональным. Если их способы кодировки совпадут - Боб получит данные, которые послала Алиса, если же нет - то какую-то ерунду. Они проводят эту операцию много тысяч раз, а потом «созваниваются» по открытому каналу и сообщают друг другу, в каких базисах совершали передачу, - можно считать, что эта информация теперь доступна кому угодно. Далее Боб и Алиса смогут отсеять события, в которых базисы были разные, и оставить те, в которых они были одинаковые (их будет примерно половина).

Допустим, в линию вклинился какой-то шпион, желающий подслушать сообщения, но ему тоже необходимо измерять информацию в каком-то базисе. Представим, что у Алисы и Боба он совпал, а у шпиона - нет. В ситуации, когда данные были посланы в горизонтально-вертикальном базисе, а подслушивающий измерил передачу в диагональном, он получит случайное значение и перешлет дальше какой-то произвольный фотон Бобу, так как не знает, каким он должен быть. Таким образом, его вмешательство будет замечено.

Самая главная проблема квантовой криптографии - это потери. Даже самое лучшее и современное оптоволокно дает 50 процентов потерь на каждые 10-12 километров кабеля. Допустим, мы посылаем наш секретный ключ из Москвы в Петербург - на 750 километров, и только один из миллиарда миллиардов фотонов достигнет цели. Все это делает технологию совершенно непрактичной. Именно поэтому современная квантовая криптография работает только на расстоянии примерно 100 километров. Теоретически известно, как эту проблему решить, - с помощью квантовых повторителей, но для их реализации нужна квантовая телепортация.

Фото: Perry Mastrovito / Globallookpress.com

Квантовая запутанность

Научное определение квантовой запутанности - это делокализованное состояние суперпозиции. Звучит сложно, но можно привести простой пример. Предположим, у нас есть два фотона: горизонтальный и вертикальный, квантовые состояния которых взаимозависимы. Один из них мы посылаем Алисе, а другой - Бобу, которые делают измерения на поляризационном светоделителе.

Когда эти измерения совершаются в обычном горизонтально-вертикальном базисе, понятно, что результат будет скоррелирован. Если Алиса заметила горизонтальный фотон, то второй, естественно, будет вертикальным, и наоборот. Это можно представить проще: у нас есть синий и красный шарик, мы не глядя запечатываем каждый из них в конверт и посылаем двум получателям - если одному придет красный, второй обязательно получит синий.

Но в случае квантовой запутанности этим дело не ограничивается. Эта корреляция имеет место не только в горизонтально-вертикальном базисе, но и в любом другом. Например, если Алиса и Боб одновременно повернут свои светоделители на 45 градусов, у них опять будет полное совпадение.

Это очень странное квантовое явление. Допустим, Алиса повернула каким-то образом свой светоделитель и обнаружила какой-то фотон с поляризацией α, который прошел через него. Если Боб измерит свой фотон в том же самом базисе, он обнаружит поляризацию 90 градусов +α.

Итак, в начале мы имеем состояние запутанности: фотон Алисы полностью неопределен и фотон Боба полностью неопределен. Когда Алиса измерила свой фотон, обнаружила какое-то значение, то теперь известно точно, какой фотон у Боба, как бы далеко он ни находился. Этот эффект многократно подтвержден экспериментами, это не фантазия.

Квантовая телепортация

Допустим, у Алисы есть некий фотон с поляризацией α, которую она еще не знает, то есть находящийся в неизвестном состоянии. Между ней и Бобом нет прямого канала. Если бы канал был, то Алиса смогла бы зарегистрировать состояние фотона и донести эту информацию до Боба. Но квантовое состояние за одно измерение узнать невозможно, поэтому такой способ не годится. Однако между Алисой и Бобом есть заранее приготовленная запутанная пара фотонов. За счет этого можно заставить фотон Боба принять первоначальное состояние фотона Алисы, «созвонившись» потом по условной телефонной линии.

Вот классический (хотя и очень отдаленный аналог) всего этого. Алиса и Боб получают в конверте по шарику - синий или красный. Алиса хочет послать Бобу информацию о том, какой у нее. Для этого ей нужно, «созвонившись» с Бобом, сравнить шарики, сказав ему «у меня такой же» или «у нас разные». Если кто-то подслушивает эту линию, то это не поможет ему узнать их цвет.

Как это все работает? У нас есть запутанное состояние и фотон, который мы хотим телепортировать. Алиса должна произвести соответствующее измерение исходного телепортированного фотона и задать вопрос, в каком состоянии находится другой. Случайным образом она получает один из четырех возможных ответов. В результате эффекта дистанционного приготовления оказывается, что после этого измерения в зависимости от результата фотон Боба перешел в определенное состояние. До этого он был запутан с фотоном Алисы, пребывая в неопределенном состоянии.

Алиса сообщает Бобу по телефону, каким был результат ее измерений. Если ее результат, допустим, оказался ψ-, то Боб знает, что его фотон автоматически преобразовался в это состояние. Если же Алиса сообщила, что ее измерение дало результат ψ+, то фотон Боба принял поляризацию -α. В конце эксперимента по телепортации у Боба оказывается копия первоначального фотона Алисы, а ее фотон и информация о нем в процессе разрушаются.

Технология телепортации

Сейчас мы умеем телепортировать поляризацию фотонов и некоторые состояния атомов. Но когда пишут, мол, ученые научились телепортировать атомы - это обман, ведь у атомов очень много квантовых состояний, бесконечное множество. В лучшем случае мы придумали, как телепортировать пару из них.

Мой любимый вопрос - когда будет телепортация человека? Ответ - никогда. Допустим, у нас есть капитан Пикард из сериала «Звездный путь», которого нужно телепортировать на поверхность планеты с корабля. Для этого, как нам уже известно, нужно сделать еще пару таких же Пикардов, привести их в запутанное состояние, которое включает все его возможные состояния (трезвого, пьяного, спящего, курящего - абсолютно все) и провести измерения на обоих. Понятно, насколько это сложно и нереализуемо.

Квантовая телепортация - это интересное, но лабораторное явление. До телепортации живых существ дело не дойдет (по крайней мере, в ближайшем будущем). Однако его можно использовать на практике для создания квантовых повторителей, для передачи информации на далекие расстояния.

Группа ученых из Китайской академии наук провела спутниковый эксперимент по передаче квантовых состояний между парами запутанных фотонов (так называемая квантовая телепортация) на рекордное расстояние — более 1200 км.

Явление (или спутанности) возникает при взаимозависимости (коррелированности) состояний двух или большего числа частиц, которые можно разнести на сколь угодно далекие расстояния, но при этом они продолжают «чувствовать» друг друга. Измерение параметра одной частицы приводит к моментальному разрушению запутанного состояния другой, что сложно представить без понимания принципов квантовой механики, тем более что частицы (это было специально показано в экспериментах по нарушению так называемых неравенств Белла) не обладают никакими скрытыми параметрами, в которых бы сохранялась информация о состоянии «компаньона», и при этом мгновенное изменение состояния не приводит к нарушению принципа причинности и не позволяет передавать таким образом полезную информацию.

Для передачи реальной информации дополнительно необходимо участие частиц, движущихся со скоростью, не превышающей световую. В качестве запутанных частиц могут выступать, например, фотоны, имеющие общего прародителя, а в качестве зависимого параметра используется, скажем, их спин.

К передаче состояний запутанных частиц на все более дальние расстояния и в самых экстремальных условиях проявляют интерес не только ученые, занимающиеся фундаментальной физикой, но и инженеры, проектирующие защищенные коммуникации. Считается, что явление запутанности частиц в перспективе предоставит нам в принципе невзламываемые каналы связи. «Защитой» в этом случае послужит неизбежное уведомление участников разговора о том, что в их связь вмешался некто третий.

Свидетельством этому станут нерушимые законы физики — необратимый коллапс волновой функции.

Прототипы устройств для осуществления подобной защищенной квантовой связи уже созданы, однако возникают и идеи по компрометации работы всех этих «абсолютно защищенных каналов», например путем обратимых слабых квантовых измерений, поэтому до сих пор неясно, сможет ли квантовая криптография выйти из стадии испытания прототипов, не окажутся ли все разработки заранее обреченными и непригодными для практического применения.

Еще один момент: передача запутанных состояний осуществлялась до сих пор лишь на расстояния, не превышающие 100 км, из-за потерь фотонов в оптоволокне или в воздухе, поскольку вероятность того, что хотя бы часть фотонов доберется до детектора, становится исчезающе малой. Время от времени появляются сообщения об очередном достижении на этом пути, но охватить подобной связью весь земной шар пока не представляется возможным.

Так, в начале этого месяца канадские физики объявили об успешных попытках связаться по защищенному квантовому каналу с самолетом, но он находился лишь в 3-10 км от передатчика.

Одним из способов кардинального улучшения распространения сигнала признан так называемый протокол квантовых повторителей, но и его практическая ценность остается под вопросом из-за необходимости решения целого ряда сложных технических моментов.

Другой подход как раз и заключается в использовании спутниковых технологий, поскольку спутник может оставаться в прямой видимости одновременно для разных весьма отдаленных мест на Земле. Основным преимуществом такого подхода может быть то, что большая часть пути прохождения фотонов окажется практически в вакууме с почти нулевым поглощением и исключением декогеренции (нарушение когерентности, обусловленное взаимодействием частиц с окружающей средой).

Чтобы продемонстрировать целесообразность спутниковых экспериментов, китайские специалисты проводили предварительные наземные испытания, которые продемонстрировали успешное двунаправленное распространение запутанных пар фотонов через открытую среду на расстояния 600 м, 13 и 102 км с эффективной потерей канала 80 дБ. Были также проведены эксперименты по передаче квантовых состояний на движущихся платформах в условиях высоких потерь и турбулентности.

После подробных технико-экономических обоснований при участии австрийских ученых был разработан спутник стоимостью $100 млн, запущенный 16 августа 2016 года с космодрома Цзюцюань в пустыне Гоби с помощью ракеты-носителя «Чанчжэн-2D» на орбиту высотой 500 км.

Спутник получил наименование «Мо-цзы» в честь древнекитайского философа V века до н.э., основателя моизма (учение о всеобщей любви и государственном консеквенциализме). На протяжении нескольких столетий в Китае моизм успешно конкурировал с конфуцианством, пока последний не был принят в качестве государственной идеологии.

Поддержку миссии «Мо-цзы» обеспечивают три наземные станции: в Дэлинхе (провинция Цинхай), Наньшань в Урумчи (Синьцзян) и обсерватория GaoMeiGu (GMG) в Лицзяне (провинция Юньнань). Расстояние между Дэлинхе и Лицзянем составляет 1203 км. Расстояние между орбитальным спутником и этими наземными станциями колеблется в пределах 500-2000 км.

Из-за того что запутанные фотоны не могут быть просто «усилены», как классические сигналы, необходимо было разработать новые методы для уменьшения затухания в каналах передачи между Землей и спутниками. Чтобы добиться нужной эффективности связи, потребовалось достичь одновременно и минимальной расходимости пучков, и высокоскоростного и высокоточного наведения на детекторы.

Разработав ультраяркий космический источник двухфотонных запутываний и высокоточную технологию APT (acquiring, pointing, and tracking), группа установила «квантовое сцепление» между парами фотонов, разделенных 1203 км, ученые провели так называемое тестирование Белла для проверки нарушений локальности (возможность мгновенно повлиять на состояние удаленной частицы) и получили результат со статистической значимостью четыре сигма (среднеквадратических отклонения).

Схема источника фотонов на спутнике. Толщина кристалла KTiOPO4 (PPKTP) составляет 15 мм. Пара внеосевых вогнутых зеркал фокусирует лазер накачки (PL) в центре кристалла PPKTP. На выходе интерферометра Саньяка используются два дихроматических зеркала (DM) и фильтры для отделения сигнальных фотонов от лазера накачки. Два дополнительных зеркала (PI), дистанционно управляемые с Земли, используются для точной регулировки направления луча для оптимальной эффективности сбора пучка. QWP - четвертьволновая фазовая секция; HWP - полуволновая фазовая секция; PBS - поляризационный светоделитель.

По сравнению с предыдущими методами с использованием самых распространенных коммерческих образцов телекоммуникационного оптоволокна эффективность спутникового соединения оказалась на много порядков выше, что, по мнению авторов исследования, открывает ему путь к практическим применениям, ранее недоступным на Земле.

Квантовая телепортация - это телепортирование не физических объектов, не энергии, а состояния. Но в данном случае состояния передаются таким образом, каким в классическом представлении это сделать невозможно. Как правило, для передачи информации о каком-то объекте требуется большое количество всесторонних измерений. Но они разрушают квантовое состояние, и у нас нет возможности повторно его измерить. Квантовая телепортация используется для того, чтобы передать, перенести некое состояние, обладая минимальной информацией о нем, не «заглядывая» в него, не измеряя и тем самым не нарушая.

Кубиты

Кубит - это и есть состояние, которое передается при квантовой телепортации. Квантовый бит находится в суперпозиции двух состояний. Классическое состояние находится, например, либо в состоянии 0, либо в состоянии 1. Квантовое находится в суперпозиции, и, что очень важно, пока мы его не измерим, оно не будет определено. Представим себе, что у нас был кубит на 30% - 0 и на 70% - 1. Если мы его измерим, мы можем получить как 0, так и 1. За одно измерение нельзя ничего сказать. Но если приготовить 100, 1000 таких одинаковых состояний и раз за разом их измерять, мы можем достаточно точно охарактеризовать это состояние и понять, что действительно там было 30% - 0 и 70% - 1.

Это пример получения информации классическим способом. Получив большое количество данных, адресат может воссоздать это состояние. Однако квантовая механика позволяет не готовить много состояний. Представим себе, что оно у нас есть только одно, уникальное, а второго такого нет. Тогда в классике передать его уже не получится. Физически, напрямую, это тоже не всегда возможно. А в квантовой механике мы можем использовать эффект запутанности.

Мы также используем явление квантовой нелокальности, то есть явление, которое невозможно в привычном для нас мире, для того чтобы здесь это состояние исчезло, а там появилось. Причем самое интересное, что применительно к тем же квантовым объектам существует теорема о неклонировании. То есть невозможно создать второе идентичное состояние. Надо уничтожить одно, чтобы появилось другое.

Квантовая запутанность

Что такое эффект запутанности? Это особым образом приготовленные два состояния, два квантовых объекта - кубита. Для простоты можно взять фотоны. Если эти фотоны разнести на большое расстояние, они будут коррелировать между собой. Что это значит? Представим себе, что у нас один фотон синий, а другой зеленый. Если мы их разнесли, посмотрели и у меня оказался синий, значит, у вас оказался зеленый, и наоборот. Или если взять коробку обуви, где есть правый и левый ботинок, незаметно их вытащить и в мешке отнести один ботинок вам, другой мне. Вот я открыл мешок, смотрю: у меня правый. Значит, у вас точно левый.

Квантовый случай отличается тем, что состояние, которое пришло ко мне до измерения, не синее и не зеленое - оно в суперпозиции синего и зеленого. После того как вы разделили ботинки, результат уже предопределен. Пока мешки несут, пока их еще не открыли, но уже точно понятно, что там будет. А пока квантовые объекты не измерены, еще ничего не решилось.

Если взять не цвет, а поляризацию, то есть направление колебаний электрического поля, можно выделить два варианта: вертикальная и горизонтальная поляризация и +45° - -45°. Если сложить вместе в равной пропорции горизонтальную и вертикальную, то получится +45°, если вычесть одну из другой, то -45°. Теперь представим, что точно так же один фотон попал ко мне, а другой к вам. Я посмотрел: он вертикальный. Значит, у вас горизонтальный. Теперь представим, что я увидел вертикальный, а вы посмотрели его в диагональном базисе, то есть посмотрели - он +45° или -45°, вы увидите с равной вероятностью тот ли иной исход. Но если я посмотрел в диагональном базисе и увидел +45°, то точно знаю, что у вас -45°.

Парадокс Эйнштейна - Подольского - Розена

Квантовая запутанность связана с фундаментальными свойствами квантовой механики и так называемым парадоксом Эйнштейна - Подольского - Розена. Эйнштейн так долго протестовал против квантовой механики, потому что считал, что природа не может со скоростью, большей скорости света, передавать информацию о состоянии. Мы же можем разнести фотоны очень далеко, например на световой год, а открывать одновременно. И мы все равно увидим эту корреляцию.

Но на самом деле теорию относительности это не нарушает, потому что информацию с помощью этого эффекта мы передать все равно не можем. Измеряется либо вертикальный, либо горизонтальный фотон. Но неизвестно заранее, какой именно он будет. Несмотря на то что нельзя передавать информацию быстрей скорости света, запутанность позволяет реализовать протокол квантовой телепортации. В чем он заключается? Рождается запутанная пара фотонов. Одна направляется к передатчику, другая - к приемнику. Передатчик производит совместное измерение целевого фотона, который он должен передать. И с вероятностью ¼ он получит результат OK. Он может сообщить об этом получателю, и получатель в этот момент узнает, что у него точно такое же состояние, как было у передатчика. А с вероятностью ¾ он получает другой результат - не то чтобы неуспешное измерение, а просто другой результат. Но в любом случае это полезная информация, которую можно передать получателю. Получатель в трех из четырех случаев должен произвести дополнительный поворот своего кубита, чтобы получить передаваемое состояние. То есть передается 2 бита информации, и при помощи них можно телепортировать сложное состояние, которое ими закодировать нельзя.

Квантовая криптография

Одна из главных сфер применения квантовой телепортации - это так называемая квантовая криптография. Идея этой технологии заключается в том, что одиночный фотон невозможно клонировать. Следовательно, мы можем передавать информацию в этом одиночном фотоне, и никто не сможет ее продублировать. Более того, при любой попытке кем-то узнать что-то об этой информации состояние фотона изменится или разрушится. Соответственно, любая попытка получить эту информацию посторонним будет замечена. Это можно использовать в криптографии, в защите информации. Правда, передается не полезная информация, а ключ, которым потом уже классически возможно абсолютно надежно передавать информацию.

У этой технологии есть один большой недостаток. Дело в том, что, как мы уже раньше говорили, создать копию фотона невозможно. Обычный сигнал в оптоволокне можно усилить. Для квантового случая усилить сигнал невозможно, так как усиление будет эквивалентно некоторому перехватчику. В реальной жизни, в реальных линиях передача ограничена расстоянием приблизительно до 100 километров. В 2016 году Российским квантовым центром была проведена демонстрация на линиях Газпромбанка, где показали квантовую криптографию на 30 километрах волокна в городских условиях.

В лаборатории мы способны показывать квантовую телепортацию на расстоянии до 327 километров. Но, к сожалению, большие расстояния непрактичны, потому что фотоны теряются в волокне и скорость получается очень низкая. Что делать? Можно поставить промежуточный сервер, который будет получать информацию, расшифровывать, потом снова зашифровывать и передавать дальше. Так делают, например, китайцы при строительстве своей сети квантовой криптографии. Такой же подход используют и американцы.

Квантовая телепортация в данном случае - это новый метод, который позволяет решить задачу квантовой криптографии и увеличить расстояние до тысяч километров. И в этом случае тот самый фотон, который передается, многократно телепортируется. Над этой задачей работает множество групп во всем мире.

Квантовая память

Представим себе цепочку телепортаций. В каждом из звеньев есть генератор запутанных пар, который должен их создавать и распределять. Это не всегда удачно происходит. Иногда нужно ждать, пока успешно произойдет очередная попытка распределения пар. И у кубита должно быть какое-то место, где он подождет телепортации. Это и есть квантовая память.

В квантовой криптографии это своего рода промежуточная станция. Называются такие станции квантовыми повторителями, и они сейчас являются одним из основных направлений для исследований и экспериментов. Это популярная тема, в начале 2010-х повторители были очень отдаленной перспективой, но сейчас задача выглядит реализуемой. Во многом потому, что техника постоянно развивается, в том числе за счет телекоммуникационных стандартов.

Ход эксперимента в лаборатории

Если вы придете в лабораторию квантовых коммуникаций, то вы увидите много электроники и волоконную оптику. Вся оптика стандартная, телекоммуникационная, лазеры в маленьких стандартных коробочках - чипах. Если вы зайдете в лабораторию Александра Львовского , где, в частности, делают телепортацию, то вы увидите оптический стол, который стабилизирован на пневмоопорах. То есть если этот стол, который весит тонну, потрогать пальцем, то он начнет плавать, покачиваться. Это сделано по причине того, что техника, которая реализует квантовые протоколы, очень чувствительна. Если вы поставите на жесткие ножки и будете ходить вокруг, то это все будет по колебаниям стола. То есть это открытая оптика, достаточно большие дорогие лазеры. В целом это достаточно громоздкое оборудование.

Исходное состояние готовится лазером. Для подготовки запутанных состояний используется нелинейный кристалл, который накачивается импульсным или непрерывным лазером. За счет нелинейных эффектов рождаются пары фотонов. Представим себе, что у нас есть фотон энергии два - ℏ(2ω), он преобразуется в два фотона энергии один - ℏω+ ℏω. Эти фотоны рождаются только вместе, не может сначала отделиться один фотон, потом другой. И они связаны (запутаны) и проявляют неклассические корреляции.

История и актуальные исследования

Итак, в случае квантовой телепортации наблюдается эффект, который в ежедневной жизни мы наблюдать не можем. Но зато был очень красивый, фантастический образ, который как нельзя кстати подходил для описания этого явления, поэтому и назвали так - квантовая телепортация. Как уже было сказано, нет момента времени, когда здесь кубит еще существует, а там он уже появился. То есть сначала здесь уничтожено, а только потом там появляется. Это и есть та самая телепортация.

Квантовая телепортация была предложена теоретически в 1993 году группой американских ученых под руководством Чарльза Беннета - тогда и появился этот термин. Первая экспериментальная реализация была проведена в 1997 году сразу двумя группами физиков в Инсбруке и Риме. Постепенно ученым удавалось передавать состояния на все большее расстояние - от одного метра до сотен километров и более.

Сейчас люди пытаются делать эксперименты, которые, возможно, в будущем станут основой для квантовых повторителей. Ожидается, что спустя 5–10 лет мы увидим реальные квантовые повторители. Развивается и направление передачи состояния между объектами разной природы, в том числе в мае 2016 года была проведена гибридная квантовая телепортация в Квантовом центре, в лаборатории Александра Львовского. Теория тоже не стоит на месте. В том же Квантовом центре под руководством Алексея Федорова разрабатывается протокол телепортации уже не в одну сторону, а двунаправленный, чтобы с помощью одной пары сразу одновременно навстречу друг другу телепортировать состояния.

В рамках нашей работы над квантовой криптографией создается квантовое устройство распределения и ключа, то есть мы генерируем ключ, который невозможно перехватить. А дальше уже пользователь может зашифровать этим ключом информацию, используя так называемый одноразовый блокнот. Новые преимущества квантовых технологий должны раскрыться в ближайшее десятилетие. Развивается создание квантовых сенсоров. Их суть в том, что за счет квантовых эффектов мы можем гораздо точнее измерять, например, магнитное поле, температуру. То есть берутся так называемые NV-центры в алмазах - это крошечные алмазы, в них есть азотные дефекты, которые ведут себя квантовые объекты. Они очень похожи на замороженный одиночный атом. Смотря на этот дефект, можно наблюдать изменения температуры, причем и внутри одиночной клетки. То есть измерить не просто температуру под мышкой, а температуру органеллы внутри клетки.


В Российском квантовом центре также есть проект спинового диода. Идея такова, что мы можем взять антенну и начать очень эффективно собирать энергию из фоновых радиоволн. Достаточно вспомнить, сколько Wi-Fi-источников сейчас в городах, чтобы понять, что энергии радиоволн вокруг очень много. Ее можно использовать для носимых датчиков (например, для датчика уровня сахара в крови). Для них нужна постоянная энергетическая подпитка: либо батарейка, либо такая система, которая собирает энергию, в том числе от мобильного телефона. То есть, с одной стороны, эти задачи можно решать с существующей элементной базой с определенным качеством, а с другой стороны, можно применить квантовые технологии и решить эту задачу еще лучше, еще более миниатюрно.

Квантовая механика очень сильно изменила человеческую жизнь. Полупроводники, атомная бомба, атомная энергетика - это все объекты, работающие благодаря ей. Весь мир сейчас бьется над тем, чтобы начать управлять квантовыми свойствами одиночных частиц, в том числе запутанных. Например, в телепортации участвуют три частицы: одна пара и целевая. Но каждая из них управляется отдельно. Индивидуальное управление элементарными частицами открывает новые горизонты для техники, в том числе квантовый компьютер.

Юрий Курочкин , кандидат физико-математических наук, глава лаборатории квантовых коммуникаций Российского квантового центра.

Теги:

Добавить метки

На сайте журнала Nature, 9 августа вышла китайских учёных, которым удалось осуществить квантовую телепортацию на расстояние около 97 км. Это новый рекорд, хотя в arXiv.org ешё с 17 мая лежит пока нигде не опубликованная другой группы, которая сообщает об удачных экспериментах по телепортации на расстояние около 143 км.

Несмотря на то, что явление квантовой телепортации изучается уже довольно давно, у людей, далёких от науки, отсутствует понимание того, что же это такое. Попробую развеять некоторые мифы, связанные с этой частью науки.

Миф 1: квантовая телепортация теоретически позволяет телепортировать любой объект.

На самом деле, при квантовой телепортации передаются не физические объекты, а некая информация, записанная при помощи квантовых состояний объектов. Обычно этим состоянием является поляризация фотонов. Как известно, фотон может иметь две различные поляризации: например, горизонтальную и вертикальную. Их можно использовать как переносчики побитовой информации: скажем, 0 будет соответствовать горизонтальной поляризации, а 1 - вертикальной. Тогда передача состояния одного фотона другому обеспечит и передачу информации.

В случае квантовой телепортации передача данных происходит следующим образом. Вначале создаётся пара так называемых сцепленных фотонов. Это означает, что их состояния оказываются в некотором смысле связанными: если у одного при измерении поляризация окажется горизонтальной, то у другого всегда будет вертикальной и наоборот, при чём и тот, и другой вариант возникает с одинаковой вероятностью. Затем эти фотоны разносятся: один остаётся у источника сообщения, а другой уносится его приёмником.

Когда источник хочет передать своё сообщение, он связывает свой фотон с ещё одним фотоном, состояние (то есть поляризация) которого точно известно, а затем производит измерение поляризации обоих своих фотонов. В этот момент согласованным образом меняется состояние и фотона, находящегося у приёмника. Измерив его поляризацию и узнав по другим каналам связи результаты измерений фотонов источника, приёмник может точно установит, какой бит информации был передан.

Миф 2: с помощью квантовой телепортации можно передавать информацию со скоростью, превышающей скорость света.

Действительно, согласно современным представлениям передача состояний между сцепленными фотонами происходит мгновенно, таким образом, может возникнуть ощущение, что и информация передаётся мгновенно. Это, однако, не так, поскольку хотя состояние и было передано, прочитать его, расшифровав послание, можно только после передачи дополнительной информации о том, каковы же поляризации двух фотонов, находящихся у источника. Эта дополнительная информация передаётся по классическим каналам связи и скорость её передачи превышать скорость света не может.

Миф 3: получается, что квантовая телепортация совершенно неинтересна.

Конечно, на практике оказывается, что процесс квантовой телепортации, возможно, не так захватывающ, как это может показаться по его названию, однако и он может получить важное практическое применение. В первую очередь, это безопасная передача данных. Всегда можно перехватить сообщение, посланное по классическим каналам связи, однако воспользоваться им сможет только тот, у кого находится второй сцепленный фотон. Все остальные прочитать сообщение просто не смогут. К сожалению, пока до реального использования этого эффекта далеко, на данном этапе идут лишь научные эксперименты, требующие достаточно сложной аппаратуры.

Если вас заинтересовала эта тема, возможно, вам будет также интересно почитать про то, что

Профессор физического факультета Университет Калгари (Канада), член Канадского института высших исследований Александр Львовский постарался простым языком рассказать о принципах квантовой телепортации и квантовой криптографии.

Ключ к замку

Криптография - это искусство общения защищенным образом по незащищенному каналу. То есть у вас есть некая линия, которую могут прослушивать, и вам нужно передать по ней секретное сообщение, которое никто посторонний не сможет прочесть.

Представим, что, скажем, если у Алисы и Боба есть так называемый секретный ключ, а именно - тайная последовательность нулей и единиц, которой нет ни у кого другого, они могут зашифровать сообщение с помощью этого ключа, применив операцию исключающего ИЛИ, чтобы ноль совпадал с нулем, а единица - с единицей. Такое зашифрованное послание уже можно передать по открытому каналу. Если его кто-то перехватит, это не страшно, ведь его никто не сможет прочесть, кроме Боба, у которого есть копия секретного ключа.

В любой криптографии, в любой коммуникации самым дорогим ресурсом является случайная последовательность нулей и единиц, которой владеют только два общающихся. Но в большей части случаев используется криптография с открытым ключом. Допустим, вы покупаете что-то с помощью кредитной карты в интернет -магазине по безопасному протоколу HTTPS. По нему ваш компьютер переговаривается с каким-то сервером, с которым до этого никогда не общался, и у него не было возможности обменяться с этим сервером секретным ключом.

Тайна этого диалога обеспечивается решением сложной математической задачи, в частности - разложения на простые множители. Перемножить два простых числа легко, а если уже дана задача найти их произведение, найти два сомножителя, то это трудно. Если число достаточно большое, оно потребует от обычного компьютера многолетних вычислений.

Однако если этот компьютер не обычный, а квантовый, он такую задачу решит легко. Когда он будет наконец изобретен, приведенный выше широко используемый метод окажется бесполезным, что, как ожидается, будет иметь катастрофические последствия для общества.

Если помните, в первой книге про Гарри Поттера главному герою нужно было пройти через защиту, чтобы добраться до Философского камня. Тут нечто похожее: тому, кто установил защиту, будет легко пройти ее. Гарри пришлось очень трудно, но в итоге он ее все же преодолел.

Этот пример очень хорошо иллюстрирует криптографию с открытым ключом. Тот, кто его не знает, в принципе имеет возможность расшифровать сообщения, однако ему будет очень трудно, и на это потенциально потребуется много лет. Абсолютной безопасности криптография с открытым ключом не дает.

Квантовая криптография

Все это объясняет необходимость квантовой криптографии. Она дает нам лучшее из обоих миров. Есть метод одноразового блокнота, надежный, но, с другой стороны, требующий «дорогого» секретного ключа. Чтобы Алиса могла общаться с Бобом, она должна послать ему курьера с чемоданом, полным дисков с такими ключами. Он их будет постепенно расходовать, так как каждый из них можно использовать только один раз. С другой стороны, у нас есть метод открытого ключа, который «дешев», но не дает абсолютной надежности.

Квантовая криптография, с одной стороны, «дешевая», она позволяет безопасную передачу ключа по каналу, в который могут залезть, а с другой стороны - гарантирует секретность благодаря фундаментальным законам физики. Смысл ее заключается в том, чтобы кодировать информацию в квантовом состоянии отдельных фотонов.

В соответствии с постулатами квантовой физики, квантовое состояние в момент, когда его пытаются измерить, разрушается и изменяется. Таким образом, если на линии между Алисой и Бобом есть какой-то шпион, пытающийся подслушать или подсмотреть, он неизбежно изменит состояние фотонов, общающиеся заметят, что линию прослушивают, прекратят коммуникацию и примут меры.

В отличие от многих других квантовых технологий, квантовая криптография является коммерческой, это не научная фантастика. Уже сейчас есть компании, производящие серверы, подключаемые к обычной оптоволоконной линии, с помощью которых можно осуществлять безопасное общение.

Как работает поляризационный светоделитель

Свет - это поперечная электромагнитная волна, колеблющаяся не вдоль, а поперек. Это свойство называется поляризацией, и оно присутствует даже в отдельных фотонах. С помощью них можно кодировать информацию. Например, горизонтальный фотон - это ноль, а вертикальный - единица (то же верно для фотонов с поляризацией плюс 45 градусов и минус 45 градусов).

Алиса закодировала таким образом информацию, и Бобу нужно ее принять. Для этого используется специальный прибор - поляризационный светоделитель, куб, состоящий из двух призм, склеенных между собой. Он пропускает горизонтально поляризованный поток и отражает вертикально поляризованный, благодаря чему происходит декодирование информации. Если горизонтальный фотон - ноль, а вертикальный - единица, то тогда в случае логического ноля щелкнет один детектор, а в случае единицы - другой.

Но что будет, если мы пошлем диагональный фотон? Тогда начинает играть роль знаменитая квантовая случайность. Нельзя сказать, пройдет такой фотон или отразится - он с вероятностью 50 процентов сделает либо одно, либо другое. Предсказать его поведение невозможно в принципе. Более того, это свойство лежит в основе коммерческих генераторов случайных чисел.

Что же делать, если у нас стоит задача различить поляризации плюс 45 градусов и минус 45 градусов? Нужно повернуть светоделитель вокруг оси луча. Тогда закон квантовой случайности будет действовать для фотонов с горизонтальной и вертикальной поляризациями. Это свойство фундаментально. Мы не можем задать вопрос о том, какая поляризация у этого фотона.

Принцип квантовой криптографии

В чем же заключается идея квантовой криптографии? Предположим, Алиса посылает Бобу фотон, который она кодирует либо горизонтально-вертикальным образом, либо диагональным. Боб тоже подбрасывает монетку, решая случайным образом, каким будет его базис: горизонтально-вертикальным или диагональным. Если их способы кодировки совпадут - Боб получит данные, которые послала Алиса, если же нет - то какую-то ерунду. Они проводят эту операцию много тысяч раз, а потом «созваниваются» по открытому каналу и сообщают друг другу, в каких базисах совершали передачу, - можно считать, что эта информация теперь доступна кому угодно. Далее Боб и Алиса смогут отсеять события, в которых базисы были разные, и оставить те, в которых они были одинаковые (их будет примерно половина).

Допустим, в линию вклинился какой-то шпион, желающий подслушать сообщения, но ему тоже необходимо измерять информацию в каком-то базисе. Представим, что у Алисы и Боба он совпал, а у шпиона - нет. В ситуации, когда данные были посланы в горизонтально-вертикальном базисе, а подслушивающий измерил передачу в диагональном, он получит случайное значение и перешлет дальше какой-то произвольный фотон Бобу, так как не знает, каким он должен быть. Таким образом, его вмешательство будет замечено.

Самая главная проблема квантовой криптографии - это потери. Даже самое лучшее и современное оптоволокно дает 50 процентов потерь на каждые 10-12 километров кабеля. Допустим, мы посылаем наш секретный ключ из Москвы в Петербург - на 750 километров, и только один из миллиарда миллиардов фотонов достигнет цели. Все это делает технологию совершенно непрактичной. Именно поэтому современная квантовая криптография работает только на расстоянии примерно 100 километров. Теоретически известно, как эту проблему решить, - с помощью квантовых повторителей, но для их реализации нужна квантовая телепортация.

Квантовая запутанность

Научное определение квантовой запутанности - это делокализованное состояние суперпозиции. Звучит сложно, но можно привести простой пример. Предположим, у нас есть два фотона: горизонтальный и вертикальный, квантовые состояния которых взаимозависимы. Один из них мы посылаем Алисе, а другой - Бобу, которые делают измерения на поляризационном светоделителе.

Когда эти измерения совершаются в обычном горизонтально-вертикальном базисе, понятно, что результат будет скоррелирован. Если Алиса заметила горизонтальный фотон, то второй, естественно, будет вертикальным, и наоборот. Это можно представить проще: у нас есть синий и красный шарик, мы не глядя запечатываем каждый из них в конверт и посылаем двум получателям - если одному придет красный, второй обязательно получит синий.

Но в случае квантовой запутанности этим дело не ограничивается. Эта корреляция имеет место не только в горизонтально-вертикальном базисе, но и в любом другом. Например, если Алиса и Боб одновременно повернут свои светоделители на 45 градусов, у них опять будет полное совпадение.

Это очень странное квантовое явление. Допустим, Алиса повернула каким-то образом свой светоделитель и обнаружила какой-то фотон с поляризацией α, который прошел через него. Если Боб измерит свой фотон в том же самом базисе, он обнаружит поляризацию 90 градусов +α.

Итак, в начале мы имеем состояние запутанности: фотон Алисы полностью неопределен и фотон Боба полностью неопределен. Когда Алиса измерила свой фотон, обнаружила какое-то значение, то теперь известно точно, какой фотон у Боба, как бы далеко он ни находился. Этот эффект многократно подтвержден экспериментами, это не фантазия .

Допустим, у Алисы есть некий фотон с поляризацией α, которую она еще не знает, то есть находящийся в неизвестном состоянии. Между ней и Бобом нет прямого канала. Если бы канал был, то Алиса смогла бы зарегистрировать состояние фотона и донести эту информацию до Боба. Но квантовое состояние за одно измерение узнать невозможно, поэтому такой способ не годится. Однако между Алисой и Бобом есть заранее приготовленная запутанная пара фотонов. За счет этого можно заставить фотон Боба принять первоначальное состояние фотона Алисы, «созвонившись» потом по условной телефонной линии.

Вот классический (хотя и очень отдаленный аналог) всего этого. Алиса и Боб получают в конверте по шарику - синий или красный. Алиса хочет послать Бобу информацию о том, какой у нее. Для этого ей нужно, «созвонившись» с Бобом, сравнить шарики, сказав ему «у меня такой же» или «у нас разные». Если кто-то подслушивает эту линию, то это не поможет ему узнать их цвет.

Таким образом, существуют четыре варианта исхода событий (условно, у получателей синие шарики, красные шарики, красный и синий или синий и красный). Они интересны тем, что образуют базис. Если у нас есть два каких-то фотона с неизвестной поляризацией, то им можно «задать вопрос», в каком из этих состояний они находятся, и получить ответ. Но если хотя бы один из них окажется запутан с каким-то другим фотоном, то произойдет эффект удаленного приготовления, и третий, удаленный фотон «приготовится» в определенном состоянии. На этом и основана квантовая телепортация.

Как это все работает? У нас есть запутанное состояние и фотон, который мы хотим телепортировать. Алиса должна произвести соответствующее измерение исходного телепортированного фотона и задать вопрос, в каком состоянии находится другой. Случайным образом она получает один из четырех возможных ответов. В результате эффекта дистанционного приготовления оказывается, что после этого измерения в зависимости от результата фотон Боба перешел в определенное состояние. До этого он был запутан с фотоном Алисы, пребывая в неопределенном состоянии.

Алиса сообщает Бобу по телефону, каким был результат ее измерений. Если ее результат, допустим, оказался ψ-, то Боб знает, что его фотон автоматически преобразовался в это состояние. Если же Алиса сообщила, что ее измерение дало результат ψ+, то фотон Боба принял поляризацию -α. В конце эксперимента по телепортации у Боба оказывается копия первоначального фотона Алисы, а ее фотон и информация о нем в процессе разрушаются.

Технология телепортации

Сейчас мы умеем телепортировать поляризацию фотонов и некоторые состояния атомов. Но когда пишут, мол, ученые научились телепортировать атомы - это обман, ведь у атомов очень много квантовых состояний, бесконечное множество. В лучшем случае мы придумали, как телепортировать пару из них.

Мой любимый вопрос - когда будет телепортация человека? Ответ - никогда. Допустим, у нас есть капитан Пикард из сериала «Звездный путь», которого нужно телепортировать на поверхность планеты с корабля. Для этого, как нам уже известно, нужно сделать еще пару таких же Пикардов, привести их в запутанное состояние, которое включает все его возможные состояния (трезвого, пьяного, спящего, курящего - абсолютно все) и провести измерения на обоих. Понятно, насколько это сложно и нереализуемо.

Квантовая телепортация - это интересное, но лабораторное явление. До телепортации живых существ дело не дойдет (по крайней мере, в ближайшем будущем). Однако его можно использовать на практике для создания квантовых повторителей, для передачи информации на далекие расстояния.