Биографии Характеристики Анализ

Линия пересечения плоскостей онлайн. Общие уравнения прямой, как линии пересечения двух плоскостей Уравнение прямой заданной пересечением плоскостей

В данном разделе продолжим изучение темы уравнения прямой в пространстве с позиции стереометрии. Это значит, что мы будем рассматривать прямую линию в трехмерном пространстве как линию пересечения двух плоскостей.

Согласно аксиомам стереометрии, если две плоскости не совпадают и имеют одну общую точку, то они также имею одну общую прямую, на которой лежат все точки, которые являются общими для двух плоскостей. Используя уравнения двух пересекающихся плоскостей, мы можем определить прямую линию в прямоугольной системе координат.

По ходу рассмотрения темы приведем многочисленные примеры, ряд графических иллюстраций и развернутых решений, необходимых для лучшего усвоения материала.

Пусть даны две плоскости, которые не совпадают между собой и пересекаются. Обозначим их как плоскость α и плоскость β . Разместим их в прямоугольной системе координат O х у z трехмерного пространства.

Как мы помним, любую плоскость в прямоугольной системе координат задает общее уравнение плоскости вида A x + B y + C z + D = 0 . Будем считать, что плоскости α соотвествует уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а плоскости β уравнение A 2 x + B 2 y + C 2 z + D 2 = 0 . В этом случае нормальные вектора плоскостей α и β n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) не коллинеарны, так как плоскости не совпадают между собой и е размещаются параллельно друг другу. Запишем это условие следующим образом:

n 1 → ≠ λ · n 2 → ⇔ A 1 , B 1 , C 1 ≠ λ · A 2 , λ · B 2 , λ · C 2 , λ ∈ R

Чтобы освежить в памяти материал по теме «Параллельность плоскостей», смотрите соответствующий раздел нашего сайта.

Линию пересечения плоскостей обозначим буквой a . Т.е. a = α ∩ β . Эта прямая представляет собой множество точек, которые являются общими для обеих плоскостей α и β . Это значит, что все точки прямой линии a удовлетворяют обоим уравнениям плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . Фактически, они являются частным решением системы уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

Общее решение системы линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 определяет координаты всех точек линии, по которой происходит пересечение двух плоскостей α и β . Это значит, что с его помощью мы можем определить положение прямой в прямоугольной системе координат O x y z .

Рассмотрим описанную теорию еще раз, теперь уже на конкретном примере.

Пример 1

Прямая O x – это прямая, по которой пересекаются координатные плоскости O x y и O x z . Зададим плоскость O x y уравнением z = 0 , а плоскость O x z уравнением у = 0 . Такой подход мы подробно разобрали в разделе «Неполное общее уравнение плоскости», так что, в случае затруднений, можно обратиться к этому материалу повторно. В этом случае координатная прямая O x определяется в трехмерной системе координат системой из двух уравнений вида y = 0 z = 0 .

Нахождение координат точки, лежащей на прямой, по которой пересекаются плоскости

Рассмотрим задачу. Пусть в трехмерном пространстве задана прямоугольная система координат O х у z . Линия, по которой пересекаются две плоскости a , задана системой уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Дана точка трехмерного пространства M 0 x 0 , y 0 , z 0 .

Давайте определим, принадлежит ли точка M 0 x 0 , y 0 , z 0 заданной прямой линии a .

Для того, чтобы получить ответ на вопрос задачи, подставим координаты точки М 0 в каждое из двух уравнений плоскости. Если в результате подстановки оба уравнения превратятся в верные равенства A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 и A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 , то точка М 0 принадлежит каждой из плоскостей и принадлежит заданной линии. Если хотя бы одно из равенств A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 и A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 окажется неверным, то точка М 0 не принадлежит прямой линии.

Рассмотрим решение примера

Пример 2

Прямая линия задана в пространстве уравнениями двух пересекающихся плоскостей вида 2 x + 3 y + 1 = 0 x - 2 y + z - 3 = 0 . Определите, принадлежат ли точки M 0 (1 , - 1 , 0) и N 0 (0 , - 1 3 , 1) прямой линии пересечения плоскостей.

Решение

Начнем с точки М 0 . Подставим ее координаты в оба уравнения системы 2 · 1 + 3 · (- 1) + 1 = 0 1 - 2 · (- 1) + 0 - 3 = 0 ⇔ 0 = 0 0 = 0 .

В результате подстановки мы получили верные равенства. Это значит, что точка М 0 принадлежит обеим плоскостям и расположена на линии их пересечения.

Подставим в оба уравнения плоскости координаты точки N 0 (0 , - 1 3 , 1) . Получаем 2 · 0 + 3 · - 1 3 + 1 = 0 0 - 2 · - 1 3 + 1 - 3 = 0 ⇔ 0 = 0 - 1 1 3 = 0 .

Как вы видите, второе уравнение системы превратилось в неверное равенство. Это значит, что точка N 0 не принадлежит заданной прямой.

Ответ: точка М 0 принадлежит прямой линии, а точка N 0 не принадлежит.

Теперь предлагаем вам алгоритм нахождения координат некоторой точки, принадлежащей прямой линии, если прямая в пространстве в прямоугольной системе координат O x y z определяется уравнениями пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

Количество решений системы из двух линейных уравнений с темя неизвестными A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 бесконечно. Любое из этих решений может стать решением задачи.

Приведем пример.

Пример 3

Пусть в трехмерном пространстве задана прямая линия уравнениями двух пересекающихся плоскостей вида x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 . Найдите координаты любой из точек этой прямой.

Решение

Перепишем систему уравнений x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 ⇔ x + 0 y + 3 z = - 7 2 x + 3 y + 3 z = - 2 .

Возьмем отличный от нуля минор второго порядка в качестве базисного минора основной матрицы системы 1 0 2 3 = 3 ≠ 0 . Это значит, что z – это свободная неизвестная переменная.

Перенесем слагаемые, содержащие свободную неизвестную переменную z в правые части уравнений:

x + 0 y + 3 z = - 7 2 x + 3 y + 3 z = - 2 ⇔ x + 0 y = - 7 - 3 z 2 x + 3 y = - 2 - 3 z

Введем произвольное действительное число λ и примем, что z = λ .

Тогда x + 0 y = - 7 - 3 z 2 x + 3 y = - 2 - 3 z ⇔ x + 0 y = - 7 - 3 λ 2 x + 3 y = - 2 - 3 λ .

Для решения полученной системы уравнений применим метод Крамера:

∆ = 1 0 2 3 = 1 · 3 - 0 · 1 = 2 ∆ x = - 7 - 3 λ 0 - - 3 λ 3 = - 7 - 3 λ · 3 - 0 · (- 2 - 3 λ) = 21 - 9 λ ⇒ x = ∆ x ∆ = - 7 - 3 λ ∆ y = 1 - 7 - 3 λ 2 - 2 - 3 λ = 1 · - 2 - 3 λ - - 7 - 3 λ · = 12 + 3 λ ⇒ y = ∆ y ∆ = 4 + λ

Общее решение системы уравнений x + 3 z + 7 = 0 2 x + 3 y + 3 z + 2 = 0 будет иметь вид x = - 7 - 3 λ y = 4 + λ z = λ , где λ ∈ R .

Для получения частного решения системы уравнений, которое даст нам искомые координаты точки, принадлежащей заданной прямой, нам необходимо взять конкретное значение параметра λ . Если λ = 0 , то x = - 7 - 3 · 0 y = 4 + 0 z = 0 ⇔ x = - 7 y = 4 z = 0 .

Это позволяет нам получить координаты искомой точки - 7 , 4 , 0 .

Проверим верность найденных координат точки методом подстановки их в исходные уравнения двух пересекающихся плоскостей - 7 + 3 · 0 + 7 = 0 2 · (- 7) + 3 · 4 + 3 · 0 + 2 = 0 ⇔ 0 = 0 0 = 0 .

Ответ : - 7 , 4 , 0

Направляющий вектор прямой, по которой пересекаются две плоскости

Давайте рассмотрим, как определить координаты направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . В прямоугольной системе координат 0хуz направляющий вектор прямой неотделим от прямой линии.

Как мы знаем, прямая перпендикулярна по отношению к плоскости в том случае, когда она перпендикулярна по отношению к любой прямой, лежащей в данной плоскости. Исходя из вышесказанного, нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в данной плоскости. Эти два факта помогут нам в нахождении направляющего вектора прямой.

Плоскости α и β пересекаются по линии a . Направляющий вектор a → прямой линии a расположен перпендикулярно по отношению к нормальному вектору n 1 → = (A 1 , B 1 , C 1) плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и нормальному вектору n 2 → = (A 2 , B 2 , C 2) плоскости A 2 x + B 2 y + C 2 z + D 2 = 0 .

Направляющий вектор прямой a представляет собой векторное произведение векторов n → 1 = (A 1 , B 1 , C 1) и n 2 → = A 2 , B 2 , C 2 .

a → = n → 1 × n 2 → = i → j → k → A 1 B 1 C 1 A 2 B 2 C 2

Зададим множество всех направляющих векторов прямой как λ · a → = λ · n 1 → × n 2 → , где λ - это параметр, который может принимать любые действительные значения, отличные от нуля.

Пример 4

Пусть прямая в пространстве в прямоугольной системе координат O х у z задана уравнениями двух пересекающихся плоскостей x + 2 y - 3 z - 2 = 0 x - z + 4 = 0 . Найдем координаты любого направляющего вектора этой прямой.

Решение

Плоскости x + 2 y - 3 z - 2 = 0 и x - z + 4 = 0 имеют нормальные векторы n 1 → = 1 , 2 , - 3 и n 2 → = 1 , 0 , - 1 . Примем за направляющий вектор прямой линии, являющейся пересечением двух заданных плоскостей, векторное произведение нормальных векторов:

a → = n → 1 × n 2 → = i → j → k → 1 2 - 3 1 0 - 1 = i → · 2 · (- 1) + j → · (- 3) · 1 + k → · 1 · 0 - - k → · 2 · 1 - j → · 1 · (- 1) - i → · (- 3) · 0 = - 2 · i → - 2 j → - 2 k →

Запишем ответ в координатной форме a → = - 2 , - 2 , - 2 . Тем, кто не помнит, как это делается, рекомендуем обратиться к теме «Координаты вектора в прямоугольной системе координат».

Ответ: a → = - 2 , - 2 , - 2

Переход к параметрическим и каноническим уравнениям прямой в пространстве

Для решения ряда задач проще использовать параметрические уравнения прямой в пространстве вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ или канонические уравнения прямой в пространстве вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В этих уравнениях a x , a y , a z - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты некоторой точки прямой, а λ - параметр, принимающий произвольные действительные значения.

От уравнения прямой вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 можно перейти к каноническим и параметрическим уравнениям прямой линии в пространстве. Для записи канонических и параметрических уравнений прямой нам понадобятся навыки нахождения координат некоторой точки прямой, а также координат некоторого направляющего вектора прямой, заданной уравнениями двух пересекающихся плоскостей.

Рассмотрим написанное выше на примере.

Пример 5

Зададим прямую линию в трехмерной системе координат уравнениями двух пересекающихся плоскостей 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 . Напишем канонические и параметрические уравнения этой прямой.

Решение

Найдем координаты направляющего вектора прямой, который является векторным произведением нормальных векторов n 1 → = 2 , 1 , - 1 плоскости 2 x + y - z - 1 = 0 и n 2 → = (1 , 3 , - 2) плоскости x + 3 y - 2 z = 0:

a → = n 1 → × n 2 → = i → j → k → 2 1 - 1 1 3 - 2 = i → · 1 · (- 2) + j → · (- 1) · 1 + k → · 2 · 3 - - k → · 1 · 1 - j → · 2 · (- 2) - i → · (- 1) · 3 = i → + 3 · j → + 5 · k →

Координаты направляющего вектора прямой a → = (1 , 2 , 5) .

Следующим шагом является определение координат некоторой точки заданной прямой линии, которыми является одно из решений системы уравнений: 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 ⇔ 2 x + y - z = 1 x + 3 y - 2 z = 0 .

Возьмем в качестве минорной матрицы системы определитель 2 1 1 3 = 2 · 3 - 1 · 1 = 5 , который отличен от нуля. В этом случае переменная z является свободной. Перенесем слагаемые с ней в правые части каждого уравнения и придаем переменной произвольное значение λ:

2 x + y - z = 1 x + 3 y - 2 z = 0 ⇔ 2 x + y = 1 + z x + 3 y = 2 z ⇔ 2 x + y = 1 + λ x + 3 y = 2 λ , λ ∈ R

Применяем для решения полученной системы уравнений метод Крамера:

∆ = 2 1 1 3 = 2 · 3 - 1 · 1 = 5 ∆ x = 1 + λ 1 2 λ 3 = (1 + λ) · 3 - 1 · 2 λ = 3 + λ ⇒ x = ∆ x ∆ = 3 + λ 5 = 3 5 + 1 5 · λ ∆ y = 2 1 + λ 1 2 λ = 2 · 2 λ - (1 + λ) · 1 = - 1 + 3 λ ⇒ y = ∆ y ∆ = - 1 + 3 λ 5 = - 1 5 + 3 5 · λ

Получаем: 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 ⇔ x = 3 5 + 1 5 y = - 1 5 + 3 5 z = λ

Примем λ = 2 для того, чтобы получить координаты точки прямой линии: x 1 = 3 5 + 1 5 · 2 y 1 = - 1 5 + 3 5 · 2 z 1 = 2 ⇔ x 1 = 1 y 1 = 1 z 1 = 2 . Теперь мы имеем достаточно данных для того, чтобы записать канонические и параметрические уравнения данной прямой в пространстве: x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ x - 1 1 = y - 1 3 = z - 2 5 x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ ⇔ x = 1 + 1 · λ y = 1 + 3 · λ z = 2 + 5 · λ ⇔ x = 1 + λ y = 1 + 3 · λ z = 2 + 5 · λ

Ответ: x - 1 1 = y - 1 3 = z - 2 5 и x = 1 + λ y = 1 + 3 · λ z = 2 + 5 · λ

Данная задача имеет еще один способ решения.

Нахождение координат некоторой точки прямой проводится при решении системы уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 .

В общем случае ее решения можно записать в виде искомых параметрических уравнений прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ .

Получение канонических уравнений проводится следующим образом: решаем каждое из полученных уравнений относительно параметра λ , приравниваем правые части равенства.

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ ⇔ λ = x - x 1 a x λ = y - y 1 a y λ = z - z 1 a z ⇔ x - x 1 a x = y - y 1 a y = z - z 1 a z

Применим данный способ к решению задачи.

Пример 6

Зададим положение прямой линии уравнениями двух пересекающихся плоскостей 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 . Напишем параметрическое и каноническое уравнения для этой прямой линии.

Решение

Решение системы из двух уравнений с тремя неизвестными проводится аналогично тому, как мы делали это в предыдущем примере. Получаем: 2 x + y - z - 1 = 0 x + 3 y - 2 z = 0 ⇔ x = 3 5 + 1 5 · λ y = - 1 5 + 3 5 · λ z = λ .

Это параметрические уравнения прямой в пространстве.

Канонические уравнения получаем следующим образом: x = 3 5 + 1 5 · λ y = - 1 5 + 3 5 · λ z = λ ⇔ λ = x - 3 5 1 5 λ = y + 1 5 3 5 λ = z 1 ⇔ x - 3 5 1 5 = y + 1 5 3 5 = z 1

Полученные в обоих примерах уравнения отличаются внешне, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства, а следовательно и одну и ту же прямую линию.

Ответ: x - 3 5 1 5 = y + 1 5 3 5 = z 1 и x = 3 5 + 1 5 · λ y = - 1 5 + 3 5 · λ z = λ

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку "Решить". Теоретическую часть и численные примеры смотрите ниже.

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Линия пересечения плоскостей − теория, примеры и решения

Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α 1 и α 2:

Поскольку векторы n 1 и n 2 коллинеарны, то существует такое число λ ≠0, что выполнено равенство n 1 =λ n 2 , т.е. A 1 =λ A 2 , B 1 =λ B 2 , C 1 =λ C 2 .

Умножив уравнение (2) на λ , получим:

Если выполненио равенство D 1 =λ D 2 , то плоскости α 1 и α 2 совпадают, если же D 1 ≠λ D 2 то плоскости α 1 и α 2 параллельны, то есть не пересекаются.

2. Нормальные векторы n 1 и n 2 плоскостей α 1 и α 2 не коллинеарны (Рис.2).

Если векторы n 1 и n 2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:

где x 0 , y 0 , z 0 , m, p, l действительные числа, а t − переменная.

Равенство (5) можно записать в следующем виде:

Пример 1. Найти линию пересечения плоскостей α 1 и α 2:

α 1: x +2y +z +54=0. (7)

Решим систему линейных уравнений (9) отностительно x, y, z . Для решения системы, построим расширенную матрицу:

Второй этап. Обратный ход Гаусса.

Исключим элементы 2-го столбца матрицы выше элемента a 22 . Для этого сложим строку 1 со строкой 2, умноженной на −2/5:

Получим решение:

Получили уравнение линии пересечения плоскостей α 1 и α 2 в параметрическом виде. Запишем ее в каноническом виде.

Ответ. Уравнение линии пересечения плоскостей α 1 и α 2 имеет вид:

(15)

α 1 имеет нормальный вектор n 1 ={A 1 , B 1 , C 1 }={1, 2, 7}. Плоскость α 2 имеет нормальный вектор n 2 ={A 2 , B 2 , C 2 }={2, 4, 14}.

n 1 и n 2 коллинеарны (n 1 можно получить умножением n 2 на число 1/2), то плоскости α 1 и α 2 параллельны или совпадают.

α 2 умножив на число 1/2:

(18)

Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α 1 имеет нормальный вектор n 1 ={A 1 , B 1 , C 1 }={5, −2, 3}. Плоскость α 2 имеет нормальный вектор n 2 ={A 2 , B 2 , C 2 }={15, −6, 9}.

Поскольку направляющие векторы n 1 и n 2 коллинеарны (n 1 можно получить умножением n 2 на число 1/3), то плоскости α 1 и α 2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α 2 умножив на число 1/3:

(19)

Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α 1 и α 2 совпадают.

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,

Канонические уравнения прямой

Постановка задачи. Найти канонические уравнения прямой, заданной как линия пересечения двух плоскостей (общими уравнениями)

План решения. Канонические уравнения прямой с направляющим вектором , проходящей через данную точку , имеют вид

. (1)

Поэтому, чтобы написать канонические уравнения прямой, необходимо найти ее направляющий вектор и какую-нибудь точку на прямой.

1. Так как прямая принадлежит одновременно обеим плоскостям, то ее направляющий вектор ортогонален нормальным векторам обеих плоскостей, т.е. согласно определению векторного произведения, имеем

. (2)

2. Выбираем какую-нибудь точку на прямой. Поскольку направляющий вектор прямой не параллелен хотя бы одной из координатных плоскостей, то прямая пересекает эту координатную плоскость. Следовательно, в качестве точки на прямой может быть взята точка ее пересечения с этой координатной плоскостью.

3. Подставляем найденные координаты направляющего вектора и точки в канонические уравнения прямой (1).

Замечание. Если векторное произведение (2) равно нулю, то плоскости не пересекаются (параллельны) и записать канонические уравнения прямой не представляется возможным.

Задача 12. Написать канонические уравнения прямой.

Канонические уравнения прямой:

,

где – координаты какой-либо точки прямой, – ее направляющий вектор.

Найдем какую-либо точку прямой . Пусть , тогда

Следовательно, – координаты точки, принадлежащей прямой.

Задача на пересечение плоскостей в силу своей важности носит у ряда авторов наименование «позиционная задача № 2».

Из стереометрии известно, что линией пересечения двух плоскостей служит прямая. В предыдущих предварительных задачах, где речь шла о частных случаях пересечения плоскостей, мы исходили из этого определения.

Как известно, чтобы построить ту или иную прямую, в простейшем случае требуется отыскать две точки, принадлежащие этой прямой. В случае задания плоскости следами в качестве этих двух точек выступают точки пересечения одноименных следов пересекающихся плоскостей.

Примеры для самостоятельной работы

Упражнение 5.1

Построить линии пересечения плоскостей, заданных следами (рис. 72):

  • а) горизонтально проецирующей I и фронтально проецирующей А;
  • б) горизонтально проецирующей Z и плоскости общего положения Q;
  • в) двух плоскостей общего положения I и 0.

Рис. 72

На рис. 73 приведены ответы к этому упражнению.

Для случаев задания плоскостей локальными плоскими фигурами уместно использование по крайней мере двух различных путей решения.


Рис. 73

Первый путь решения - использование трехступенного алгоритма нахождения точки встречи прямой общего положения с плоскостью общего положения. Для нахождения линии пересечения двух треугольников один из треугольников оставляют без изменения, а второй мысленно расчленяют на отдельные отрезки, представляя их в качестве прямых общего положения. Сначала находят точку пересечения одной из прямых общего положения с плоскостью треугольника. Затем находят еще одну недостающую точку, принадлежащую искомой линии. Это делается аналогичным путем, повторяя всю описанную последовательность действий.

Упражнение 5.2

По заданным координатам вершин двух треугольников ЛВС и DEK построить эпюр последних и найти линию их пересечения. Указать видимость элементов обоих треугольников на эпюре: А (0, 9, 2); ?(10, 1, 16); С (23, 14, 9); D (3, 17, 18); ?(22, 11, 17); ?(12,0, 2). Для нахождения линий пересечения треугольников рекомендуется сначала найти точку встречи прямой KD с треугольником АВС, а затем точку встречи прямой СВ с треугольником EDK.

Общий вид полученного эпюра приведен на рис. 74.

Второй путь решения - использование двух вспомогательных секущих плоскостей уровня.

Заданные пересекающиеся плоские фигуры следует дважды пересечь вспомогательными плоскостями уровня (одноименными либо разноименными - безразлично), например двумя горизонтальными плоскостями уровня.

Нетрудно понять, что одноразовое рассечение позволяет отыскать две пересекающиеся прямые h l и И 2 , дающие одну точку А, принадлежащую искомой линии пересечения (рис. 75). Проводя еще одну аналогичную вспомогательную плоскость на некотором расстоянии

Рис. 74


Рис. 75

от первой, получают аналогичное построение и еще одну точку. Соединяя одноименные проекции двух полученных точек, находят искомую линию пересечения двух плоскостей.

Упражнение 5.3

По заданным координатам точек двух треугольных фигур построить эпюр последних, на котором построить с использованием вспомогательных плоскостей линию пересечения треугольников. Указать видимость элементов обоих треугольников на эпюре:

к АВС. А (16, 5, 17); Я (10, 19,

A DEF: D (24, 12, 14); ? (4, 18,

Общий вид решенной задачи изображен на рис. 76.

Упражнение 5.4

Для закрепления навыков нахождения линии пересечения двух плоскостей приводится задача, решение которой дается в динамике построений в соответствии со ступенями алгоритма.

Найти линию пересечения двух плоскостей общего положе- р ис jq

ния, заданных двумя треугольниками АВС и DEF, и определить видимость их взаимопроникновения (рис. 77).

Решение примера сводится к отысканию точек пересечения сторонами (прямыми) ААВС с плоскостью общего положения, заданной ADEF. Алгоритм решения этого примера известен.

Заключаем сторону (прямую) АС ЬЛВС во вспомогательную фронтально проецирующую плоскость т _1_ П 2 (рис. 78).

Фронтальный след этой вспомогательной плоскости пересекает проекции сторон D 2 E 2 глЕ 2 - 1 2 и D 2 F 2 пт 2 = 2 2 в точках 1 2 и 2 2 . Проекционные линии связи позволяют на горизонтальной плоскости проекций определить линию пересечения (1 !~2 2) = n AD X E X F { . Тогда точка К 1 и ее проекция К 2 определяют точку пересечения прямой АС с ADEF.

Повторяем алгоритм нахождения точки пересечения стороны ААВС прямой ВС с ADEF. Заключаем ВС во вспомогательную фронтально проецирующую плоскость р _L П 2 (рис. 79).

Находим проекции точек 3 и 4 и на горизонтальной плоскости проекций определяем проекцию точки пересечения прямой В 1 С [ с линией пересечения (3,-4,):

Проекционная линия связи позволяет найти ее фронтальную проекцию точку М 2 .

Соединяем найденные точки Ки Ми находим линию пересечения двух плоскостей общего положения AABC n ADEF= АЖ (рис. 80).

Видимость сторон ААВС относительно ADEF определяется с помощью конкурирующих точек. Сначала определяем видимость геометрических фигур на плоскости проекций П 2 . Для этого через конкурирующие точки 5 и 6 (5 2 = 6 2) проводим проекционную линию связи, перпендикулярную оси проекций х п (рис. 81).

По горизонтальным проекциям 5 У и 6 { точек 5 и 6, в которых линия проекционной связи соответственно пересекает скрещивающиеся прямые АС 4 DF, выясняется, что точка 6 более удалена от плоскости проекций П 2 , чем точка 5. Поэтому точка 6 и прямая DF, которой она принадлежит, видимы относительно плоскости проекций П 2 . Отсюда следует, что отрезок (К 2 -6 2) будет невидимым. Аналогично определяем видимость сторон АЛВС и ADEF - ВС и DF, т.е. отрезок (Ж 2 -8 2) будет невидимым.

Видимость ААВС и ADEF относительно плоскости проекций П j, устанавливается аналогично. Для определения видимости скрещивающихся прямых АС * DF и ВС ±DF относительно плоскости проекций П] через конкурирующие точки 9 1 = 10 1 и11 1 = 12 1 проводим проекционные линии связи перпендикулярно х п. По фронтальным проекциям этих конкурирующих точек устанавливаем, что проекции точек 10 2 и 12 2 более удалены от плоскости проекций П { . Следовательно, отрезки (А^-ЮД и (М г 2 1) будут невидимыми. Отсюда видимость ААВС и ADEF наглядно представлена на рис. 82.