Биографии Характеристики Анализ

Математический знак между. Математические обозначения

    В абстрактной алгебре повсеместно используются символы для упрощения и сокращения текста, а также стандартные обозначения для некоторых групп. Ниже приведён список наиболее часто встречающихся алгебраических обозначений, соответствующие команды в … Википедия

    Математические обозначения это символы, используемые для компактной записи математических уравнений и формул. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского),… … Википедия

    Статья содержит список общеупотребительных аббревиатур математических функций, операторов и др. математических терминов. Содержание 1 Аббревиатуры 1.1 Латиница 1.2 Греческий алфавит … Википедия

    Юникод, или Уникод (англ. Unicode) стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков. Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium,… … Википедия

    Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

    У этого термина существуют и другие значения, см. Плюс минус (значения). ± ∓ Знак плюс минус (±) математический символ, который ставится перед некоторым выражением и означает, что значение этого выражения может быть как положительным, так и … Википедия

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    Или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения в… … Википедия

    Знаки операций или математические символы знаки, которые символизируют определённые математические действия со своими аргументами. К самым распространённым относятся: Плюс: + Минус: , − Знак умножения: ×, ∙ Знак деления: :, ∕, ÷ Знак возведения… … Википедия

из двух), 3 > 2 (три больше двух) и т.п.

Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми Знаки математические были знаки для изображения чисел - цифры , возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации - вавилонская и египетская - появились ещё за 3 1 / 2 тысячелетия до н. э.

Первые Знаки математические для произвольных величин появились много позднее (начиная с 5-4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин - в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами - начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х ) и её степени следующими знаками:

[ - от греческого термина dunamiV (dynamis - сила), обозначавшего квадрат неизвестной, - от греческого cuboV (k_ybos) - куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5 изображалось

(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак ; равенство Диофант обозначал буквой i [от греческого isoV (isos) - равный]. Например, уравнение

(x 3 + 8x ) - (5x 2 + 1) = х

У Диофанта записалось бы так:

(здесь

означает, что единица не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные Знаки математические для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3х 2 + 10x - 8 = x 2 + 1

В записи Брахмагупты (7 в.) имело бы вид:

Йа ва 3 йа 10 ру 8

Йа ва 1 йа 0 ру 1

(йа - от йават - тават - неизвестное, ва - от варга - квадратное число, ру - от рупа - монета рупия - свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14-17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются Знаки математические для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и -. Ещё в 17 в. можно насчитать около десятка Знаки математические для действия умножения.

Различны были и Знаки математические неизвестной и её степеней. В 16 - начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census - латинский термин, служивший переводом греческого dunamiV, Q (от quadratum), , A (2), , Aii, aa , a 2 и др. Так, уравнение

x 3 + 5x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

у немецкого математика М. Штифеля (1544):

у итальянского математика Р. Бомбелли (1572):

французского математика Ф. Виета (1591):

у английского математика Т. Гарриота (1631):

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли , 1550), круглые (Н. Тарталья , 1556), фигурные (Ф. Виет , 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) Знаки математические для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,... Например, запись Виета

В наших символах выглядит так:

x 3 + 3bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины - начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие Знаки математические было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков


знак

значение

Кто ввёл

Когда введён
Знаки индивидуальных объектов

¥

бесконечность

Дж. Валлис

1655

e

основание натуральных логарифмов

Л. Эйлер

1736

p

отношение длины окружности к диаметру

У. Джонс

Л. Эйлер


1706

i

корень квадратный из -1

Л. Эйлер

1777 (в печати 1794)

i j k

единичные векторы, орты

У. Гамильтон

1853

П (а)

угол параллельности

Н.И. Лобачевский

1835
Знаки переменных объектов

x,y, z

неизвестные или переменные величины

Р. Декарт

1637

r

вектор

О. Коши

1853
Знаки индивидуальных операций

+

сложение

немецкие математики

Конец 15 в.



вычитание

´

умножение

У. Оутред

1631

×

умножение

Г. Лейбниц

1698

:

деление

Г. Лейбниц

1684

a 2 , a 3 ,…, a n

степени

Р. Декарт

1637

И. Ньютон

1676



корни

К. Рудольф

1525

А. Жирар

1629

Log

логарифм

И. Кеплер

1624

log

Б. Кавальери

1632

sin

синус

Л. Эйлер

1748

cos

косинус

tg

тангенс

Л. Эйлер

1753

arc.sin

арксинус

Ж. Лагранж

1772

Sh


гиперболический синус
В. Риккати
1757

Ch


гиперболический косинус

dx, ddx, …

дифференциал

Г. Лейбниц

1675 (в печати 1684)

d 2 x, d 3 x,…




интеграл

Г. Лейбниц

1675 (в печати 1686)



производная

Г. Лейбниц

1675

¦¢x

производная

Ж. Лагранж

1770, 1779

y’

¦¢(x)

Dx

разность

Л. Эйлер

1755



частная производная

А. Лежандр

1786



определённый интеграл

Ж. Фурье

1819-22



сумма

Л. Эйлер

1755

П

произведение

К. Гаусс

1812

!

факториал

К. Крамп

1808

|x|

модуль

К. Вейерштрасс

1841

lim

предел


У. Гамильтон,

многие математики


1853,

начало 20 в.


lim

n = ¥

lim

n ® ¥

x

дзета-функция

Б. Риман

1857

Г

гамма-функция

А. Лежандр

1808

В

бета-функция

Ж. Бине

1839

D

дельта (оператор Лапласа)

Р. Мёрфи

1833

Ñ

набла (оператор Гамильтона)

У. Гамильтон

1853
Знаки переменных операций

jx

функция

И. Бернули

1718

f (x)

Л. Эйлер

1734
Знаки индивидуальных отношений

=

равенство

Р. Рекорд

1557

>

больше

Т. Гарриот

1631

<

меньше

º

сравнимость

К. Гаусс

1801


параллельность

У. Оутред

1677

^

перпендикулярность

П. Эригон

1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

и для бесконечно малого приращения o . Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ¥.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц . Ему, в частности, принадлежат употребляемые ныне Знаки математические дифференциалов

dx, d 2 x, d 3 x

и интеграла

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру . Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x ) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), p [вероятно, от греческого perijereia (periphereia) - окружность, периферия, 1736], мнимой единицы

(от французского imaginaire - мнимый, 1777, опубликовано в 1794).

В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс , 1841), вектора (О. Коши , 1853), определителя

(А. Кэли , 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.

Наряду с указанным процессом стандартизации Знаки математические в современной литературе весьма часто можно встретить Знаки математические , используемые отдельными авторами только в пределах данного исследования.

С точки зрения математической логики, среди Знаки математические можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам Знаки математические примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.

Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.

Примеры знаков первого рода могут служить (см. также таблицу):

A 1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и p; мнимой единицы i.

Б 1) Знаки арифметических действий +, -, ·, ´,:; извлечения корня , дифференцирования

знаки суммы (объединения) È и произведения (пересечения) Ç множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.

1) Знаки равенства и неравенства =, >, <, ¹, знаки параллельности || и перпендикулярности ^, знаки принадлежности Î элемента некоторому множеству и включения Ì одного множества в другое и т.п.

Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b )(a - b ) = a 2 - b 2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х 2 буквы х и у - произвольные числа, связанные заданным отношением; при решении уравнения

х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и -1).

С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:

A 2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.

Б 2) Обозначения f, , j для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:

Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики ) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.

Лит.: Cajori ., A history of mathematical notations, v. 1-2, Chi., 1928-29.

Статья про слово "Знаки математические " в Большой Советской Энциклопедии была прочитана 39765 раз

Как известно, математика любит точность и краткость - недаром одна-единственная формула может в словесной форме занимать абзац, а порой и целую страницу текста. Таким образом, графические элементы, используемые во всем мире в науке, призваны увеличить скорость написания и компактность представления данных. Кроме того, стандартизованные графические изображения может распознать носитель любого языка, имеющий базовые знания в соответствующей сфере.

История математических знаков и символов насчитывает много столетий - некоторые из них были придуманы случайным образом и предназначались для обозначения иных явлений; другие же стали продуктом деятельности ученых, целенаправленно формирующих искусственный язык и руководствующихся исключительно практическими соображениями.

Плюс и минус

История происхождения символов, обозначающих простейшие арифметические операции, доподлинно неизвестна. Однако существует достаточно вероятная гипотеза происхождения знака «плюс», имеющего вид перекрещенных горизонтальной и вертикальной черт. В соответствии с ней символ сложения берет начало в латинском союзе et, который переводится на русский язык как «и». Постепенно, с целью ускорения процесса записи, слово было сокращено до вертикально ориентированного креста, напоминающего букву t. Самый ранний достоверный пример подобного сокращения датируется XIV веком.

Общепринятый знак «минус» появился, по всей видимости, позже. В XIV и даже XV веке в научной литературе использовался целый ряд символов, обозначающих операцию вычитания, и лишь к XVI веку «плюс» и «минус» в их современном виде стали встречаться в математических трудах вместе.

Умножение и деление

Как ни странно, математические знаки и символы для этих двух арифметических действий не полностью стандартизованы и сегодня. Популярным обозначением умножения является предложенный математиком Отредом в XVII веке диагональный крестик, который можно увидеть, например, на калькуляторах. На уроках математики в школе ту же операцию обычно представляют в виде точки - данный способ предложил в том же веке Лейбниц. Ещё один способ представления - звёздочка, которая наиболее часто используется при компьютерном представлении различных расчётов. Использовать её предложил всё в том же XVII веке Иоганн Ран.

Для операции деления предусмотрены знак наклонной черты (предложен Отредом) и горизонтальная линия с точками сверху и снизу (символ ввел Иоганн Ран). Первый вариант обозначения является более популярным, однако второй также достаточно распространен.

Математические знаки и символы и их значения порой изменяются во времени. Однако все три способа графического представления умножения, а также оба способа для деления являются в той или иной степени состоятельными и актуальными на сегодняшний день.

Равенство, тождество, эквивалентность

Как и в случае многих других математических знаков и символов, обозначение равенства изначально было словесным. Достаточно продолжительное время общепринятым обозначением служило сокращение ae от латинского aequalis («равны»). Однако в XVI веке математик из Уэльса по имени Роберт Рекорд предложил в качестве символа две горизонтальные прямые, расположенные друг под другом. Как утверждал ученый, нельзя придумать ничего более равного между собой, чем два параллельных отрезка.

Несмотря на то что аналогичный знак использовался для обозначения параллельности прямых, новый символ равенства постепенно получил распространение. К слову, такие знаки как «больше» и «меньше», изображающие развернутые в разные стороны галочки, появились лишь в XVII-XVIII веке. Сегодня же они кажутся интуитивно понятными любому школьнику.

Несколько более сложные знаки эквивалентности (две волнистые линии) и тождества (три горизонтальные параллельные прямые) вошли в обиход лишь во второй половине XIX века.

Знак неизвестного - «Икс»

История возникновения математических знаков и символов знает и весьма интересные случаи переосмысления графики по мере развития науки. Знак обозначения неизвестного, именуемый сегодня «иксом», берет своё начало на Ближнем Востоке на заре прошлого тысячелетия.

Ещё в X веке в арабском мире, славящемся в тот исторический период своими учеными, понятие неизвестного обозначалось словом, буквально переводящимся как «нечто» и начинающимся со звука «Ш». С целью экономии материалов и времени слово в трактатах стало сокращаться до первой буквы.

Спустя многие десятилетия письменные труды арабских ученых оказались в городах Пиренейского полуострова, на территории современной Испании. Научные трактаты стали переводиться на национальный язык, но возникла трудность - в испанском отсутствует фонема «Ш». Заимствованные арабские слова, начинающиеся с неё, записывались по особому правилу и предварялись буквой X. Научным языком того времени была латынь, в которой соответствующий знак имеет название «Икс».

Таким образом, знак, на первый взгляд являющийся лишь случайно выбранным символом, имеет глубокую историю и изначально является сокращением арабского слова «нечто».

Обозначение других неизвестных

В отличие от «Икса», знакомые нам со школьной скамьи Y и Z, а также a, b, c имеют гораздо более прозаичную историю происхождения.

В XVII веке была издана книга Декарта под названием «Геометрия». В этой книге автор предлагал стандартизировать символы в уравнениях: в соответствии с его идеей, последние три буквы латинского алфавита (начиная от «Икса») стали обозначать неизвестные, а три первые - известные значения.

Тригонометрические термины

По-настоящему необычна история такого слова, как «синус».

Первоначально соответствующие тригонометрические функции получили название в Индии. Слово, соответствующее понятию синуса, буквально означало «тетива». В эпоху расцвета арабской науки индийские трактаты были переведены, а понятие, аналога которому не оказалось в арабском языке, транскрибировано. По стечению обстоятельств, то, что получилось на письме, напоминало реально существующее слово «впадина», семантика которого не имела никакого отношения к исходному термину. В результате, когда в 12 веке арабские тексты были переведены на латынь, возникло слово «синус», означающее «впадина» и закрепившееся в качестве нового математического понятия.

А вот математические знаки и символы для тангенса и котангенса до сих пор не стандартизованы - в одних странах их принято писать как tg, а в других - как tan.

Некоторые другие знаки

Как видно из примеров, описанных выше, возникновение математических знаков и символов в значительной мере пришлось на XVI-XVII века. На этот же период пришлось возникновение привычных сегодня форм записи таких понятий, как процент, квадратный корень, степень.

Процент, т. е. сотая доля, долгое время обозначался как cto (сокращение от лат. cento). Считается, что общепринятый на сегодняшний день знак появился в результате опечатки около четырехсот лет назад. Получившееся изображение было воспринято как удачный способ сокращения и прижилось.

Знак корня изначально представлял собой стилизованную букву R (сокращение от латинского слова radix - «корень»). Верхняя черта, под которую сегодня записывается выражение, выполняла функцию скобок и являлась отдельным символом, обособленным от корня. Круглые скобки были придуманы позже - в повсеместное обращение они вошли благодаря деятельности Лейбница (1646-1716). Благодаря его же трудам был введен в науку и символ интеграла, выглядящий как вытянутая буква S - сокращение от слова «сумма».

Наконец, знак операции возведения в степень был придуман Декартом и доработан Ньютоном во второй половине XVII века.

Более поздние обозначения

Учитывая, что знакомые нам графические изображения «плюса» и «минуса» были введены в обращение всего несколько столетий назад, не кажется удивительным, что математические знаки и символы, обозначающие сложные явления, стали использоваться лишь в позапрошлом веке.

Так, факториал, имеющий вид восклицательного знака после числа или переменной, появился лишь в начале XIX века. Приблизительно тогда же появились заглавная «П» для обозначения произведения и символ предела.

Несколько странно, что знаки для числа Пи и алгебраической суммы появились лишь в XVIII веке - позже, чем, например, символ интеграла, хотя интуитивно кажется, что они являются более употребительными. Графическое изображение отношения длины окружности к диаметру происходит от первой буквы греческих слов, означающих «окружность» и «периметр». А знак «сигма» для алгебраической суммы был предложен Эйлером в последней четверти XVIII столетия.

Названия символов на разных языках

Как известно, языком науки в Европе на протяжении многих веков была латынь. Физические, медицинские и многие другие термины часто заимствовались в виде транскрипций, значительно реже - в виде кальки. Таким образом, многие математические знаки и символы на английском называются почти так же, как на русском, французском или немецком. Чем сложнее суть явления, тем выше вероятность, что в разных языках оно будет иметь одинаковое название.

Компьютерная запись математических знаков

Простейшие математические знаки и символы в "Ворде" обозначаются обычной комбинацией клавиш Shift+цифра от 0 до 9 в русской или английской раскладке. Отдельные клавиши отведены под некоторые широкоупотребительные знаки: плюс, минус, равенство, наклонная черта.

Если же требуется использовать графические изображения интеграла, алгебраической суммы или произведения, числа Пи и т. д., требуется открыть в «Ворде» вкладку «Вставка» и найти одну из двух кнопок: «Формула» или «Символ». В первом случае откроется конструктор, позволяющий выстроить целую формулу в рамках одного поля, а во втором - таблица символов, где можно найти любые математические знаки.

Как запомнить математические символы

В отличие от химии и физики, где количество символов для запоминания может превосходить сотню единиц, математика оперирует относительно небольшим числом знаков. Простейшие из них мы усваиваем ещё в глубоком детстве, учась складывать и вычитать, и только в университете на определенных специальностях знакомимся с немногочисленными сложными математическими знаками и символами. Картинки для детей помогают за считанные недели достичь мгновенного узнавания графического изображения требуемой операции, гораздо больше времени может понадобиться для овладения навыком самого осуществления этих операций и понимания их сущности.

Таким образом, процесс запоминания знаков происходит автоматически и не требует особых усилий.

В заключение

Ценность математических знаков и символов заключается в том, что их без труда понимают люди, говорящие на разных языках и являющиеся носителями различных культур. По этой причине крайне полезно понимать и уметь воспроизводить графические изображения различных явлений и операций.

Высокий уровень стандартизации этих знаков обуславливает их использование в самых различных сферах: в области финансов, информационных технологий, инженерном деле и др. Для каждого, кто хочет заниматься делом, связанным с числами и расчетами, знание математических знаков и символов и их значений становится жизненной необходимостью.

Математические обозначения («язык математики ») - сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем , применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор.

Отметим, что математические обозначения, как правило, применяются совместно с письменной формой какого-то из естественных языков .

Помимо фундаментальной и прикладной математики, математические обозначения имеют широкое применение в физике , а также (в неполном своём объёме) в инженерии , информатике , экономике , да и вообще во всех областях человеческой деятельности, где применяются математические модели . Различия между собственно математическим и прикладным стилем обозначений будут оговорены по ходу текста.

Энциклопедичный YouTube

    1 / 5

    ✪ Знак / в математике

    ✪ Математика 3 класс. Таблица разрядов многозначных чисел

    ✪ Множества в математике

    ✪ Математика 19. Математические забавы - Шишкина школа

    Субтитры

    Привет! Это видео не о математике, скорее об этимологии и семиотике. Но уверен, вам понравится. Поехали! Вы вот в курсе, что поиск решения кубических уравнений в общем виде занял у математиков несколько столетий? Это отчасти почему? Потому что не было ясных символов для ясных мыслей, то ли дело наше время. Символов столько, что и запутаться можно. Но нас с вами не проведешь, давайте разбираться. Вот это - заглавная перевернутая буква А. Это на самом деле английская буква, числится первой в словах "all" и "any". По-русски этот символ, в зависимости от контекста, может читаться так: для любого, всякий, каждому, все и так далее. Такой иероглиф будем называть квантором всеобщности. А вот и еще один квантор, но уже существование. Английскую букву е отразили в Paint-е слева направо, намекая тем самым на заморский глагол "exist", по-нашему будем читать: существует, найдется, имеется и другим подобным образом. Восклицательный знак такому квантору существования добавит единственности. Если с этим понятно, двигаемся дальше. Неопределенные интегралы вам наверняка попадались в классе так одиннадцатом, я бы хотел напомнить, что это не просто какая-то первообразная, а совокупность всех первообразных подынтегральной функции. Так что не забывайте про С - константу интегрирования. Между делом, сам значок интеграла - это просто вытянутая буква s, отголосок латинского слова сумма. В этом как раз и есть геометрический смысл определенного интеграла: поиск площади фигуры под графиком суммированием бесконечно малых величин. Как по мне, это самое романтичное занятие в матанализе. А вот школьная геометрия полезнее всего тем, что приучает к логической строгости. К первому курсу у вас должно быть чёткое понимание, что такое следствие, что такое равносильность. Ну нельзя путаться в необходимости и достаточности, понимаете? Давайте даже попробуем копнуть чуть-чуть глубже. Если вы решили заняться высшей математикой, то я представляю, насколько у вас все плохо с личной жизнью, но именно поэтому вы наверняка согласитесь одолеть небольшое упражнение. Здесь три пункта, в каждом имеется левая и правая части, которую вам нужно связать одним из трех нарисованных символов. Пожалуйста, кликните паузу, попробуйте сами, а затем послушайте, что я вам скажу. Если x=-2, то |x|=2, а вот слева направо так фразу уже построить. Во втором пункте в левой и правой частях написано абсолютно одно и то же. А третий пункт можно прокомментировать так: каждый прямоугольник является параллелограммом, но не каждый параллелограмм является прямоугольником. Да, знаю, что вы уже не маленькие, но все же мои аплодисменты тем, кто справился с этим упражнением. Ну да ладно, хватит, давайте вспомним числовые множества. Натуральные числа используются при счете: 1, 2, 3, 4 и так далее. В природе -1 яблока не существует, но, кстати, целые числа позволяют говорить о таких вещах. Буква ℤ кричит нам о важной роли нуля, множество рациональных чисел обозначается буквой ℚ, и это неслучайно. В английском слово "quotient" означает "отношение". Кстати, если где-нибудь в Бруклине к вам подойдет афроамериканец и скажет: "Keep it real!", - можете быть уверены, перед вами математик, почитатель действительных чисел. Ну а вам стоит почитать что-нибудь о комплексных числах, будет полезней. Мы же сейчас сделаем откат, вернемся в первый класс самой что ни на есть обычной греческой школы. Короче говоря, помянем древний алфавит. Первая буква - альфа, затем бетта, этот крючок - гамма, потом дельта, после неё следует эпсилон и так далее, вплоть до последней буквы омега. Можете не сомневаться, что у греков есть и прописные буквы, но мы сейчас не будем о грустном. Мы лучше о веселом - о пределах. Но тут как раз никаких загадок и нет, сразу понятно, от какого слова появился математический символ. Ну а стало быть, мы можем перейти к финальной части видео. Пожалуйста, попробуйте озвучить определение предела числовой последовательности, которое сейчас написано перед вами. Кликайте скорее паузу и соображаете, и да будет вам счастье годовалого ребенка, узнавшего слово "мама". Если для любого эпсилон больше нуля найдется натуральное N, да такое, что для всех номеров числовой последовательности, больших N, выполнено неравенство |xₙ-a|<Ɛ (эпсилон), то тогда предел числовой последовательности xₙ , при n, стремящемся к бесконечности, равен числу a. Такие вот дела, ребята. Не беда, если вам не удалось прочесть это определение, главное в свое время его понять. Напоследок отмечу: множество тех, кто посмотрел этот ролик, но до сих пор не подписан на канал, не является пустым. Это меня очень печалит, так что во время финальной музыки покажу, как это исправить. Ну а остальным желаю мыслить критически, заниматься математикой! Счастливо! [Музыка / аплодиминнты]

Общие сведения

Система складывалась, наподобие естественных языков, исторически (см. история математических обозначений), и организована наподобие письменности естественных языков, заимствуя оттуда также многие символы (прежде всего, из латинского и греческого алфавитов). Символы, также как и в обычной письменности, изображаются контрастными линиями на равномерном фоне (чёрные на белой бумаге, светлые на тёмной доске, контрастные на мониторе и т. д.), и значение их определяется в первую очередь формой и взаимным расположением. Цвет во внимание не принимается и обычно не используется, но, при использовании букв , такие их характеристики как начертание и даже гарнитура , не влияющие на смысл в обычной письменности, в математических обозначениях могут играть смыслоразличающую роль.

Структура

Обыкновенные математические обозначения (в частности, так называемые математические формулы ) пишутся в общем в строку слева направо, однако не обязательно составляют последовательную строку символов. Отдельные блоки символов могут располагаться в верхней или нижней половине строки, даже в случае, когда символы не перекрываются вертикалями. Также, некоторые части располагаются целиком выше или ниже строки. С грамматической же стороны почти любую «формулу» можно считать иерархически организованной структурой типа дерева .

Стандартизация

Математические обозначения представляют систему в смысле взаимосвязи своих компонент, но, в целом, не составляют формальную систему (в понимании самой математики). Они, в сколь-нибудь сложном случае, не могут быть даже разобраны программно . Как и любой естественный язык, «язык математики» полон несогласованных обозначений, омографов , различных (в среде своих носителей) трактовок того, что́ считать правильным и т. п. Нет даже сколь-нибудь обозримого алфавита математических символов, и в частности оттого, что не всегда однозначно решается вопрос, считать ли два обозначения разными символами или же разными написаниями одного символа.

Некоторая часть математических обозначений (в основном, связанная с измерениями) стандартизована в ISO 31 -11, однако в целом стандартизация обозначений скорее отсутствует.

Элементы математических обозначений

Числа

При необходимости применить систему счисления с основанием , меньшим десяти, основание записывается в нижний индекс: 20003 8 . Системы счисления с основаниями, бо́льшими десяти, в общепринятой математической записи не применяются (хотя, разумеется, изучаются самой наукой), поскольку для них не хватает цифр. В связи с развитием информатики , стала актуальной шестнадцатеричная система счисления , в которой цифры от 10 до 15 обозначаются первыми шестью латинскими буквами от A до F. Для обозначения таких чисел в информатике используется несколько разных подходов, но в математику они не перенесены.

Надстрочные и подстрочные знаки

Скобки, подобные им символы и разделители

Круглые скобки «()» используются:

Квадратные скобки «» нередко применяются в значении группировки, когда приходится использовать много пар скобок. В таком случае они ставятся снаружи и (при аккуратной типографике) имеют бо́льшую высоту, чем скобки, стоя́щие внутри.

Квадратные «» и круглые «()» скобки используются при обозначении закрытых и открытых промежутков соответственно.

Фигурные скобки «{}» используются, как правило, для , хотя в отношении них справедлива та же оговорка, что и для квадратных скобок. Левая «{» и правая «}» скобки могут использоваться по отдельности; их назначение описано .

Символы угловых скобок « ⟨ ⟩ {\displaystyle \langle \;\rangle } » при аккуратной типографике должны иметь тупые углы и тем отличаться от схожих , имеющих прямой или острый угол. На практике же на это не следует надеяться (особенно, при ручной записи формул) и различать их приходится при помощи интуиции.

Часто используются пары симметричных (относительно вертикальной оси) символов, в том числе и отличных от перечисленных, для выделения куска формулы. Назначение парных скобок описано .

Индексы

В зависимости от расположения различают верхние и нижние индексы. Верхний индекс может означать (но необязательно означает) возведение в степень , об остальных случаях использования .

Переменные

В науках встречаются наборы величин, и любая из них может принимать или набор значений и называться переменной величиной (вариантой), или только одно значение и называться константой. В математике от физического смысла величины часто отвлекаются, и тогда переменная величина превращается в отвлечённую (или числовую) переменную, обозначаемую каким-нибудь символом, не занятым специальными обозначениями, о которых было сказано выше.

Переменная X считается заданной, если указано множество принимаемых ею значений {x} . Постоянную же величину удобно рассматривать как переменную, у которой соответствующее множество {x} состоит из одного элемента.

Функции и операторы

В математике не усматривается существенного различия между оператором (унарным), отображением и функцией .

Однако, подразумеваются, что если для записи значения отображения от заданных аргументов необходимо указывать , то символ оного отображения обозначает функцию, в иных случаях скорее говорят об операторе. Символы некоторых функций одного аргумента употребляются и со скобками и без. Многие элементарные функции , например sin ⁡ x {\displaystyle \sin x} или sin ⁡ (x) {\displaystyle \sin(x)} , но элементарные функции всегда называются функциями .

Операторы и отношения (унарные и бинарные)

Функции

Функция может упоминаться в двух смыслах: как выражение её значения при заданных аргументах (пишется f (x) , f (x , y) {\displaystyle f(x),\ f(x,y)} и т. п.) или собственно как функция. В последнем случае ставится только символ функции, без скобок (хотя зачастую пишут как попало).

Имеется много обозначений общепринятых функций, используемых в математических работах без дополнительных пояснений. В противном случае функцию надо как-то описывать и в фундаментальной математике она принципиально не отличается от и точно также обозначается произвольной буквой. Для обозначения функций-переменных наиболее популярна буква f , также часто применяются g и большинство греческих.

Предопределённые (зарезервированные) обозначения

Однако, однобуквенным обозначениям может быть, при желании, придан другой смысл. Например, буква i часто используется как обозначение индекса в контексте, где комплексные числа не применяются, а буква может быть использована как переменная в какой-нибудь комбинаторике . Также, символы теории множеств (такие как « ⊂ {\displaystyle \subset } » и « ⊃ {\displaystyle \supset } ») и исчисления высказываний (такие как « ∧ {\displaystyle \wedge } » и « ∨ {\displaystyle \vee } ») могут быть использованы в другом смысле, обычно как отношение порядка и бинарные операции соответственно.

Индексирование

Индексирование графически изображается (обычно нижними, иногда и верхними) и является, в некоторым смысле, способом расширить информационное наполнение переменной. Однако, употребляется оно в трёх несколько различных (хотя и перекрывающихся) смыслах.

Собственно номера

Можно иметь несколько разных переменных, обозначая их одной буквой, аналогично использованию . Например: x 1 , x 2 , x 3 … {\displaystyle x_{1},\ x_{2},\ x_{3}\ldots } . Обычно они связаны какой-то общностью, но вообще это не обязательно.

Более того, в качестве «индексов» можно использовать не только числа, но и любые символы. Однако, когда в виде индекса пишется другая переменная и выражение, данная запись интерпретируется как «переменная с номером, определяемым значением индексного выражения».

В тензорном анализе

В линейной алгебре , тензорном анализе , дифференциальной геометрии с индексами (в виде переменных) записываются

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b