Биографии Характеристики Анализ

Метод наименьших квадратов применяется для обработки результатов. Где применяется метод наименьших квадратов

Матричный способ решения систем линейных уравнений

Рассмотрим систему линейных уравнений следующего вида:

$\left\{\begin{array}{c} {a_{11} x_{1} +a_{12} x_{2} +...+a_{1n} x_{n} =b_{1} } \\ {a_{21} x_{1} +a_{22} x_{2} +...+a_{2n} x_{n} =b_{2} } \\ {...} \\ {a_{n1} x_{1} +a_{n2} x_{2} +...+a_{nn} x_{n} =b_{n} } \end{array}\right. .$

Числа $a_{ij} (i=1..n,j=1..n)$ - коэффициенты системы, числа $b_{i} (i=1..n)$ - свободные члены.

Определение 1

В случае, когда все свободные члены равны нулю, система называется однородной, в противном случае - неоднородной.

Каждой СЛАУ можно поставить в соответствие несколько матриц и записать систему в так называемом матричном виде.

Определение 2

Матрица коэффициентов системы называется матрицей системы и обозначается, как правило, буквой $A$.

Столбец свободных членов образует вектор-столбец, который, как правило, обозначается буквой $B$ и называется матрицей свободных членов.

Неизвестные переменные образуют вектор-столбец, который, как правило, обозначается буквой $X$ и называется матрицей неизвестных.

Описанные выше матрицы имеют вид:

$A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {...} & {a_{1n} } \\ {a_{21} } & {a_{22} } & {...} & {a_{2n} } \\ {...} & {...} & {...} & {...} \\ {a_{n1} } & {a_{n2} } & {...} & {a_{nn} } \end{array}\right),B=\left(\begin{array}{c} {b_{1} } \\ {b_{2} } \\ {...} \\ {b_{n} } \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {...} \\ {x_{n} } \end{array}\right).$

Используя матрицы, СЛАУ можно переписать в виде $A\cdot X=B$. Такую запись часто называют матричным уравнением.

Вообще говоря, в матричном виде записать можно любую СЛАУ.

Примеры решения системы с помощью обратной матрицы

Пример 1

Дана СЛАУ: $\left\{\begin{array}{c} {3x_{1} -2x_{2} +x_{3} -x_{4} =3} \\ {x_{1} -12x_{2} -x_{3} -x_{4} =7} \\ {2x_{1} -3x_{2} +x_{3} -3x_{4} =5} \end{array}\right. $. Записать систему в матричном виде.

Решение:

$A=\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right),B=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right).$

$\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right)\cdot \left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right)=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right)$

В случае, когда матрица системы является квадратной, СЛАУ можно решить уравнения матричным способом.

Имея матричное уравнение $A\cdot X=B$, можно выразить из него $X$ следующим способом:

$A^{-1} \cdot A\cdot X=A^{-1} \cdot B$

$A^{-1} \cdot A=E$ (свойство произведения матриц)

$E\cdot X=A^{-1} \cdot B$

$E\cdot X=X$ (свойство произведения матриц)

$X=A^{-1} \cdot B$

Алгоритм решения системы алгебраических уравнений с помощью обратной матрицы:

  • записать систему в матричном виде;
  • вычислить определитель матрицы системы;
  • если определитель матрицы системы отличен от нуля, то находим обратную матрицу;
  • решение системы вычисляем по формуле $X=A^{-1} \cdot B$.

Если матрица системы имеет определитель, не равный нулю, то данная система имеет единственное решение, которое можно найти матричным способом.

Если матрица системы имеет определитель, равный нулю, то данную систему нельзя решить матричным способом.

Пример 2

Дана СЛАУ: $\left\{\begin{array}{c} {x_{1} +3x_{3} =26} \\ {-x_{1} +2x_{2} +x_{3} =52} \\ {3x_{1} +2x_{2} =52} \end{array}\right. $. Решить СЛАУ методом обратной матрицы, если это возможно.

Решение:

$A=\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right),B=\left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right). $

Нахождение определителя матрицы системы:

$\begin{array}{l} {\det A=\left|\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right|=1\cdot 2\cdot 0+0\cdot 1\cdot 3+2\cdot (-1)\cdot 3-3\cdot 2\cdot 3-2\cdot 1\cdot 1-0\cdot (-1)\cdot 0=0+0-6-18-2-0=-26\ne 0} \end{array}$ Так как определитель не равен нулю, то матрица системы имеет обратную матрицу и, следовательно, система уравнений может быть решена методом обратной матрицы. Полученное решение будет единственным.

Решим систему уравнений с помощью обратной матрицы:

$A_{11} =(-1)^{1+1} \cdot \left|\begin{array}{cc} {2} & {1} \\ {2} & {0} \end{array}\right|=0-2=-2; A_{12} =(-1)^{1+2} \cdot \left|\begin{array}{cc} {-1} & {1} \\ {3} & {0} \end{array}\right|=-(0-3)=3;$

$A_{13} =(-1)^{1+3} \cdot \left|\begin{array}{cc} {-1} & {2} \\ {3} & {2} \end{array}\right|=-2-6=-8; A_{21} =(-1)^{2+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {0} \end{array}\right|=-(0-6)=6; $

$A_{22} =(-1)^{2+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {3} & {0} \end{array}\right|=0-9=-9; A_{23} =(-1)^{2+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {3} & {2} \end{array}\right|=-(2-0)=-2;$

$A_{31} =(-1)^{3+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {1} \end{array}\right|=0-6=-6; A_{32} =(-1)^{3+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {-1} & {1} \end{array}\right|=-(1+3)=-4;$

$A_{33} =(-1)^{3+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {-1} & {2} \end{array}\right|=2-0=2$

Искомая обратная матрица:

$A^{-1} =\frac{1}{-26} \cdot \left(\begin{array}{ccc} {-2} & {6} & {-6} \\ {3} & {-9} & {-4} \\ {-8} & {-2} & {2} \end{array}\right)=\frac{1}{26} \cdot \left(\begin{array}{ccc} {2} & {-6} & {6} \\ {-3} & {9} & {4} \\ {8} & {2} & {-2} \end{array}\right)=\left(\begin{array}{ccc} {\frac{2}{26} } & {\frac{-6}{26} } & {\frac{6}{26} } \\ {\frac{-3}{26} } & {\frac{9}{26} } & {\frac{4}{26} } \\ {\frac{8}{26} } & {\frac{2}{26} } & {\frac{-2}{26} } \end{array}\right)=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right).$

Найдем решение системы:

$X=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right)\cdot \left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right)=\left(\begin{array}{c} {\frac{1}{13} \cdot 26-\frac{3}{13} \cdot 52+\frac{3}{13} \cdot 52} \\ {-\frac{3}{26} \cdot 26+\frac{9}{26} \cdot 52+\frac{2}{13} \cdot 52} \\ {\frac{4}{13} \cdot 26+\frac{1}{13} \cdot 52-\frac{1}{13} \cdot 52} \end{array}\right)=\left(\begin{array}{c} {2-12+12} \\ {-3+18+8} \\ {8+4-4} \end{array}\right)=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$

$X=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$ - искомое решение системы уравнений.

Рассмотрим систему линейных алгебраических уравнений (СЛАУ) относительно n неизвестных x 1 , x 2 , ..., x n :

Эта система в "свернутом" виде может быть записана так:

S n i=1 a ij x j = b i , i=1,2, ..., n .

В соответствии с правилом умножения матрицрассмотренная система линейных уравнений может быть записана вматричной форме Ax=b , где

Матрица A , столбцами которой являются коэффициенты при соответствующих неизвестных, а строками - коэффициенты при неизвестных в соответствующем уравнении называется матрицей системы . Матрица-столбец b , элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы . Матрица-столбец x , элементы которой - искомые неизвестные, называется решением системы .

Система линейных алгебраических уравнений, записанная в виде Ax=b , является матричным уравнением .

Если матрица системы невырождена , то у нее существует обратная матрица и тогда решение системы Ax=b дается формулой:

x=A -1 b .

Пример Решить систему матричным методом.

Решение найдем обратную матрицу для матрицы коэффициентов системы

Вычислим определитель, раскладывая по первой строке:

Поскольку Δ ≠ 0 , то A -1 существует.

Обратная матрица найдена верно.

Найдем решение системы

Следовательно, x 1 = 1, x 2 = 2, x 3 = 3 .

Проверка:

7. Теорема Кронекера-Капелли о совместности системы линейных алгебраических уравнений.

Система линейных уравнений имеет вид:

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 , (5.1)

a m1 x 1 + a m1 x 2 +... + a mn x n = b m .

Здесь а i j и b i (i = ; j = ) - заданные, а x j - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

где A = (а i j) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы , X = (x 1 , x 2 ,..., x n) T , B = (b 1 , b 2 ,..., b m) T - векторы-столбцы, составленные соответственно из неизвестных x j и из свободных членов b i .

Упорядоченная совокупность n вещественных чисел (c 1 , c 2 ,..., c n) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x 1 , x 2 ,..., x n каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c 1 , c 2 ,..., c n) T такой, что AC  B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой , если она не имеет решений.

,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (5.1) решается следующей теоремой.

Теорема Кронекера-Капелли . Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A иA совпадают, т.е. r(A) = r(A) = r.

Для множества М решений системы (5.1) имеются три возможности:

1) M =  (в этом случае система несовместна);

2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной );

3) M состоит более чем из одного элемента (тогда система называется неопределенной ). В третьем случае система (5.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда r(A) = n. При этом число уравнений - не меньше числа неизвестных (mn); если m>n, то m-n уравнений являются следствиями остальных. Если 0

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа :

a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 ,

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 , (5.3)

... ... ... ... ... ...

a n1 x 1 + a n1 x 2 +... + a nn x n = b n .

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.

Пример 2.12 . Исследовать систему уравнений и решить ее, если она совместна:

5x 1 - x 2 + 2x 3 + x 4 = 7,

2x 1 + x 2 + 4x 3 - 2x 4 = 1,

x 1 - 3x 2 - 6x 3 + 5x 4 = 0.

Решение. Выписываем расширенную матрицу системы:

.

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу = 7  0; содержащие его миноры третьего порядка равны нулю:

Следовательно, ранг основной матрицы системы равен 2, т.е. r(A) = 2. Для вычисления ранга расширенной матрицы A рассмотрим окаймляющий минор

значит, ранг расширенной матрицы r(A) = 3. Поскольку r(A)  r(A), то система несовместна.

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,

где A ij − алгебраическое дополнение элемента матрицы A , находящиеся на пересечении i -ой строки и j -ого столбца, а Δ − определитель матрицы A .

Используя формулу обратной матрицы, получим:

Назначение сервиса . С помощью данного онлайн-калькулятора вычисляются неизвестные {x 1 , x 2 , ..., x n } в системе уравнений. Решение осуществляется методом обратной матрицы . При этом:
  • вычисляется определитель матрицы A ;
  • через алгебраические дополнения находится обратная матрица A -1 ;
  • осуществляется создание шаблона решения в Excel ;
Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word .

Инструкция . Для получения решения методом обратной матрицы необходимо задать размерность матрицы. Далее в новом диалоговом окне заполнить матрицу A и вектор результатов B .

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел {x 1 , x 2 , ..., x n } , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных): См. также Решение матричных уравнений .

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X ={x 1 , x 2 , ..., x n } получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:


Алгебраические дополнения.
A 1,1 = (-1) 1+1
1 2
0 -2
∆ 1,1 = (1 (-2)-0 2) = -2

A 1,2 = (-1) 1+2
3 2
1 -2
∆ 1,2 = -(3 (-2)-1 2) = 8

A 1,3 = (-1) 1+3
3 1
1 0
∆ 1,3 = (3 0-1 1) = -1

A 2,1 = (-1) 2+1
-2 1
0 -2
∆ 2,1 = -(-2 (-2)-0 1) = -4

A 2,2 = (-1) 2+2
2 1
1 -2
∆ 2,2 = (2 (-2)-1 1) = -5

A 2,3 = (-1) 2+3
2 -2
1 0
∆ 2,3 = -(2 0-1 (-2)) = -2

A 3,1 = (-1) 3+1
-2 1
1 2
∆ 3,1 = (-2 2-1 1) = -5

A 3,2 = (-1) 3+2
2 1
3 2
∆ 3,2 = -(2 2-3 1) = -1

·
3
-2
-1

X T = (1,0,1)
x 1 = -21 / -21 = 1
x 2 = 0 / -21 = 0
x 3 = -21 / -21 = 1
Проверка:
2 1+3 0+1 1 = 3
-2 1+1 0+0 1 = -2
1 1+2 0+-2 1 = -1

Пример №2 . Решить СЛАУ методом обратной матрицы.
2 x 1 + 3x 2 + 3x 3 + x 4 = 1
3 x 1 + 5x 2 + 3x 3 + 2x 4 = 2
5 x 1 + 7x 2 + 6x 3 + 2x 4 = 3
4 x 1 + 4x 2 + 3x 3 + x 4 = 4

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 5 (6 1-3 2)-7 (3 1-3 2)+4 (3 2-6 2) = -3
Минор для (2,1):

= 3 (6 1-3 2)-7 (3 1-3 1)+4 (3 2-6 1) = 0
Минор для (3,1):

= 3 (3 1-3 2)-5 (3 1-3 1)+4 (3 2-3 1) = 3
Минор для (4,1):

= 3 (3 2-6 2)-5 (3 2-6 1)+7 (3 2-3 1) = 3
Определитель минора
∆ = 2 (-3)-3 0+5 3-4 3 = -3

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение :xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера ; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации . После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

-1 3 0
3 -2 1
2 1 -1
Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А - невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений . Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1 (-2 (-1)-1 1)-3 (3 (-1)-1 0)+2 (3 1-(-2 0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:
Вычисляем алгебраические дополнения.
A 1,1 =(-1) 1+1
-2 1
1 -1
∆ 1,1 =(-2 (-1)-1 1)=1
A 1,2 =(-1) 1+2
3 1
0 -1
∆ 1,2 =-(3 (-1)-0 1)=3
A 1,3 =(-1) 1+3
3 -2
0 1
∆ 1,3 =(3 1-0 (-2))=3
A 2,1 =(-1) 2+1
3 2
1 -1
∆ 2,1 =-(3 (-1)-1 2)=5
A 2,2 =(-1) 2+2
-1 2
0 -1
∆ 2,2 =(-1 (-1)-0 2)=1
A 2,3 =(-1) 2+3
-1 3
0 1
∆ 2,3 =-(-1 1-0 3)=1
A 3,1 =(-1) 3+1
3 2
-2 1
∆ 3,1 =(3 1-(-2 2))=7
·
4
-3
-3
X=1/14
-3))
Главный определитель
∆=4 (0 1-3 (-2))-2 (1 1-3 (-1))+0 (1 (-2)-0 (-1))=16
Транспонированная матрица
∆ 1,1 =(0 1-(-2 3))=6
A 1,2 =(-1) 1+2
1 3
-1 1
∆ 1,2 =-(1 1-(-1 3))=-4
A 1,3 =(-1) 1+3
1 0
-1 -2
∆ 1,3 =(1 (-2)-(-1 0))=-2
A 2,1 =(-1) 2+1
2 0
-2 1
∆ 2,1 =-(2 1-(-2 0))=-2
A 2,2 =(-1) 2+2
4 0
-1 1
∆ 2,2 =(4 1-(-1 0))=4
A 2,3 =(-1) 2+3
4 2
-1 -2
∆ 2,3 =-(4 (-2)-(-1 2))=6
A 3,1 =(-1) 3+1
2 0
0 3
∆ 3,1 =(2 3-0 0)=6
A 3,2 =(-1) 3+2
4 0
1 3
∆ 3,2 =-(4 3-1 0)=-12
A 3,3 =(-1) 3+3 1/16
6 -4 -2
-2 4 6
6 -12 -2
E=A*A -1 =
(4 6)+(1 (-2))+(-1 6) (4 (-4))+(1 4)+(-1 (-12)) (4 (-2))+(1 6)+(-1 (-2))
(2 6)+(0 (-2))+(-2 6) (2 (-4))+(0 4)+(-2 (-12)) (2 (-2))+(0 6)+(-2 (-2))
(0 6)+(3 (-2))+(1 6) (0 (-4))+(3 4)+(1 (-12)) (0 (-2))+(3 6)+(1 (-2))

=1/16
16 0 0
0 16 0
0 0 16
A*A -1 =
1 0 0
0 1 0
0 0 1

Пример №7 . Решение матричных уравнений.
Обозначим:

A =
3 0 5
2 1 4
-1 3 0
Алгебраические дополнения
A 1,1 = (-1) 1+1
1 3
4 0
∆ 1,1 = (1*0 - 4*3) = -12
A 1,2 = (-1) 1+2
0 3
5 0
∆ 1,2 = -(0*0 - 5*3) = 15
A 1,3 = (-1) 1+3
0 1
5 4
∆ 1,3 = (0*4 - 5*1) = -5
A 2,1 = (-1) 2+1
2 -1
4 0
∆ 2,1 = -(2*0 - 4*(-1)) = -4
A 2,2 = (-1) 2+2
3 -1
5 0
∆ 2,2 = (3*0 - 5*(-1)) = 5
A 2,3 = (-1) 2+3
3 2
5 4
∆ 2,3 = -(3*4 - 5*2) = -2
A 3,1 = (-1) 3+1
2 -1
1 3
∆ 3,1 = (2*3 - 1*(-1)) = 7
· 1/-1
-12 15 -5
-4 5 -2
7 -9 3
= Вектор B:
B T =(31,13,10)

X T =(4.05,6.13,7.54)
x 1 = 158 / 39 =4.05
x 2 = 239 / 39 =6.13
x 3 = 294 / 39 =7.54
Проверка .
-2 4.05+-1 6.13+6 7.54=31
1 4.05+-1 6.13+2 7.54=13
2 4.05+4 6.13+-3 7.54=10

Пример №9 . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

-2 1 6
1 -1 2
2 4 -3
Вектор B:
B T =(31,13,10)

X T =(5.21,4.51,6.15)
x 1 = 276 / 53 =5.21
x 2 = 239 / 53 =4.51
x 3 = 326 / 53 =6.15
Проверка .
-2 5.21+1 4.51+6 6.15=31
1 5.21+-1 4.51+2 6.15=13
2 5.21+4 4.51+-3 6.15=10

Пример №10 . Решение матричных уравнений.
Обозначим:

Алгебраические дополнения
A 11 = (-1) 1+1 ·-3 = -3; A 12 = (-1) 1+2 ·3 = -3; A 21 = (-1) 2+1 ·1 = -1; A 22 = (-1) 2+2 ·2 = 2;
Обратная матрица A -1 .
· 1/-9
-3 -3
-1 2
=
1 -2
1 1
Ответ:
X =
1 -2
1 1
  • 6.4. Некоторые приложения скалярного произведения
  • 11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
  • 13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
  • 14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
  • 15. Способы задания прямой на плоскости.
  • 16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
  • 17. Уравнение прямой на плоскости в отрезках (вывод).
  • Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
  • 18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
  • 19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
  • 20. Угол между прямыми на плоскости (вывод).
  • 21. Расстояние от точки до прямой на плоскости (вывод).
  • 22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
  • 23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
  • 24. Уравнение плоскости в отрезках (вывод).
  • 25. Уравнение плоскости, проходящей через три точки (вывод).
  • 26. Угол между плоскостями (вывод).
  • 27. Расстояние от точки до плоскости (вывод).
  • 28. Условия параллельности и перпендикулярности плоскостей (вывод).
  • 29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
  • 30. Канонические уравнения прямой в пространстве (вывод).
  • Составление канонических уравнений прямой в пространстве.
  • Частные случаи канонических уравнений прямой в пространстве.
  • Канонические уравнения прямой проходящей через две заданные точки пространства.
  • Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
  • 31. Угол между прямыми (вывод).
  • 32. Расстояние от точки до прямой на плоскости (вывод).
  • Расстояние от точки до прямой на плоскости – теория, примеры, решения.
  • Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
  • Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
  • Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
  • Расстояние от точки до прямой в пространстве – теория, примеры, решения.
  • Первый способ нахождения расстояния от точки до прямойaв пространстве.
  • Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
  • 33. Условия параллельности и перпендикулярности прямых в пространстве.
  • 34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
  • 35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид, где– положительные действительные числа, причём.Как построить эллипс?
  • 36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
  • 37. Каноническое уравнение параболы (вывод) и построение.
  • 38. Функция. Основные определения. Графики основных элементарных функций.
  • 39. Числовые последовательности. Предел числовой последовательности.
  • 40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
  • 41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
  • 42. Число e.
  • Содержание
  • Способы определения
  • Свойства
  • История
  • Приближения
  • 43. Определение предела функции. Раскрытие неопределённостей.
  • 44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
  • Содержание
  • Первый замечательный предел
  • Второй замечательный предел
  • 45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
  • Левый и правый пределы функции
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • 46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
  • 47. Теоремы о производной обратной, сложной функций.
  • 48. Производные простейших элементарных функций.
  • 49. Дифференцирование параметрических, неявных и степенно-показательных функций.
  • 21. Дифференцирование неявных и параметрически заданных функций
  • 21.1. Неявно заданная функция
  • 21.2. Функция, заданная параметрически
  • 50. Производные высших порядков. Формула Тейлора.
  • 51. Дифференциал. Применение дифференциала к приближенным вычислениям.
  • 52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
  • 53. Теорема о необходимом и достаточном условиях монотонности функции.
  • 54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
  • Теорема (необходимое условие экстремума)
  • 55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
  • Доказательство
  • 57. Определители n-ого порядка, их свойства.
  • 58. Матрицы и действия над ними. Ранг матрицы.
  • Определение
  • Связанные определения
  • Свойства
  • Линейное преобразование и ранг матрицы
  • 59. Обратная матрица. Теорема о существовании обратной матрицы.
  • 60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
  • Решение систем линейных алгебраических уравнений, методы решения, примеры.
  • Определения, понятия, обозначения.
  • Решение элементарных систем линейных алгебраических уравнений.
  • Решение систем линейных уравнений методом Крамера.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  • Решение систем линейных уравнений методом Гаусса.
  • Решение систем линейных алгебраических уравнений общего вида.
  • Теорема Кронекера – Капелли.
  • Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  • Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  • Решение систем уравнений, сводящихся к слау.
  • Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

    Пусть система линейных алгебраических уравнений задана в матричной форме , где матрицаA имеет размерностьn наn и ее определитель отличен от нуля.

    Так как , то матрицаА – обратима, то есть, существует обратная матрица. Если умножить обе части равенстванаслева, то получим формулу для нахождения матрицы-столбца неизвестных переменных. Так мы получили решение системы линейных алгебраических уравнений матричным методом.

    матричным методом.

    Перепишем систему уравнений в матричной форме:

    Так как то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как.

    Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицыА (при необходимости смотрите статьюметоды нахождения обратной матрицы):

    Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицуна матрицу-столбец свободных членов(при необходимости смотрите статьюоперации над матрицами):

    или в другой записи x 1 = 4, x 2 = 0, x 3 = -1 .

    Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

    Более подробное описание теории и дополнительные примеры смотрите в статье матричный метод решения систем линейных уравнений.

    К началу страницы

    Решение систем линейных уравнений методом Гаусса.

    Пусть нам требуется найти решение системы из n линейных уравнений сn неизвестными переменнымиопределитель основной матрицы которой отличен от нуля.

    Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключаетсяx 1 из всех уравнений системы, начиная со второго, далее исключаетсяx 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменнаяx n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называетсяпрямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находитсяx n , с помощью этого значения из предпоследнего уравнения вычисляетсяx n-1 , и так далее, из первого уравнения находитсяx 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называетсяобратным ходом метода Гаусса .

    Кратко опишем алгоритм исключения неизвестных переменных.

    Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменнуюx 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на, к третьему уравнению прибавим первое, умноженное на, и так далее, кn-ому уравнению прибавим первое, умноженное на. Система уравнений после таких преобразований примет видгде, а.

    К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменнаяx 1 исключена из всех уравнений, начиная со второго.

    Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

    Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на, и так далее, кn-ому уравнению прибавим второе, умноженное на. Система уравнений после таких преобразований примет видгде, а. Таким образом, переменнаяx 2 исключена из всех уравнений, начиная с третьего.

    Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

    Так продолжаем прямой ход метода Гаусса пока система не примет вид

    С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как, с помощью полученного значенияx n находимx n-1 из предпоследнего уравнения, и так далее, находимx 1 из первого уравнения.

    Решите систему линейных уравнений методом Гаусса.

    Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные наи насоответственно:

    Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на:

    На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

    Из последнего уравнения полученной системы уравнений находим x 3 :

    Из второго уравнения получаем .

    Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

    x 1 = 4, x 2 = 0, x 3 = -1 .

    Более детальную информацию и дополнительные примеры смотрите в разделе решение элементарных систем линейных алгебраических уравнений методом Гаусса.

    К началу страницы